Exercise sheet \# 08 Algebraic Geometry SS 2018

(Ingo Runkel)

Exercise 29 (4 P)

Let $Y \subset \mathbb{P}^{n}$ be a quasi-projective variety and let $f: Y \rightarrow k$ be a function. Recall the standard charts $U_{i} \subset \mathbb{P}^{n}$ and $\varphi_{i}: U_{i} \rightarrow \mathbb{A}^{n}$. Write $Y_{i}:=\varphi_{i}\left(Y \cap U_{i}\right) \subset \mathbb{A}^{n}$ and

$$
f_{i}=\left[Y_{i} \xrightarrow{\varphi_{i}^{-1}} U_{i} \xrightarrow{f} k\right] .
$$

1. Show that Y_{i} is either empty or a quasi-affine variety.
2. Show that the following are equivalent:
(a) f is regular on Y.
(b) f_{i} is regular on Y_{i} for all i.

Exercise 30 (6 P)
Let R be a commutative ring and $S \subset R$ a multiplicatively closed subset.

1. Write $j: R \rightarrow S^{-1} R$ for the ring homomorphism $j(r)=\frac{r}{1}$. Let T be a commutative ring and let $\varphi: R \rightarrow T$ be a ring homomorphism such that $\varphi(s)$ is invertible in T for all $s \in S$. Show that there is a unique ring homomorphism $\tilde{\varphi}: S^{-1} R \rightarrow T$ such that $\tilde{\varphi} \circ j \varphi$. Use this to describe localisation by a universal property.
2. In the setting of part 1: Show that if φ is injective, then so is $\tilde{\varphi}$. What about the converse statement? What about surjectivity?

Exercise 31 (3 P)

Let R be a commutative ring and let $S, S^{\prime} \subset R$ be two multiplicatively closed subsets such that $S \subset S^{\prime}$. Make a compatibility statement about iterated localisations. How are Quot (R) and Quot $\left(S^{-1} R\right)$ related (and what are the conditions on R and S for this question to make sense)?

Please turn over

Exercise 32 (2 P)

Show: In a local ring the maximal ideal is formed by all non-invertible elements. What can you say if, conversely, all non-invertible elements form an ideal?

Exercise 33 (3 P)

Let R be an integral domain and let $\operatorname{Max}(R)$ the set of maximal ideals. For $\mathfrak{m} \in \operatorname{Max}(R)$, think of the localisation $R_{\mathfrak{m}}$ as a subset of $\operatorname{Quot}(R)$. Show that

$$
\bigcap_{\mathfrak{m} \in \operatorname{Max}(R)} R_{\mathfrak{m}}=R
$$

Hint: Suppose z lies in the intersection but not in R. Consider the ideal I of R given by all $r \in R$ such that $r z \in R$. It will have to lie in some maximal ideal.

Exercise 34 (6 P)
Let $n, d \geq 1$. Write M_{0}, \ldots, M_{N} for the monomials of degree d in the $n+1$ variables $X_{0}, X_{1}, \ldots, X_{n}$ (there are $N+1=\binom{n+d}{n}$ of these). Define the map $F: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ by $\left(p_{0}: \ldots,: p_{n}\right) \mapsto\left(M_{0}(p): \cdots: M_{N}(p)\right)$.

1. Why is this well-defined? Write out the map in the example $n=1, d=2$.
2. Let $\theta: k\left[Y_{0}, \ldots, Y_{N}\right] \rightarrow k\left[X_{0}, \ldots, X_{n}\right]$ be the homomorphism which sends Y_{a} to $M_{a} \in k\left[X_{0}, \ldots, X_{n}\right]$. Show that $\mathfrak{p}=\operatorname{ker}(\theta)$ is a homogeneous prime ideal. (And so $Z(\mathfrak{p})$ is a projective variety.)
3. Show that $F\left(\mathbb{P}^{n}\right)=Z(\mathfrak{p})$.
