Exercise sheet \# 06 Algebraic Geometry SS 2018

(Ingo Runkel)

Exercise 21 (4 P)

Let K be a field and let $H \subset K^{n+1}$ an n-dimensional sub-vector space. Give a bijection between the disjoint union $H \cup \mathbb{P}(H)$ and \mathbb{P}_{K}^{n}. Does a similar decomposition statement hold for $\mathbb{P}(V)$ (instead of \mathbb{P}_{K}^{n}) when V is an infinte-dimensional K-vector space?

Exercise 22 (Complex projective space in metric topology) (4 P)
Recall the subsets $U_{i} \subset \mathbb{P}_{\mathbb{C}}^{n}, i=0, \ldots, n$ and the bijections $\varphi_{i}: U_{i} \rightarrow \mathbb{C}^{n}$. Think of the φ_{i} as coordinate charts which endow $\mathbb{P}_{\mathbb{C}}^{n}$ with a topology induced from the metric topology on \mathbb{C}^{n}. In particular, a map $f: X \rightarrow \mathbb{P}_{\mathbb{C}}^{n}$, for X a topological space, is continuous iff $\varphi_{i} \circ f$ is continuous on its domain of definition (for the metric topology on \mathbb{C}^{n}) for all i.

Let $S=\left\{z \in \mathbb{C}^{n+1}| | z \mid=1\right\}$ and consider the map $f: S \rightarrow \mathbb{P}_{\mathbb{C}}^{n}, z \mapsto \mathbb{C} z$, the one-dimensional subspace spanned by z. Show that f is a continuous surjection and conclude that $\mathbb{P}_{\mathbb{C}}^{n}$ is compact.

Exercise 23 (Proof of Lemma 2.2.3) (4 P)
Let k be an algebraically closed field as usual and write $\mathbb{P}^{n}=\mathbb{P}_{k}^{n}$. Recall the coordinate charts $\varphi_{i}: U_{i} \rightarrow \mathbb{A}^{n}$.

1. Let $N \subset \mathbb{P}^{n}$ be closed. Show that $\varphi_{i}\left(U_{i} \cap N\right) \subset \mathbb{A}^{n}$ is closed.
2. Let $M \subset \mathbb{A}^{n}$ be closed. Show that there exists a closed $N \subset \mathbb{P}^{n}$ such that $\varphi_{i}\left(U_{i} \cap N\right)=M$.

Please turn over.

Exercise 24 (12 P)
Consider the homeomorphism $\varphi_{0}: U_{0} \rightarrow \mathbb{A}^{n}$ for $U_{0} \subset \mathbb{P}^{n}$ one of the standard coordinate charts. Let \mathcal{P}_{0} be the set of all projective varieties in \mathbb{P}^{n} which are not contained in the hyperplane $H_{0}=Z\left(\left\{X_{0}\right\}\right)$. Let \mathcal{A} be the set of all affine varieties in \mathbb{A}^{n}.

1. Let $P \in \mathcal{P}_{0}$. Why does $\overline{P \cap U_{0}}=P$ hold? Does this hold for all projective varieties in \mathbb{P}^{n} or does it use the condition $P \not \subset H_{0}$?
2. Show that the assignment $\varphi_{*}: \mathcal{P}_{0} \rightarrow \mathcal{A}, P \mapsto \varphi_{0}\left(P \cap U_{0}\right)$ is well-defined and is in fact a bijection.
3. Does φ_{*} remain a bijection if in the above definition of \mathcal{P}_{0} and \mathcal{A} we replace "projective variety" and "affine variety" by "algebraic set"?
4. Show that U_{0} is dense in \mathbb{P}^{n} (in the Zariski topology). Show that \mathbb{P}^{n} is irreducible.
5. (Extra problem with 0 points.)

Consider the algebraic set $V=Z\left(\left\{X_{1}^{2}-X_{2}^{2}-1\right\}\right) \subset \mathbb{A}^{2}$. Show that V is irreducible. What are the points in $\varphi_{*}^{-1}(V)$ outside of U_{0} ?

