Exercise sheet # 09Algebraic Geometry SS 2018

(Ingo Runkel)

Exercise 35 (4 P)

Theorem 3.3.3 states that for a projective variety Y we have $\mathcal{O}(Y) \cong k$. Does this statement remain true if

- 1. one considers quasi-projective varieties instead?
- 2. one considers a closed subset Y of \mathbb{P}^n which is not necessarily irreducible?
- 3. one takes the field to be \mathbb{R} and $Y = \mathbb{P}^1_{\mathbb{R}}$?

Background on morphisms

Let X, Y be varieties. A morphism from X to Y is a continuous map $\phi : X \to Y$ such that for ever open set $V \subset Y$ and every regular function $f : V \to k$ also the function $\phi^* f := f \circ \phi|_U : U \to k$, with $U := \phi^{-1}(V) \subset X$, is regular. Accordingly, an isomorphism between two varieties X and Y is a bijection $\phi : X \to Y$ such that ϕ and ϕ^{-1} are morphisms in the above sense.

Exercise 36 (8 P)

- 1. Show that the coordinate charts $\varphi_i: U_i \to \mathbb{A}^n$ of \mathbb{P}^n are isomorphisms of varieties.
- 2. Show that for a morphism $\phi : X \to Y$, precomposing with ϕ induces an algebra homomorphism $\phi_p^* : \mathcal{O}_{\phi(p),Y} \to \mathcal{O}_{p,X}$.
- 3. Show that isomorphic varieties have isomorphic rings of regular functions, isomorphic local rings and isomorphic function fields.
- 4. For affine varieties X, Y, in section 1.5 we considered polynomial maps from X to Y. Show that a map $f : X \to Y$ is a polynomial map iff it is a morphism of varieties in the above sense.

Remark: This shows in particular that the notion of isomorphism for affine varieties defined in section 1.5 agrees with notion defined above.

5. Let X, Y be varieties and let $f : X \to k$ and $\phi : X \to Y$ be maps. Let $\{U_{\alpha}\}$ be a open cover of X.

Show that f is regular iff $f|_{U_{\alpha}}$ is regular for all α . Show that ϕ is a morphism iff $\phi|_{U_{\alpha}}$ is a morphism for all α .

Please turn over.

Exercise 37 (4 P)

Let X,Y be varieties and $\phi:X\to Y$ a morphism. Show that the following are equivalent:

- 1. ϕ is an isomorphism.
- 2. ϕ is an homeomorphism, and for all $p \in X$ the algebra homomorphism $\phi_p^* : \mathcal{O}_{\phi(p),Y} \to \mathcal{O}_{p,X}$ from exercise 35 part 2 is an isomorphism.

Exercise 38 (8 P)

Consider the map $F : \mathbb{P}^n \to \mathbb{P}^N$ from exercise 34.

- 1. Show that F is a homeomorphism onto its image.
- 2. Show that F is an isomorphism of varieties onto its image.
- 3. Consider the map F for n = 1, d = 2, i.e. $F : \mathbb{P}^1 \to \mathbb{P}^2$, $(p_0 : p_1) \mapsto (p_0^2 : p_0p_1 : p_1^2)$. Let $X = \mathbb{P}^1$ and $Y = \operatorname{im}(F)$. Show that $S(X) \ncong S(Y)$.

Remark: Since by part 2, X and Y are isomorphic, this provides an example that the homogeneous coordinate ring is not invariant under isomorphisms of projective varieties.