Exercise sheet \# 11
 Algebraic Geometry SS 2018

(Ingo Runkel)

Exercise 43 (4 P)

Give an example of a regular function f on a quasi-affine variety U such that f cannot be written as $f=g / h$ for polynomials which are defined on all of U.
Hint: Consider $V \subset \mathbb{A}^{4}$ given by the zero set of $X_{1} X_{4}-X_{2} X_{3}$. Let H be the hyperplane $X_{2}=X_{4}=0$. Note that $H \subset V$. Define $U=V \backslash H$. Consider the function $f: U \rightarrow k$ which is equal to X_{1} / X_{2} on the open subset $\left\{X_{2} \neq 0\right\}$ and equal to X_{3} / X_{4} on the open subset $\left\{X_{4} \neq 0\right\}$. (Why is this even well-defined? Why is f regular? Why can it not be written as g / h on all of U ?).

Exercise 44 (2 P)

Consider the function $\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right)$. Turn this into a rational function $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. Compute ϕ^{2} and conclude that ϕ is birational. Give open subsets where ϕ restricts to an isomorphism.

Exercise 45 (3 P)
From the proof of Theorem 3.5.6: Let

$$
\tilde{\alpha}:\{\text { dominant rational maps } X \longrightarrow Y\} \rightarrow \operatorname{Hom}_{\text {alg }}(k(Y), k(X))
$$

be the map $\phi \mapsto \phi^{*}$ and let $\tilde{\beta}$ be the map in the opposite direction constructed in the lecture. Show that $\tilde{\alpha}$ and $\tilde{\beta}$ are inverse to each other.

Exercise 46 (4 P)
Let $M \subset \mathbb{P}^{n}$ be a closed set.

1. Show that there is some $d_{0}>0$ such that for each $d \geq d_{0}$ one can find homogeneous polynomials f_{α}, all of which have degree d, such that $M=$ $Z\left(\left\{f_{\alpha} \mid \alpha\right\}\right)$.
2. Give an example of an irreducible M such that $I(M)$ cannot be generated by homogeneous polynomials of the same degree.

Please turn over.

Exercise 47 (3 P)

Let $f, g \in k\left[X_{1}, \ldots, X_{n}\right]$ be homogeneous polynomials of degrees $\operatorname{deg}(f)=d$, $\operatorname{deg}(g)=d-1$. Suppose that f, g are coprime. Let M be the zero set of $f-X_{0} g$ in \mathbb{P}^{n}. Show that M is a projective variety which is birational to \mathbb{P}^{n-1}.

Exercise 48 (8 P)

Recall the injective map $\mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ with $N=(m+1)(n+1)-1$ from exercise 28 (and which is called the Segre embedding). Denote the corresponding bijection to the image by ζ.

1. By exercise 28, the image of ζ is a closed subset of \mathbb{P}^{N}. Show that it is irreducible, i.e. that it is a projective variety.

We use ζ to identify $\mathbb{P}^{m} \times \mathbb{P}^{n}$ with its image. In this way, $\mathbb{P}^{m} \times \mathbb{P}^{n}$ becomes a projective variety. E.g. a subset $M \subset \mathbb{P}^{m} \times \mathbb{P}^{n}$ is closed iff $\zeta(M)$ is closed, a map $F: \mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow X$ for some variety X is a morphism iff $F \circ \zeta^{-1}$ is a morphism, etc. Show:
2. The closed sets in $\mathbb{P}^{m} \times \mathbb{P}^{n}$ are common zero sets of polynomials $f \in$ $k\left[X_{0}, \ldots, X_{m}, Y_{0}, \ldots, Y_{n}\right]$ which are homogeneous of degree d_{1} in the X_{i} and of degree d_{2} in the Y_{j}. That is, writing f as a sum of monomials

$$
X_{0}^{a_{0}} \cdots X_{m}^{a_{m}} Y_{0}^{b_{0}} \cdots Y_{n}^{b_{n}}
$$

we have $\sum a_{i}=d_{1}$ and $\sum b_{j}=d_{2}$ for each summand of f.
3. If $M \subset \mathbb{P}^{m}$ and $N \subset \mathbb{P}^{n}$ are closed subsets, then $M \times N$ is closed in $\mathbb{P}^{m} \times \mathbb{P}^{n}$.
4. The projections $\mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ and $\mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ are morphisms.
5. If $X \subset \mathbb{P}^{m}$ and $Y \subset \mathbb{P}^{n}$ are quasi-projective varieties, then $X \times Y$ is a quasiprojective variety in $\mathbb{P}^{m} \times \mathbb{P}^{n}$, i.e. $\zeta(X \times Y)$ is quasi-projective in \mathbb{P}^{N}. In particular $X \times Y$ is irreducible. If X and Y are projective, so is $X \times Y$.

