Exercise sheet # 04Algebraic Geometry SS 2018

(Ingo Runkel)

Exercise 14 [2 P]

Let J be an ideal in $A = k[\mathbb{A}^n] = k[X_1, \dots, X_n]$. From Hilbert's Nullstellensatz we learned that $I(Z(J)) = \sqrt{J}$. Show that for a subset S of \mathbb{A}^n (not necessarily an algebraic set) one has $Z(I(S)) = \overline{S}$, the closure of S in the Zariski topology.

Exercise 15 [9 P]

- 1. Let X, Y be topological spaces and let $f : X \to Y$ be continuous. Show that if X is irreducible, then so is the image of f. What about the converse statement?
- 2. Let X be a topological space, let $U \subset X$ be a subset and denote by $\overline{U} \subset X$ the closure of U. Show that U is irreducible iff \overline{U} is irreducible.
- 3. Let M, N be algebraic sets and let $f : M \to N$ a polynomial map. Show that if M is an algebraic variety, then so is the closure of f(M) in N. Why does one need to take the closure?
- 4. Show that the set $M \subset \mathbb{A}^3$ from exercise 3 is an algebraic variety.

Please turn over.

Exercise 16 (Zariski topology for rings) [13 P]

Let R be a commutative ring and let $\operatorname{Spec}(R)$ be the set of all prime ideals in R. This is called the spectrum of R or the prime spectrum of R. For an ideal $I \subset R$ define the subset $V(I) \subset \operatorname{Spec}(R)$ as

$$V(I) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \, | \, I \subset \mathfrak{p} \} \,.$$

1. Show that taking closed sets to be the V(I), where I runs over all ideals of R, defines a topology on Spec(R). This is called the Zariski topology on Spec(R).

Let $Max(R) \subset Spec(R)$ be the subset of all maximal ideals in R. Equip Max(R) with the subset topology (i.e. the closed sets in Max(R) are precisely the sets $V(I) \cap Max(R)$, where I runs over all ideals in R).

- 2. (Extra problem with 0 points.)Is Max(R) always/sometimes/never closed in Spec(R)? Or open?
- 3. Let S be another commutative ring and $\phi : R \to S$ a ring homomorphism. Explain why the map $\phi^{-1}(-)$ of taking preimages, which takes subsets of S to subsets of R, restricts to a map $\hat{\phi} : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$, but in general not to a map $\operatorname{Max}(S) \to \operatorname{Max}(R)$.

(This is why the prime spectrum is sometimes nicer to consider than the maximal spectrum.)

4. Show that $\hat{\phi} : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ is continuous.

Let us now apply the above general discussion to the setting treated in the lecture: Let $M \subset \mathbb{A}^n$ be an algebraic set and let k[M] be its coordinate ring. Recall the bijection $\psi: M \to \operatorname{Max}(k[M])$ from exercise 9.

- 5. On M we defined the Zariski topology in the lecture by taking algebraic sets as closed sets. On Max(k[M]) we defined a topology above (also called Zariski topology). Show that ψ is a homeomorphism (i.e. continuous with continuous inverse).
- 6. (Extra problem with 0 points.) Do the points in Spec(k[M]) which are not in Max(k[M]) have a geometric interpretation in M?

Does the problem from part 3 also occur when we consider polynomial maps $f: M \to N$ between algebraic sets? Or, equivalently (by Theorem 1.5.11), algebra homomorphisms $\phi: k[N] \to k[M]$?