Exercise sheet # 07Algebraic Geometry SS 2018

(Ingo Runkel)

Exercise 25 (5 P)

Let R be a commutative graded ring and let $I \subset R$ be an ideal. Denote by $\pi : R \to R/I$ the canonical projection. Show that the following statements are equivalent.

- 1. *I* is homogeneous.
- 2. If $i \in I$ can be written as $i = \sum_{d \in \mathbb{Z}} u_d$ with $u_d \in R_d$ (and with only finitely many u_d non-zero), then also $u_d \in I$ for all $d \in \mathbb{Z}$.
- 3. *I* is generated by homogeneous elements.
- 4. $R/I = \bigoplus_{d \in \mathbb{Z}} \pi(R_d).$

Exercise 26 (7 P)

Let R be a graded commutative ring and let $I \subset R$ be a homogeneous ideal. Show:

- 1. I is prime if and only if for all homogeneous elements $f, g \in R$ we have: $fg \in I \Rightarrow f \in I \lor g \in I$.
- 2. \sqrt{I} is homogeneous
- 3. Suppose $(I_{\alpha})_{\alpha \in M}$ is a family of homogeneous ideals. Then also $\langle I_{\alpha} | \alpha \in M \rangle$ and $\bigcap_{\alpha \in M} I_{\alpha}$ are homogeneous ideals.

What about the converse implications in 2 and 3?

Exercise 27 (9 P)

Show:

- 1. The ideal of a cone is proper (i.e. not all of the polynomial ring) and homogeneous, and homogeneous proper ideals describe cones.
- 2. Let $M \subset \mathbb{P}^n$ be a non-empty subset. Then $I_a(C(M)) = I_p(M)$.
- 3. Let $J \subsetneq S$ be a homogeneous ideal. Then $C(Z_p(J)) = Z_a(J)$ and $P(Z_a(J)) = Z_p(J)$.
- 4. The bijections P and C between subset of \mathbb{P}^n and cones in \mathbb{A}^{n+1} restrict to bijections
 - (a) between algebraic sets in \mathbb{P}^n and closed cones in \mathbb{A}^{n+1} ,
 - (b) between projective varieties and affine varieties which are cones.

Please turn over.

Exercise 28 (3 P)

Let $m, n \in \mathbb{Z}_{>0}$ and N = (m+1)(n+1)-1. Label the coordinates of a point $z \in k^N$ as $z_{i,j}$ with $0 \le i \le m$ and $0 \le j \le n$. (In other words, pick a permutation to identify $\{0, 1, \ldots, m\} \times \{0, 1, \ldots, n\}$ with $\{0, 1, \ldots, N\}$.) Consider the map $f : \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^N$,

$$((p_0:\cdots:p_m),(q_0:\cdots:q_n))\mapsto (z_{1,1}:\cdots:z_{m,n})$$

with $z_{i,j} = p_i q_j$.

Show that f is well-defined and injective, and that the image of f is the algebraic set given by the common zeros of

$$T = \{ Z_{i,j} Z_{k,l} - Z_{i,l} Z_{k,j} \mid 0 \le i, k \le m , \ 0 \le j, l \le n \} .$$