Lösungshinweise zum Übungsblatt #11 Lineare Algebra und Analytische Geometrie 2

SS 2015 Dozent: Ingo Runkel

Zu den kurzen Fragen (3 P)

- 1. Ja, denn die Abbildung $(A, v) \mapsto Av$ ist offensichtlich bilinear (vgl. Bem. 2.7.1).
- 2. Ja, denn wieder ist die Abb. $(A, v) \mapsto \operatorname{tr}(A)v$ bilinear (siehe auch Zettel 2 Aufg. 7 1.).
- 3. Nein, denn schon für $V = \mathbb{R}^2$ und $0 \neq v \in \mathbb{R}^2$ gilt

$$\det\begin{pmatrix}1&0\\0&0\end{pmatrix}v+\det\begin{pmatrix}0&0\\0&1\end{pmatrix}v=0\neq v=\det\begin{pmatrix}1&0\\0&1\end{pmatrix}v,$$

also kann die Abbildung $A \otimes v \mapsto \det(A)v$ nicht linear sein.

Zu Aufgabe 56 (4 P) (Diese Lösung ist vollständig ausformuliert. D.h., in etwa diesem Umfang erwarten wir Ihre Abgaben.)

Angenommen $m_A=c_n$ hat nur einfache Nullstellen. Dann gilt das wegen $c_i|c_n$ auch für die übrigen Invariantenteiler c_i mit i=1,...,n-1. Die Begleitmatrizen zu allen $c_i\neq 1$ sind deshalb diagonalisierbar, da die geometrische Vielfachheit der Eigenwerte, also der Nullstellen von c_i , dann nur gleich der algebraischen Vielfachheit sein kann (vgl. Satz 4.3.10): wegen der Einfachheit der Nullstellen ist diese nämlich genau 1. Also sind alle Begleitmatrizen, die als Blöcke in der Frobenius-Normalform von A auftauchen, und damit auch die Frobenius-Normalform selbst diagonalisierbar. Dann ist aber auch A diagonalisierbar [2 P].

Sei umgekehrt A diagonalisierbar. Dann zerfällt P_A in Linearfaktoren. Wir können also Satz 5.4.17 über die Jordan-Normalform anwenden. Da A diagonalisierbar ist, kann jeder Invariantenteiler c_i und damit insbesondere $c_n = m_A$ (vgl. Satz 5.4.10) nur einfache Nullstellen haben, da sonst Jordan-Blöcke der Größe > 1 auftreten würden [2 P].

Zu Aufgabe 57 (2 P)

1. $p \otimes q$ hat die Form

$$(p_1e_1 + p_2e_2) \otimes (q_1e_1 + q_2e_2)$$

= $p_1q_1(e_1 \otimes e_1) + p_1q_2(e_1 \otimes e_2) + p_2q_1(e_2 \otimes e_1) + p_2q_2(e_2 \otimes e_2)$

Aus $p \otimes q = e_1 \otimes e_1 + e_2 \otimes e_2$ folgt also $p_1q_1 = 1$ und $p_2q_2 = 1$ – d.h. $p_1, q_1, p_2, q_2 \neq 0$ – und $p_1q_2 = 0$ und $p_2q_1 = 0$, was zum Widerspruch führt [1 P].

2. Unter Verwendung der Relationen in $\mathbb{R}^2\otimes\mathbb{R}^2$ ergibt sich, dass beide Seiten gleich

$$4(e_1 \otimes e_1) + 5(e_1 \otimes e_2) + 5(e_2 \otimes e_1) + 7(e_2 \otimes e_2)$$

sind (für die rechte Seite sieht man das sofort) [1 P].

Zu Aufgabe 58 (2 P) Die Existenz und Eindeutigkeit einer linearen Abbildung $\phi \colon T \to T'$ mit $t' = \phi \circ t$ folgt direkt aus der universellen Eigenschaft von T, t und der Bilinearität von t' [1 P]. Umgekehrt gibt es eine eindeutige lineare Abbildung $\chi \colon T' \to T$ mit $t = \chi \circ t'$. Damit und mit der Eindeutigkeit in der universellen Eigenschaft von T, t und T, t' folgt jeweils $\chi \circ \phi = 1_T$ und $\phi \circ \chi = 1_{T'}$, denn die Verkettungen dieser linearen Abbildungen mit t bzw. t' stimmen jeweils überein. Also ist ϕ ein Isomorphismus [1 P].

Zu Aufgabe 59 (2 P) Die Existenz des Vektorraums T wurde schon in der Vorlesung erklärt. Es muss jetzt die universelle Eigenschaft überprüft werden. Sei also $b\colon U\times V\to W$ eine bilineare Abbildung in einen K-Vektorraum W. Dann definieren wir eine lineare Abbildung $\tilde{b}\colon T\to W$ durch $\tilde{b}(e_{ij})=b(u_i,v_j)$. Diese Abbildung erfüllt offensichtlich $b=\tilde{b}\circ t$, da $\tilde{b}(t(u_i,v_j))=\tilde{b}(e_{ij})=b(u_i,v_j)$ vgl. Lemma 6.1.2 [1 P]. Sei $\bar{b}\colon T\to W$ eine weitere lineare Abbildung mit $b=\bar{b}\circ t$. Dann folgt $\bar{b}(e_{ij})=b(u_i,v_j)=\tilde{b}(e_{ij})$ und damit $\bar{b}=\tilde{b}$, also die Eindeutigkeit der Abbildung [1 P].

Zu Aufgabe 60 (3 P)

- 1. Da $\phi(u_i \otimes u_j^*)(u_k) = u_i \delta_{jk}$ und die Identität jeden Basisvektor auf sich selbst abbildet, folgt $\phi^{-1}(\mathrm{id}_U) = \sum_{i,j \in I \times I} \delta_{ij}(u_i \otimes u_j^*)$ (da $\dim_K(U) < \infty$ ist I endlich) [1 P].
- 2. Ist $\varphi = 0$ oder v = 0, so gilt offensichtlich $\dim_K(\operatorname{im}(\phi(v \otimes \varphi))) = 0$ [1 P]. Andernfalls ist $\operatorname{im}(\phi(v \otimes \varphi)) = \operatorname{span}(v)$, also eindimensional [1 P].

Zu Aufgabe 61 (8 P)

1. Zunächst erkennt man einfach, dass $\delta_V(v) \in \operatorname{Hom}_K(V^*,K)$, denn seien $\lambda \in K$ und $f,g \in V^*$, so folgt $\delta_V(v)(\lambda f + g) = \lambda f(v) + g(v) = \lambda \delta_V(v)(f) + \delta_V(v)(g)$. Nun muss noch "K-Linearität in v" bewiesen werden. Seien dazu $\lambda \in K$ und $v,w \in V$, dann folgt

$$\delta_V(\lambda v + w) = \lambda \delta_V(v) + \delta_V(w)$$

aus

$$(\delta_V(\lambda v + w))(f) = f(\lambda v + w) = \lambda f(v) + f(w) = \lambda \delta_V(v)(f) + \delta_V(w)(f),$$
da dies für alle $f \in V^*$ gilt [1 P].

- 2. (a) Sei $v \in \ker(\delta_V)$. Dann gilt für alle $f \in V^* = \operatorname{Hom}_K(V, K)$, dass $0 = \delta_V(v)(f) = f(v)$. Es folgt, z.B. mit Lemma 2.8.6 und der Inklusion $\operatorname{span}(v) \to V$, dass v = 0. Also ist δ_V injektiv [2 P].
 - (b) Für $\dim_K V < \infty$ folgt mit der Dimensionsformel (Satz 2.6.9, siehe auch A.1) direkt, dass δ_V auch surjektiv ist, da $\dim_K (V^{**}) = \dim_K (V^*) = \dim_K V$ (vgl. Satz 2.8.2). Also ist δ_V ein Isomorphismus [1 P].
- 3. (a) Es gilt $f^{**}(\varphi) = \varphi \circ f^*$ also $f^{**}(\varphi)(\xi) = \varphi(f^*(\xi)) = \varphi(\xi \circ f)$ [1 P].
 - (b) Das Diagramm kommutiert, denn für alle $v \in V$ und $g \in W^*$ gilt

$$\delta_W(f(v))(g) = g(f(v)) = \delta_V(v)(g \circ f) \stackrel{(a)}{=} f^{**}(\delta_V(v))(g)$$
 [1P].

4. Sei $V \neq \{0\}$ und $W = \{0\}$, dann gilt $\ker(f) = V$ und wegen $\ker(f) \subset \ker(f^* \circ \epsilon_W \circ f) \subset V$ folgt $\ker(f^* \circ \epsilon_W \circ f) = V$. Dann kann das Diagramm in der Aufgabenstellung allerdings nicht kommutieren, denn $\ker(\epsilon_V) = \{0\}$ [2 P].