Exercise sheet # 06Algebraic Geometry SS 2018

(Ingo Runkel)

Exercise 21 (4 P)

Let K be a field and let $H \subset K^{n+1}$ an n-dimensional sub-vector space. Give a bijection between the disjoint union $H \cup \mathbb{P}(H)$ and \mathbb{P}_K^n . Does a similar decomposition statement hold for $\mathbb{P}(V)$ (instead of \mathbb{P}_K^n) when V is an infinite-dimensional K-vector space?

Exercise 22 (Complex projective space in metric topology) (4 P)

Recall the subsets $U_i \subset \mathbb{P}^n_{\mathbb{C}}$, $i = 0, \ldots, n$ and the bijections $\varphi_i : U_i \to \mathbb{C}^n$. Think of the φ_i as coordinate charts which endow $\mathbb{P}^n_{\mathbb{C}}$ with a topology induced from the metric topology on \mathbb{C}^n . In particular, a map $f : X \to \mathbb{P}^n_{\mathbb{C}}$, for X a topological space, is continuous iff $\varphi_i \circ f$ is continuous on its domain of definition (for the metric topology on \mathbb{C}^n) for all i.

Let $S = \{z \in \mathbb{C}^{n+1} | |z| = 1\}$ and consider the map $f : S \to \mathbb{P}^n_{\mathbb{C}}, z \mapsto \mathbb{C}z$, the one-dimensional subspace spanned by z. Show that f is a continuous surjection and conclude that $\mathbb{P}^n_{\mathbb{C}}$ is compact.

Exercise 23 (Proof of Lemma 2.2.3) (4 P)

Let k be an algebraically closed field as usual and write $\mathbb{P}^n = \mathbb{P}^n_k$. Recall the coordinate charts $\varphi_i : U_i \to \mathbb{A}^n$.

- 1. Let $N \subset \mathbb{P}^n$ be closed. Show that $\varphi_i(U_i \cap N) \subset \mathbb{A}^n$ is closed.
- 2. Let $M \subset \mathbb{A}^n$ be closed. Show that there exists a closed $N \subset \mathbb{P}^n$ such that $\varphi_i(U_i \cap N) = M$.

Please turn over.

Exercise 24 (12 P)

Consider the homeomorphism $\varphi_0 : U_0 \to \mathbb{A}^n$ for $U_0 \subset \mathbb{P}^n$ one of the standard coordinate charts. Let \mathcal{P}_0 be the set of all projective varieties in \mathbb{P}^n which are not contained in the hyperplane $H_0 = Z(\{X_0\})$. Let \mathcal{A} be the set of all affine varieties in \mathbb{A}^n .

- 1. Let $P \in \mathcal{P}_0$. Why does $\overline{P \cap U_0} = P$ hold? Does this hold for all projective varieties in \mathbb{P}^n or does it use the condition $P \notin H_0$?
- 2. Show that the assignment $\varphi_* : \mathcal{P}_0 \to \mathcal{A}, P \mapsto \varphi_0(P \cap U_0)$ is well-defined and is in fact a bijection.
- 3. Does φ_* remain a bijection if in the above definition of \mathcal{P}_0 and \mathcal{A} we replace "projective variety" and "affine variety" by "algebraic set"?
- 4. Show that U_0 is dense in \mathbb{P}^n (in the Zariski topology). Show that \mathbb{P}^n is irreducible.
- 5. (Extra problem with 0 points.) Consider the algebraic set $V = Z(\{X_1^2 - X_2^2 - 1\}) \subset \mathbb{A}^2$. Show that V is irreducible. What are the points in $\varphi_*^{-1}(V)$ outside of U_0 ?