
M.Sc. Thesis

Permutation Orbifolds in
Reshetikhin-Turaev TQFT

prepared by

Iordanis Romaidis

M.Nr.: 7092486

2019

First referee: Prof. Dr. Ingo Runkel
Second referee: Prof. Dr. Christoph Schweigert

Fakultät Mathematik
Universität Hamburg
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1 Introduction and Summary

Defects in field theories have gained considerable attention in recent years, providing a model
of introducing embedded manifolds of lower dimension and studying the interplay of the
theory along these. These notions have been studied extensively in 3-dimensional Topological
Field Theories [FRS02, KS10, FSV13, DKR11]. In [CMS16], they gave a functorial definition
of such defect TQFTs in dimension 3 extending the notion of ordinary TQFTs of Atiyah-
Segal. This was further generalized for dimension n in [CRS19]. In [CRS17], they constructed
the so-called Reshetikhin-Turaev (RT) TQFT with defects, based on the well-known TQFT
of Reshetikhin and Turaev [RT90, RT91] and motivated by the work of [FSV13], which
considers surface defects, which separate regions of possibly different RT theories. In the RT
with defects constructed in [CRS17], every region is governed by the same RT type theory,
surface defects are labelled by symmetric ∆-separable Frobenius algebras and line defects
are certain multi-modules over algebras, which label incident surface defects.

A useful tool in the study of TQFTs with defects is that of orbifolds [DPR, FFRS09].
In the context of TQFTs with defects as in [CRS19], orbifolds are a specific choice of defect
labels, called orbifold datum, which enable the construction of an ordinary TQFT, called the
orbifold theory. Orbifold data in the RT TQFT with defects have been studied in [CRS18].
They consist of a Frobenius algebra A, an A-(A ⊗ A) bimodule T , bimodule maps α and
α, a certain algebra endomorphism ψ and a scalar φ subject to certain conditions. A more
geometric approach on orbifolds in 3-dimensional TQFTs and even (extended) 3-2-1-TQFTs
was established in [SW18]. There are interesting examples of such orbifolds based on the
work on G-crossed extension theory [DGNO09, ENOM09, BN13] with possible applications
in condensed matter physics and topological quantum computing [KK12, BJQ13, BBCW14].
Let D be a G-crossed extension of C. On the one hand, [CRS18] defines an orbifold datum
for C. On the other hand, one can pass to the equivariantization of DG and consider the
corresponding TQFT, called gauge theory of C. In [CRS18], the authors conjecture that the
two approaches are the same, i.e. the orbifold theory is isomorphic to the gauge theory. A
particular case of such orbifolds is that of permutation orbifolds of a topological bilayer phase
C�C [BJQ13, FS14], which makes use of the Z2-crossed extension determined in [BS11]. The
physical realization of such models by, for instance, lattice dislocations and their potential
advantages in universal quantum computing are discussed in [BJQ13].

The first result of this work is giving the permutation orbifold datum of C � C, which
makes use of the Z2-crossed extension in [BS11]. For that, we prove:

Theorem 1. The datum A = (A, T, α, α, ψ, φ) described in section 3.2 forms an orbifold
datum for the bilayer system C � C.

Moreover, by following the construction of the orbifold theory, we compute invariants of
the spaces S3, S1 × S2 and the lens space L(−2, 1).

The second part is providing, for a given G-crossed extension D, new G-crossed extensions
Dω,σ,ν in Proposition 4.1. This family of G-crossed extensions gives rise to a family of orbifold
data for the neutral component. For G = Z2, we prove:

Theorem 2. The datum Aj,k = (Aj,k, T j,k, αj,k, αj,k, ψj,k, φ) (see Sec. 4.2) for any j ∈
{0, 1, 2, 3} and k ∈ {0, 1} forms an orbifold datum for C. In particular, the orbifold datum
A ≡ A0,0 is part of a family of eight orbifold data.
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We then compare these orbifold data and finally, we find that the lens space L(−2, 1)
detects the cocycle ω, which modifies the associator.

The thesis is organized as follows:

• In Section 2, we introduce some of the mathematical prerequisites needed. Section
2.1 briefly introduces the relevant notions of the theory of tensor categories, where we
also fix the conventions used here (taken mainly from [EGNO15, BK01, TV17]). In
Section 2.2, one can find a review of the algebraic data, which appear in the RT TQFT
with defects. Finally, the theory of G-crossed extensions and related notions is given
in Section 2.3 along with some interesting examples.

• In Section 3.1, we recall the construction of RT TQFTs with defects and their asso-
ciated orbifold data [CRS17, CRS18] and in Section 3.2, the topological bilayer phase
and the corresponding permutation defects [BJQ13, FS14]. We also determine the
permutation orbifold data and Section 3.3 includes the orbifold invariants.

• Section 4 provides a family of G-crossed extensions. The corresponding orbifold data
for the G = Z2 case are presented in Section 4.2. Finally, we compare the different
orbifold data and their orbifold theories.

We also include appendices A and B for doing graphical calculus with partitions respec-
tively compare a convention difference for the Z2-crossed extensions.

The main new results in this thesis is the explicit computation of the permutation orbifold
data of C � C obtained by its Z2-extension, the study of a family of eight orbifold data and
the comparison of invariants of the lens space L(−2, 1) for their orbifold theories.

There are several directions one can go beyond this work. An interesting problem is
to prove the conjecture of [CRS18], that the gauge theory [CGPW16, BN13] and the orb-
ifold theory are isomorphic. One can also try to address this for the Z2-crossed category
C � C ⊕ C by using the results of this work, and the work of [EJP18] on the fusion rules of
the corresponding equivariantization. Furthermore, one can try to generalize the results to
multi-layer phases, i.e. on C�N (see [Pas18]).
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comments during the preparation of this thesis. Moreover, I would like to thank Prof. Dr.
Christoph Schweigert for being the second referee. Special thanks to Vincentas Mulevicius
and my classmates Eilind Karlsson and Merlin Christ for various helpful discussions.
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2 Preliminaries

2.1 Conventions

We briefly recall some notions in the theory of tensor categories and fix conventions used in
this text. We adopt the definitions introduced in [EGNO15] and the graphical calculus as
introduced in [BK01, Chapter 2].

Throughout this thesis, the field K will be algebraically closed and of characteristic 0.
For a monoidal category C, we will write (unless otherwise indicated) ⊗ for the monoidal

product, 1 for the unit object, aX,Y,Z for the associator of objects X, Y and Z. The monoidal
category Cmop will denote the monoidal category with the opposite monoidal product ⊗op.

For the braiding of two objects X and Y we will write cX,Y : X⊗Y → Y ⊗X. Graphically,
we write

X Y X Y

cX,Y = c−1
Y,X =

.

For a braided category C, we write Crev for the braided category with the same underlying
monoidal category, but equipped with the opposite braiding, i.e. crev

X,Y := c−1
Y,X . A rigid

category is a monoidal category, for which every object X has a left dual ∗X and a right
dual X∗. We adopt the convention used in [EGNO15] (which is the opposite to [BK01] and
[TV17]), i.e. a right dual comes with the (right) evaluation map

−→evX ≡ X : X ⊗X∗ → 1

and coevaluation map

−−→coevX ≡
X

: 1→ X∗ ⊗X

which are subject to the snake equations. Similarly, the left dual ∗X of X comes with
left evaluation map ←−evX : ∗X ⊗ X → 1 and coevaluation map ←−−coevX : 1 → X ⊗ ∗X. This
convention is chosen such that the graphical representation is actually directed to the right,
respectively left. For the definition of pivotal, spherical and ribbon categories see [EGNO15].
A twist of an object X will be denoted by θX . In a ribbon category C, we will not distinguish
left from right dualities and therefore we will always write X∗ and f ∗ for the dual of an object,
respectively morphism. Let C be a ribbon category. The ribbon category Crev is the category
C with opposite braidings and opposite twists, i.e. θrev

X = θ−1
X .

Recall the notion of tensor categories and fusion categories as in [EGNO15, Def. 4.1.1].
Given a fusion category C, we will write I for the set of representatives of isomorphism classes
of simple objects in C and choose 0 ≡ 1 as the representative of [1]. The duality of C induces
an involution map () : I → I, since for any i ∈ I there exists i such that i ∼= i∗ [BK01].
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Let X be an object in C and i ∈ I. We write N i
X for the dimension of the vector space

C(i,X). An i-partition of X [TV17, Chapter 4] consists of a basis {p(i)
λ }λ=1,...,N i

X
of the vector

space C(X, i) and a basis {q(i)
λ }λ=1,...,N i

X
of vector space C(i,X) such that

p
(i)
λ ◦ q

(i)
µ = δλ,µidi.

A union of i-partitions of X for each i ∈ I, gives an I-partition such that∑
i

∑
λ

q
(i)
λ ◦ p

(i)
λ = idX .

Graphically, we will write

pλ = λ

X

i

and

qλ = λ

X

i

.

The fusion coefficients are defined by

Nk
ij := dim C(k, i⊗ j)

and they satisfy
Nk
ij = Nk

ji = N j̄

ik̄
= N k̄

īj̄ (2.1)

A k-partition of X = i ⊗ j for i, j ∈ I describes the fusion (and the split) of i and j.
Graphically, fusion basis elements are

i j

k

λ

and

i j

k

λ

.
The associativity of the fusion is described by the so called F -matrix. It is defined by

i j k

l

m

λ

µ

i j k

l

m′
λ′

µ′
=

∑
m′,λ′,µ

F λλ′

µµ′

By the definition axioms of partitions, we deduce
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F λλ′

µµ′ =

λ

λ
′

µ′

µ

l

i

j

k

m

m′

l

A modular tensor category (MTC) is a ribbon fusion category C such that the s-matrix,
see [BK01], is non-degenerate. Equivalently, its symmetric center (or Müger center) (C)′1
is trivial, i.e. every object in the symmetric center is just a direct sum of 1’s, or even that
C � Crev ' Z(C), where Z(C) is the Drinfeld center of C.

For graphical calculus in modular tensor categories, we adopt the convention used in
[BK01], where uncolored links are interpreted as taking the sum of all colorings by the set
of representatives of isomrphism classes of simple objects I with a weight of the dimension
of each simple object.

Let C be a modular tensor category. Then, we have the following identities

X X

λ

λ

= D2
N1

X∑
λ=1

and X X

= p±·θ± θ∓

where p± =
∑
i∈I
θ±i d

2
i and D =

√∑
i d

2
i =
√
p+p− (see [BK01, Chapter 3]).

2.2 Algebraic Data

In this section, we briefly recall the algebraic objects, which play a central role in the con-
struction of Reshetikhin-Turaev TQFT with defects (see [TV17], [FRS02]). When dealing
with string diagrams of an algebra or a certain module, we often omit putting labels and
instead color them by red resp. green.

Definition 2.1. Let C be a monoidal category.

1. An algebra in C is a tuple A ≡ (A, µ, η) consisting of an object A and morphisms
µ : A⊗ A→ A and η : 1→ A represented graphically:

1This consists of all objects U ∈ C such that cX,U ◦ cU,X = idU⊗X for all objects X.
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µ =

,

η =

.

These morphisms are subject to the associativity and unitality conditions:

=

,

= =

2. Dually, a coalgebra in C is a tuple C ≡ (C,∆, ε) consisting of an object C and mor-
phisms

∆ =

and

ε =

.

They are subject to the coassociativity and counitality conditions:

=
= =

3. A Frobenius algebra is a list A ≡ (A, µ, η,∆, ε) such that (A, µ, η) forms an algebra,
(A,∆, ε) forms a coalgebra and the algebra and coalgebra structures are compatible in
the following way

= =

.
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Let C be a braided category. For an algebra A = (A, µ, η), we define the opposite algebra
Aop = (A, µop, η) with multiplication

µop := µ ◦ cA,A.

The choice of the braiding instead of the opposite braiding is a convention. If µop = µ, the
algebra is called commutative. Similarly, for a coalgebra (C,∆, ε), the opposite coalgebra
Cop = (C,∆op, ε) has comultiplication

∆op := c−1
C,C ◦∆.

In a braided category, one can define an algebra structure on their monoidal product.
Namely, for algebras A1 and A2 the monoidal product A1⊗A2 inherits an algebra structure
with multiplication

A1 A2

and unit
ηA1⊗A2 = η1 ⊗ η2.

Similarly, the product of coalgebras C1 and C2 has comultiplication

C1 C2

and counit
εC1⊗C2 = ε1 ⊗ ε2.

As before, the choice of these braidings is a convention. If A1 and A2 are Frobenius algebras,
then A1 ⊗ A2 with the algebra and coalgebra structures described above is a Frobenius
algebra.

Let C be rigid and (A, µ, η) be an algebra. Then, its dual A∗ admits a coalgebra structure
with comultiplication ∆ := µ∗ and counit ε := η∗. Similarly, the dual C∗ of a coalgebra C
forms an algebra. If A is a Frobenius algebra, then A∗ is also a Frobenius algebra.

Definition 2.2. 1. Let A be an algebra in a monoidal category C. A left A-module is a
pair (M, r) ≡ AM where M is an object in C and r is a left action of A on M , i.e. a
morphism

9



r = such that

=

,

=

.

A right A-module is a left A-module in Cmop. A module morphism f : (M, rM) →
(N, rN) is a morphism f : M → N such that

=

f

f

2. LetA andB be two algebras. AnA-B-bimodule T carries a leftA-action rA : A⊗T → T
and a right B-action rB : T ⊗B → B which are compatible, i.e.

=

A AB B

We will write ATB to indicate that T carries an A-B-bimodule structure. Any algebra
A has an A-A-bimodule structure with actions given by its multiplication.

3. We say that a Frobenius algebra A is separable if its multiplication µ splits as an
A-A-bimodule map. If its right inverse is the comultiplication, i.e.

=

then we say that A is ∆-separable.

4. Let C be a ribbon category. A Frobenius algebra A is called symmetric if

=

(2.2)
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Remark 2.1. • The Frobenius property in Definition 2.1 is equivalent to ∆ being an
A-A-bimodule map.

• In Definition 2.2 (4), the morphism A → A∗ is even an isomorphism of Frobenius
algebras.

Let A be a Frobenius algebra, (M, rM) a right A-module and (N, rN) a left A-module.
The projector pM,N ∈ End(M ⊗N) is defined by

pM,N =

M N

Its image is the balanced tensor product (M ⊗A N).2 One can show for any Frobenius
algebras A,A′ and corresponding right (left) modules M,M ′ (N,N ′) that

Hom(M ⊗A N,M ′ ⊗A′ N ′)

consists of the morphisms f : M ⊗N →M ′ ⊗N ′ such that

f ◦ pM,N = f = pM ′,N ′ ◦ f.

Definition 2.3. Let (M, r) be an A-module in some ribbon category C. The twist of M is
the A-module M tw = (M, rtw) with action

rtw :=
θ−1

θ

Let A1, . . . , An be algebras. A multi-module A1,...,AnM is an (A1 ⊗ · · · ⊗ An)-module M ,
or equivalently an object M with Ai-actions ri such that

ri ◦ (idAi ⊗ rj) = rj ◦ (idAj ⊗ ri) ◦ (c−1
Ai,Aj

⊗ idM)

for all i < j. Let A1,...,AnM be a multi-module with actions ri. Define the multi-module

A1,...,Aj+1,A1...,AnM
twj by actions ri for i ≥ j + 1 and rtw

i for i ≤ j.

Remark 2.2. If A is a commutative symmetric Frobenius algebra, then a left module M is
local or dyslectic if and only if M tw = M [FFRS06].

Definition 2.4. Let (A1, . . . , An) be a list of algebras and k ∈ Z+ be minimal such that
Ai = A(i+k) mod n. A (maximally) cyclic (A1, . . . , An)-multi-module is an (A1, . . . , An)-multi-

module together with module isomorphism φ : M twk →M such that φn/k = θ−1
M .

The definition of cyclic multi-modules coincides with that of Zn/k-equivariant objects
as in [EGNO15, Sec. 2.7]. By an ((A1, ε1), . . . , (An, εn))-multi-module (where εi = ±) one
means an (Aε11 , . . . , A

εn
n )-multi-module, where A+ := A and A− := Aop.

2It is the coequalizer of rM ⊗ idN and idM ⊗ rN .
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2.3 G-crossed categories

We recall some of the notions in the theory of G-crossed categories, which can be found
in [EGNO15, Kir04, Tur00], from which we deviate by using a right action convention3.
Without loss of generality, we restrict our attention to monoidal categories with trivial
unitality constraints.

Let G be a finite group. We will write G for the monoidal category whose objects are
precisely the group elements with only identity morphisms and the monoidal product is
given by the group multiplication. Let Aut(C) be the category with autoequivalences on C
as objects and natural isomorphisms as morphisms.

Definition 2.5. Let C be a category. A (right) action of G on C is a monoidal functor

R : Gmop → Aut(C); g 7→ Rg,

such that R1 = idC.

Similarly, a G-action on a braided category C is a monoidal functor R : Gmop → Autbr(C)
such that R1 = idC, where Autbr(C) now stands for the category of braided autoequivalences
and braided natural isomorphisms.

Let D be a tensor category. A G-grading is a decomposition

D =
⊕
g∈G

Cg

which is compatible with the monoidal structure, i.e. for objects X ∈ Cg and Y ∈ Ch we
have X ⊗ Y ∈ Cgh. In particular, it follows that 1 ∈ C1 and X∗ ∈ Cg−1 , when X ∈ Cg. For
X ∈ Cg, we refer to g ∈ G as the degree of X. A G-grading is called faithful, if Cg 6= 0 for all
g ∈ G.

Definition 2.6. A G-crossed category D is a tensor category together with:

1. A G-grading: D =
⊕

g∈G Cg.

2. An action R of the group G on D, i.e. a monoidal functor R : Gmop → Aut(D) such
that R1 = idD, such that for all g, h ∈ G we have Rg(Ch) ⊂ Cg−1hg.

For a G-crossed category D =
⊕

g Cg, we will call C1 the neutral component (or neutral
sector) and non-trivial components Cg will be called (g-)twisted components (sectors). Ac-
cordingly, an object in C1 will be called a neutral object, while objects in Cg (for a non-trivial
g) will be called (g-)twisted objects. From now on, we will write Rg(X) ≡ X.g for the action
of g on the object X and similarly Rg(f) ≡ f.g for the action of g on the morphism f .

Remark 2.3. The monoidal structure on R is a family of monoidal natural isomorphisms
ρg,h : Rh ◦Rg

∼−→ Rgh for all g, h ∈ G which satisfy

ρg,hk ◦ (ρh,k ? idRg) = ρgh,k ◦ (idRk ? ρg,h)

3We compare this to the convention of a left action in Appendix B.
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for all g, h, k ∈ G. In particular, we have isomorphisms ρg,h(X) : X.gh ∼= X.g.h. Here ◦ and
? denote the vertical resp. horizontal composition law of natural homomorphisms.

The monoidal structure on the functor Rg is given by a natural isomorphism4 βRg :
⊗ ◦ (Rg ×Rg)→ Rg ◦ ⊗ such that

(X.g ⊗ Y.g)⊗ Z.g X.g ⊗ (Y.g ⊗ Z.g)

(X ⊗ Y ).g ⊗ Z.g X.g ⊗ (Y ⊗ Z).g

((X ⊗ Y )⊗ Z).g (X ⊗ (Y ⊗ Z)).g

aX.g,Y.g,Z.g

βRg (X,Y )⊗idZ.g idX.g⊗βRg (Y,Z)

βRg (X⊗Y,Z) βRg (X,Y⊗Z)

(aX,Y,Z).g

commutes and βRg (1, X) = idX = βRg (X,1) for all X.

We will refer to the isomorphisms ρg,h and βRg as the (action) coherence isomorphisms.
A G-crossed fusion category is a fusion category with a G-crossed tensor structure.

Example 2.1. • Any tensor category C admits a trivial G-crossed tensor structure with
trivial components Cg = 0 for all g 6= 1 and action functor Rg = idC.

• Let C be a pointed fusion category, i.e. every simple object is invertible. Then, the set
of isomorphism classes of simple objects forms a finite group G. This gives a natural
G-structure, with the obvious grading and the conjugation action (X).g := i∗⊗X ⊗ i,
where i ∈ I is the representative of g ∈ G (for details see [DGNO09, Prop. 4.61]).

• As a special case of the previous example, consider the fusion category D = VectωG.
This is the category of G-graded vector spaces with associators defined via a 3-cocycle
ω ∈ H3(G,K×). The action on the simple objects is action Kh.g := Kg−1hg for g, h ∈ G.

Definition 2.7. A G-crossed braided fusion category is a G-crossed fusion category equipped
with natural isomorphisms cRX,Y : X ⊗ Y → Y ⊗X.h for all X ∈ Cg and Y ∈ Ch such that
the diagrams

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y ).k Z ⊗ (X.k ⊗ Y.k)

(Z ⊗X.k)⊗ Y.k

X ⊗ (Y ⊗ Z) X ⊗ (Z ⊗ Y.k) (X ⊗ Z)⊗ Y.k

cRX⊗Y,Z

aX,Y,Z

idZ⊗(βRk )−1

a−1
Z,X.k,Y.k

idX⊗cRY,Z a−1
X,Z,Y.k

cRX,Z⊗idY.k

4We write the superscript R to keep in mind that we deal with a right action. In Appendix B we will
compare this to the convention of a left action.
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and

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X.hk (Y ⊗ Z)⊗X.g.h

Y ⊗ (Z ⊗X.g.h)

(X ⊗ Y )⊗ Z (Y ⊗X.h)⊗ Z Y ⊗ (X.h⊗ Z)

cRX,Y⊗Z

a−1
X,Y,Z

idY⊗Z⊗ρ−1
g,h

aY,Z,X.g.h

cRX,Y ⊗idZ aY,X.h,Z

idY ⊗cRX.h,Z

commute and cR
1,X = cRX,1 = idX .

Remark 2.4. The above diagrams are the G-crossed analogue of the ordinary hexagon
axioms. The neutral component C1 in a G-crossed braided fusion category is, in particular,
a braided fusion category.

Example 2.2. 1. Any braided fusion category is trivially a G-crossed braided fusion
category as in Example 2.1.

2. Let D be a pointed braided fusion category. Then, the group G of isomorphism classes
of simple objects is abelian and D is a G-crossed braided category. In particular, let G
be a finite abelian group. Then, VectωG is naturally a G-crossed braided fusion category.

Following [Kir04], we define a twist in a G-crossed braided category D as a family of
natural isomorphisms θRX : X → X.g for any X ∈ Cg, such that

1. θR
1

= id1

2. (θRX).h = θRX.h

3. θRX⊗Y = cRY.h,X.g.h ◦ cRX.g,Y.h ◦ (θRX ⊗ θRY ),

where we omit writing the obvious structure maps of the action functor.
If D is a G-crossed fusion category equipped with a twist θ such that

θRX∗ = g−1.(θRX)∗

we say that D is a G-crossed ribbon category. If we restrict our attention to the neutral
sector C1, we notice that it has the structure of an ordinary ribbon category.

Graphical calculus for G-crossed categories is well established [Tur10a]. To distinguish
from the ordinary string diagrams in the non-crossed setting, string diagrams for the G-
crossed case will be coloured blue. For instance, the braiding cRX,Y and the morphism c̃RX,Y :=

(cRY.g−1,X)−1◦(idX⊗ρ−1
g,g−1) : X⊗Y → Y.g−1⊗X are graphically represented in Figure 2. The

dotted arrows indicate the degree of the corresponding strand. Hence, every strand which
passes over gets twisted by the degree (or its inverse) of the other strand.

Let D =
⊕
Cg be a G-crossed braided fusion category. Then, we say that D is a G-crossed

extension of C ≡ C1. Similarly, we have the notion of G-crossed ribbon extensions of ribbon
fusion categories.

We recall the notion of equivariantization of a category with a group action [EGNO15,
Def. 2.7.2]
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cRX,Y =

X Y

Y X.h

g h

h h−1gh

c̃RX,Y =

X Y

Y.g−1 X

g h

ghg−1 g

Figure 2: G-crossed braiding graphically.

Definition 2.8. Let D be a category with a G-action R. The equivariantization of D is a
category DG. The objects are pairs (X, {γXg }g∈G) where X ∈ D and γXg : X.g ∼= X such that

X.g.h X.gh

X.h X

ρg,h(X)

(γg).h γgh

γh

commutes. A morphism (X, {γXg }g∈G)→ (Y, {γYg }g∈G) is a morphism f : X → Y in D such
that

γYg ◦ f.g = f ◦ γXg
Let D be a G-crossed braided fusion category. Then, its equivariantization is a braided

fusion category. In fact, there is a dual construction called deequariantization, which estab-
lishes a bijection between G-crossed braided fusion categories and braided fusion categories
containing Rep(G) [EGNO15, Theorem 8.24.3].

Example 2.3. 1. Let D be a pointed braided fusion category [BN17] with the G-crossed
braided structure via conjugation as described in Example 2.1. Then, by the results of
[DGNO09, Prop. 4.61], we have a braided equivalence (D)G ' Z(D).

2. In particular, for D = VectωG in our previous example, we have (VectωG)G ' Z(VectωG) '
Rep(Dω(G)), where the last equivalence is between the center of VectωG and the repre-
sentation category of the twisted Drinfeld double of the group G [NN08].

The simple objects and fusion rules of DG were studied in [BN13]. Let X be a simple
object in the G-crossed fusion category D and ΓX = {X.g|g ∈ G} be the orbit of the induced
action of G on the set of simples. Moreover, let Ga := {g ∈ G|X.g = X} be the stabilizer of
this action. Then, the simple objects in DG are in 1-to-1 correspondence with pairs (ΓX , π),
where π is an irreducible projective η-representation for a certain 2-cocycle η. The object
associated to the pair (ΓX , π) is S(ΓX ,π) := π⊗

⊕
Y ∈ΓX

Y . If there is a spherical structure on
the category, the dimension of this object is given by the formula

dim(S(ΓX ,π)) = dX |ΓX | dim(π).

This implies
DDG = |G|1/2DD = |G|DC (2.3)
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3 Defects and Orbifold Data

3.1 Topological Field Theories with defects and orbifold data

The notion of closed n-dimensional TQFTs defined as symmetric monoidal functors on a
certain bordism category Bordn was extended in [CMS16] for n = 3 and then in [CRS19]
for arbitrary n by introducing the notion of an n-dimensional TQFT with defects (now on
a certain source category of decorated bordisms Borddef

n (D)). This is done by enlarging
Bordn into Bordstrat

n (stratified bordism category) and then labeling strata in this setting
with appropriate defect data.

Definition 3.1. 1. A (closed) n-dimensional stratified manifold is an n-dimensional closed
smooth manifold M together with a filtration M = Fn ⊃ · · · ⊃ F0 ⊃ F−1 = ∅ such
that:

• Mj := Fj\Fj−1 is a j-dimensional smooth manifold with a choice of orientation
of its connected components Mα

j , also called j-strata.

• If Mα
i ∩M

β

j 6= ∅, then Mα
i ⊂M

β

j .

• The total number of strata is finite.

2. A morphism of (closed) stratified manifolds from (M, {Fi}) to (M ′, {F ′i}) is a con-
tinuous map f : M → M ′ such that f(Mj) ⊂ M ′

j and f restricts to an orientation
preserving smooth map on each stratum Mα

j .

One can generalize the above definition to include manifolds with boundary.

Definition 3.2. 1. An n-dimensional stratified manifold with boundary is an n-dimensional
smooth manifold M with boundary ∂M together with a filtration M = Fn ⊃ · · · ⊃
F0 ⊃ F−1 = ∅ subject to the following conditions:

• The interior M◦ with filtration F ′j = M◦ ∩ Fj forms a stratified manifold.

• Mj := Fj\Fj−1 is a smooth submanifold with ∂Mj ⊂ ∂M and all strata meet ∂M
transversally.

• Its boundary ∂M with filtration F ′′j = ∂M ∩ Fj+1 is a closed stratified (n −
1)-dimensional manifold with orientations on its j-strata given by the induced
orientations of the corresponding (j + 1)-strata in M .

2. A morphism of stratified manifolds with boundary is a continuous map f : M → M ′

such that f(∂M) ⊂ ∂M ′, f(Mj) ⊂ M ′
j, f restricts to a smooth orientation preserving

map on each stratum and f |∂M is a morphism of (closed) stratified manifolds.

Any smooth manifold (with boundary) can be viewed trivially as a stratified manifold.
Let Σ1,Σ2 be two closed (n−1)-dimensional stratified manifolds. A bordism M : Σ1 → Σ2 is
a compact n-dimensional stratified manifold M together with an isomorphism (of stratified
(n− 1)-manifolds) ψ : ∂M

∼−→ Σrev
1 q Σ2, where Σrev

1 denotes the manifold Σ1 with reversed
orientation and reversed orientation on its strata. Two bordisms M1,M2 : Σ1 → Σ2 are called
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equivalent if there exists an isomorphism (of stratified manifolds) f : M1
∼−→ M2 compatible

with the boundary parametrisations.
Finally, the category Bordstrat

n consists of:

• Objects: (n− 1)-dimensional closed stratified manifolds.

• Morphisms: Bordstrat
n (Σ1,Σ2) is formed by equivalence classes of bordisms Σ1 → Σ2.

For now, we restrict to n = 3 and consider stratified bordisms without any 0-strata in
the interior5.

A set of 3-dimensional defect data is a tuple D = (D3, D2, D1, s, t, j) where Di is a set of
labels for i-strata in 3-bordisms and:

• s, t : D2 × {±} → D3 (source/target map) such that for ε ∈ {±} s(f, ε) = t(f,−ε).

• j : D1 × {±} → D3 q
∐

m Pm/Zm (junction map)

are functions that describe adjacent strata, where

Pm = {(d1, . . . , dm) ∈ (D2 × {±})m|s(di) = t(di+1), i ∈ {0,m− 1}, s(dm) = t(d1)}

and Zm acts by cyclic permutations (see [CMS16] for details).
Decorated closed surfaces are closed 2-stratified manifolds with j-strata labeled by ele-

ments in Dj+1. Morphisms of decorated closed surfaces are morphisms of stratified surfaces
which also respect the decorations. Decorated 3-bordisms between decorated surfaces are
stratified 3-bordisms (with j-strata labeled by elements in Dj) between the underlying strat-
ified surfaces whose boundary parameterization is also compatible with decorations. Two
such bordisms are called equivalent if they are equivalent as stratified bordisms and the
corresponding isomorphism (of stratified manifolds) is also an isomorphism of decorated
manifolds. These data form the decorated bordism category Borddef

3 (D).

Definition 3.3. A 3-dimensional TQFT with defects given by defect data D is a symmetric
monoidal functor

Z : Borddef
3 (D)→ Vect.

Defects in Reshetikhin-Turaev TQFT
Let C be a modular tensor category, which is anomaly free, i.e. p+ = p−. Then, C

gives rise to a 3-dimensional TQFT ZRT : Bordrib
3 (C) → Vect. The category Bordrib

3 (C)
consists of C-marked surfaces and bordisms with embedded C-coloured ribbon tangles6. For
the construction of the Reshetikhin-Turaev TQFT see [Tur10b, Chap. 4] and [BK01, Sec.
4.4].

5This is not a significant restriction as there is a canonical way to add 0-strata labels in a given 3-
dimensional defect TQFT. The details can be found in [CMS16],[CRS19].

6When p+ 6= p− one replaces the source category by the extended category Bord
rib

3 (C), whose objects are
pairs (Σ, λ) where Σ is an object in Bordrib

3 (C) and λ ⊂ H1(N,R) a Lagrangian subspace, and its morphisms
are pairs (M,n), where M is a morphism in Bordrib

3 (C) and n ∈ Z (The same extension is made for RT
TQFT with defects).
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The goal is to obtain a TQFT with defects using the theory of RT. Surface defects
were already studied in [KS10, FSV13]. In [FSV13], they considered surface defects, which
separate two RT theories described by modular tensor categories C1 and C2 and found that
such defects exist if and only if C1 � Crev

2 is braided equivalent to Z(W) for some fusion
category W . A TQFT with defects as in Definition 3.3 was given in [CRS17], where every
region is governed by the same RT theory. Let C be a modular tensor category. There is
defect data DC = (DC3 , D

C
2 , D

C
1 , s, t, j) with:

• DC3 = {C}

• DC2 = {∆-separable symmetric Frobenius algebras in C}

• DC1 = qn∈Z+Ln, where
L0 = {M ∈ C|θM = idM}

and

Ln = {((A1, ε1), . . . , (An, εn),M)|Ai ∈ DC2 , εi ∈ {±},
M cyclic multi-module for ((A1, ε1), . . . , (An, εn))}.

• s(A,±) = C = t(A,±) ∀A ∈ DC2
• j(((A1, ε1), . . . , (An, εn),M)) = [((A1, ε1), . . . , (An, εn))].

Theorem ([CRS17]). There is a 3-dimensional defect TQFT Z : Borddef
3 (DC)→ Vect.

The construction on a decorated bordism N goes roughly as follows (see [CRS17]):

• Pick a triangulation7 for every 2-stratum of N labeled by an algebra A. Its Poincare
dual is thickened into a ribbon network (with coupons). Color each ribbon by A and
each coupon by µ for a negative orientation and ∆ for a positive orientation.

• Thicken every 1-stratum in N labelled by ((A1, ε1), . . . , (An, εn),M) into an M -colored
ribbon and attach ribbons from the incident surface defects via the action maps ρi.

• Evaluate the RT TQFT on the resulting C-marked bordism.

• This gives a construction, which is independent of the choice of triangulation in the
interior. To get rid of the dependence on the boundary, one does a limit construction.

Example 3.1. Surface defects labeled by a ∆-separable symmetric Frobenius algebra A
with the topology of a sphere S2 can be replaced by inserting in the theory the dimension
of A. To see this, consider the triangulation

A

0

1

2

0 1

2 0

7By a triangulation we mean a ∆-complex with a total order on its vertices.
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Its dual triangulation leads to

−

+
= = dim(A).

Orbifold Construction
From n-dimensional defect TQFTs and some orbifold data A subject to certain axioms

one can construct a closed n-dimensional TQFT ZA called the associated orbifold theory
[CRS19]. In [CRS18] such a construction is made for the previous mentioned defect RT
TQFT.

A (special) orbifold datum A consists of labels A3,A2,A1,A+
0 ,A−0 in the corresponding

defect label sets as well as point insertions ψ, φ for 2-strata resp. 3-strata. These data are
subject to the orbifold axioms [CRS18, Sec. 2.2]. In Figure 3, the local neighborhoods of
such defects are depicted.

A3 A2 A3

(a)

A2 A2

A2

A1

(b)

A1

A1

A1 A1

A+
0

(c)

A1 A1

A1 A1

A−0

(d)

Figure 3: Local neighborhoods of orbifold defects.
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The construction of the orbifold theory ZA on bordisms goes roughly as follows:

• For a bordism N pick a triangulation. Its Poincare dual gives a stratification of N .

• Label each j-stratum by Aj for j > 0 and each positively (negatively) oriented 0-
stratum by A+

0 (A−0 ). Each 3-stratum Nα
3 comes with a φχsym(Nα

3 )/2-insertion, while
each 2-stratum Nα

2 comes with a ψχsym(Nα
2 )-insertion, where χsym denotes the symmetric

Euler characteristic8 [CRS19].

• Evaluate the defect TQFT on this decorated bordism.

• Finally, one does a limit construction to get rid of the dependence of the triangulation.

An orbifold datum for a defect RT TQFT (with modular tensor category C) consists of:

1. A3 = C,

2. A2 = A a ∆-separable symmetric Frobenius algebra in C,

3. A1 = T =A TAA an A− (A⊗A)-bimodule (with left action ρ and right actions ρ1, ρ2),

4. A+
0 = α ∈ HomA1,A2A5A6(A1TA2A3 ⊗A3 A3TA5A6 , A1TA4A6 ⊗A4 A4TA2A5),

9

5. A−0 = α ∈ HomA1,A2A5A6(A1TA4A6 ⊗A4 A4TA2A5 , A1TA2A3 ⊗A3 A3TA5A6),

6. ψ ∈ EndA,A(A)×,

7. φ ∈ EndC(1)×.

Moreover, define

ψ0 :=
ψ

and

ψ1,2 :=
ψ

1, 2

.
The above data are subject to the following string diagrammatic identities.

α

α

α

α

α= ψ2
0

8The symmetric Euler characteristic of a stratum Mα
j in a manifold M is defined by χsym(Mα

j ) =
2χ(Mα

j )− χ(Mα
j ∩ ∂M).

9We keep the indices to keep track of the different actions of A on T .
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α

α

ψ2
0 =

ψ−2
1

1 α

α

ψ2
0 =

ψ−2
2

2

,

α

α

ψ2
2

=

ψ−2
1

1 1 α

α

ψ2
1

=

ψ−2
2

2 2

,

α

α

ψ2
2

=

ψ−2
0

α

α

ψ2
0

=

ψ−2
2

2 1

,

ψ2
1

ψ2
2

=

ψ2
0

ψ2
1

ψ2
0

ψ2
2

= = φ−1

ψ2

.
Turaev-Viro Theory
Topological Field theories of Turaev-Viro type can be described via a certain orbifold

theory. This is the result of [CRS18, Thm. 4.5].

Definition 3.4. Let S be the spherical fusion category with a set of representatives of simple
objects I. Define

1. A =
⊕

i∈I K

2. T =
⊕

i,j,k∈I S(i⊗ j, k)

3. α : λ⊗ µ 7→
∑

d,λ′,µ′ d
−1
d F λλ′

µµ′ λ
′ ⊗ µ′

4. α : λ⊗ µ 7→
∑

d,λ′,µ′ d
−1
d (F λλ′

µµ′ )
−1λ′ ⊗ µ′

5. ψ2 = diag(d1, . . . , d|I|)
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6. φ = (dim(S))−1

For the details see [CRS18, Sec. 4].

Proposition 3.1 ([CRS18]). The datum AS := (Vect, A, T, α, α, ψ2, φ) forms an orbifold
datum.

The orbifold theory assigned to AS describes the Turaev-Viro theory. This was proven
in [CRS18, Theorem 4.5]

Theorem ([CRS18]). Let S be a spherical fusion category and AS the orbifold datum from
Definition 3.4. Then, there is an isomorphism

ZTV,S ∼= ZAS .

Orbifold Data from G-crossed ribbon extensions
Let C be a ribbon fusion category and let D =

⊕
Cg be some G-crossed extension. Then,

there is a particularly interesting orbifold datum for C, which is derived from this extension
[CRS18, Sec. 5]. The algebra A is G-graded, i.e. A =

⊕
Ag, where Ag as an object is the

internal End ([Ost03]) of some simple object mg in Cg, i.e.

Ag = End(mg) = m∗g ⊗mg.

The bimodule is T =
⊕

Tg,h, where

Tg,h := m∗gh ⊗mg ⊗mh

is an Agh-(Ag⊗Ah) bimodule. The bimodule maps are α =
⊕

g,h,k∈G
αg,h,k and α =

⊕
g,h,k∈G

αg,h,k,

where
αg,h,k : Tg,hk ⊗ Th,k → Tgh,k ⊗ Tg,h,

αg,h,k : Tg,hk ⊗ Th,k → Tgh,k ⊗ Tg,h
and

ψ2|Ag = d−1
mg · idAg ,

φ = |G|−1.

The precise definition of the algebra structure, the bimodule structure as well as the bimodule
maps will be given in section 3.2 for G = Z2. For arbitrary finite groups G see [CRS18].

Remark 3.1. In [CRS18] they conjecture that such orbifold theories, which are obtained
via a G-crossed ribbon extension, are of Reshetikhin-Turaev type of the equivariantization
DG, i.e.

ZA ∼= ZRT,DG .

This relates the construction mentioned here with orbifoldizing or gauging in other literature
[CGPW16, BBCW14].
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Example 3.2. Let C = Vect be the trivial category and let G be a finite abelian group.
Then, VectG is a G-crossed extension of Vect as discussed in Example 2.2. It is easy to
check from the definition that the resulting orbifold datum A from this extension coincides
with the orbifold datum AS from Definition 3.4 for the spherical fusion category S = VectG.
Therefore, this is a Turaev-Viro theory

ZA ∼= ZTV,VectG .

Recall by the results of [TV92] that the Turaev-Viro theory of a spherical fusion category S
the RT TQFT of the Drinfeld center Z(S). This implies that

ZA ∼= ZRT,Z(VectG). (3.1)

This agrees with the above mentioned conjecture, since the equivariantization of VectG is
equivalent to Rep(D(G)) ' Z(VectG) (see Example 2.3).

3.2 Z2-crossed extension of C � C and orbifold data

3.2.1 Topological Bilayer Phase

The mathematical notions presented in Section 2.3 have relevance in physics in the so-called
topological phases of matter, as described in [BBCW14]. If a topological phase carries some
global symmetry described by a finite group G, it is natural to ask it is possible to gauge
this into a local symmetry. Mathematically, this is provided by the theory of G-extensions
[ENOM09]. As suggested in [BBCW14], simple objects in the twisted components Cg do
not behave like intrinsic quasi-particles but rather than extrinsic quasi-particles (defects).
Passing through the equivariantization of a G-crossed extension is referred to as gauging the
symmetry, while deequivariantization is referred to as condensing.

A special topological phase is the so called bilayer phase. Mathematically, this is the
Deligne product C � C of a modular tensor category C with itself. It has an obvious Z2-
action, which permutes both layers. The physical realization of such systems is described in
[BJQ13] and their study could bring several benefits to topological quantum computing. In
[BFRS10], they gave a family of module category structures on C over C�C. In [BS11], they
gave explicitly the structure of a Z2-crossed extension on D = C � C ⊕ C with all associated
structure maps explicitly by applying the theory of G-equivariant modular functors [KP08].
This permutation action was later studied in the context of defects in [FS14].

In this section, we will combine the work of [BS11] and [CRS18] to determine the per-
mutation orbifold data. Since the orbifold data in the latter are defined just by G-crossed
graphical calculus, it is only a matter of replacing the corresponding structure maps of this
extension. The structure maps are provided explicitly in the appendix B. For these string di-
agrammatic computations, we use the properties of fusion bases, which are given in Appendix
A. For this part, let

D =
∑

d2
i

will be the dimension of C. The category C is assumed to be anomaly free, i.e. p+ = p−.
Furthermore, we write g for the non-trivial element in Z2.
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3.2.2 Algebra

The algebra A1 is the trivial Frobenius algebra 1D = 1 � 1. Now, let m ≡ mg be a
simple object in the twisted component, i.e. a simple in C. We determine the structure on
Ag = m∗ ⊗m in the following way.
Unit:

The unit ηg : 1� 1→ Ag is

−−→coevDm =

(3.2)

Thus, we have ηg = −−→coevm ⊗K id1.
Multiplication:

The multiplication µg : Ag ⊗ Ag → Ag is

µg =

(3.3)

Therefore, we get

µg = (idm∗ ⊗−→evDm ⊗ idm) ◦ (idm∗ ⊗ a−1
m,m∗,m) ◦ am∗,m,m∗⊗m.

Graphically, this is

µg =
⊕
i,j,k

Nk
ij∑

λ=1

⊗K

m m i m j i j

k k

λ λ

(3.4)

Counit:
The counit εg : Ag → 1� 1 is defined by

dm · ←−evDm = dm·
(3.5)

Thus, we have εg = dmD · ←−evm ⊗K id1.

24



Comultiplication:
The comultiplication ∆g : Ag → Ag ⊗ Ag is

∆g = d−1
m ·

(3.6)

i.e.
∆g := d−1

m · am∗⊗m,m∗,m ◦ (a−1
m∗,m,m∗ ⊗ idm) ◦ (idm∗ ⊗←−−coevDm ⊗ idm).

Graphically, this is

∆g =
⊕
i,j,k

Nk
ij∑

λ=1

di
dmD

⊗K

m

m i
θ

m j

i

j

k k

λ λ

(3.7)

In fact, let us check for instance the ∆-separability of this algebra using the corresponding
string diagrams in C.

µg ◦∆g = 1
dmD

⊕
i,j,k

∑
λ,µ

di ⊗K

m

m i

θ

m k

i

k

k k

jj

µ µ

λ λ

= 1
D

⊕
i,j,k

∑
λ,µ

di ⊗K

m

i

θ

m k

i

k

k k

jj

µ µ

λ λ
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= 1
D

⊕
i,j,k

∑
λ,µ

didj
dk

⊗K

m

i

θ

m k

i

k

k k

jj

µ µ

λ λ

= 1
D

⊕
i,j,k

∑
λ

didj
dk

⊗K

m

i

m k

k

k

j

λ

λ

= idm∗⊗m

where in the last step we used that∑
i,j

Nk
ij

didj
dk

=
∑
i,j

N j̄

ik̄

didj
dk

=
∑
i

d2
i dk∗

dk
=

∑
i

d2
i = D.

We collect the above results into the algebra

A = A1 ⊕ Ag (3.8)

which is a ∆-separable Frobenius algebra.

Remark 3.2. The Frobenius algebra Ag for m = 1 with multiplication (3.4) and comulti-
plication (3.7) is part of the family of Frobenius algebras in C � C determined in [BFRS10].
They also show that this Frobenius algebra is an Azumaya algebra.

3.2.3 Bimodule

In the general case, the bimodule components were defined by Tg1,g2 = m∗g1g2 ⊗mg1 ⊗mg2 .
Therefore, in our case we have four components to consider. As objects they are

• T1,1 = 1� 1

• Tg,1 = m∗ ⊗m

• T1,g = m∗ ⊗m
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• Tg,g = m⊗m.

In all cases, we have trivial actions of A1 = 1�1. The bimodules Tg,1 and T1,g are simply the
algebra Ag as a Ag −Ag-bimodule. Finally, Tg,g carries a right (Ag ⊗Ag)-module structure.
The action r1 : Tg,g ⊗ Ag → Ag is defined by

r1 =

(3.9)

That is

r1 = cRm,m ◦ (idm ⊗−→evDm ⊗ idm) ◦ (idm ⊗ a−1
m,m∗,m) ◦ am,m,m∗⊗m ◦ (c̃Rm,m ⊗ idm∗⊗m).

Graphically, we have

r1 =
⊕
i,j,k

Nk
ij∑

λ=1

1
D

⊗K

m m i
θ−1

m j i j

k

k

λ λ

(3.10)

The action r2 is given by

r2 =

(3.11)

Thus, it is the same as the multiplication map up to the first strand, which has opposite
orientation. Therefore, graphically

r2 =
⊕
i,j,k

Nk
ij∑

λ=1

⊗K

m m i m j i j

k k

λ λ

(3.12)
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The above results form the A-A⊗ A-bimodule

T = T1,1 ⊕ Tg,1 ⊕ T1,g ⊕ Tg,g. (3.13)

3.2.4 Bimodule Maps

The next step is to determine the bimodule maps

αg1,g2,g3 : Tg1,g2g3 ⊗ Tg2,g3 → Tg1g2,g3 ⊗ Tg1,g2

and
αg1,g2,g3 : Tg1g2,g3 ⊗ Tg1,g2 → Tg1,g2g3 ⊗ Tg2,g3

for all g1, g2, g3 ∈ Z2, i.e. eight components for each.
The map α1,1,1 is just the identity of 1� 1. Next, we consider when there is exactly one

non-trivial element. The map αg,1,1 : Tg,1 ⊗ T1,1 → Tg,1 ⊗ Tg,1 is given by

αg,1,1 =

This diagram is the same as (3.6) up to the dimension factor. This implies αg,1,1 = dm ·∆g,
which we computed in (3.7). The bimodule map α1,1,g : T1,g ⊗ T1,g → T1,g ⊗ T1,1 is given by

α1,1,g =

which is the multiplication from (3.3), i.e. α1,1,g = µg and the corresponding diagram in
C � C in (3.4).

The bimodule map α1,g,1 : T1,g ⊗ Tg,1 → Tg,1 ⊗ T1,g is defined by

α1,g,1 =

One can easily see, that α1,g,1 = αg,1,1 ◦ α1,1,g = dm∆g ◦ µg. This results to
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α1,g,1 =
⊕
i,k,r,s

∑
j

∑
λ,µ

didk
dmDdj

⊗K

m

m i

m mr s r s

i

j j

k k

λ

λ

µ

µ

.
Using the associativity property of fusion (equation (A.4) in appendix A), this transforms

to

α1,g,1 =
⊕

i,k,r,s

∑
λ
di
D

⊗K

m

m i
θ

m mr s r s

ik k

λ λ

.
Moving on, we compute the components with two non-trivial group elements. The bi-

module map αg,g,1 : Tg,g ⊗ Tg,1 → T1,1 ⊗ Tg,g is given by

αg,g,1 =

(3.14)

coincides with the definition of the action αg,g,1 = r2 (see equation (3.12)).
The map α1,g,g : T1,1 ⊗ Tg,g → Tg,g ⊗ T1,g is given by

α1,g,g =

(3.15)

which translates to

α1,g,g = a−1
m,m,m∗⊗m ◦ (idmc̃

R
m∗⊗m,m) ◦ (idm ⊗ a−1

m∗,m,m) ◦ am,m∗,m⊗m ◦ (←−−coevm ⊗ idm⊗m).
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Therefore, we get

α1,g,g =
⊕

i,j,k

∑
λ
dj
D

⊗K

m ji
θ

m m k
θ−1

k

i j

λ λ

(3.16)

The bimodule map αg,1,g : Tg,g ⊗ T1,g → Tg,g ⊗ Tg,1 is defined by

αg,1,g =

(3.17)

which is the concatenation of diagrams (3.16) and (3.14), i.e. αg,1,g = α1,g,g ◦ αg,g,1.
Graphically, this is

αg,1,g =
⊕
i,j,r,s

∑
k

∑
λ,µ

dj
D

⊗K

m

m i

m mr s r s

i jj

k

k

λ λ

µ

µ

θ

θ−1

Finally, the map αg,g,g : Tg,1 ⊗ Tg,g → T1,g ⊗ Tg,g is

αg,g,g =

The result is
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αg,g,g =
⊕
i,j,r,s

∑
k

∑
λ,µ

didj
Ddk

⊗K

m m

i

m mr s r s

i jj

k

k

λ
λ

µ µ

θ

The above components collect to the bimodule map

α : T ⊗ T → T ⊗ T (3.18)

The bimodule maps αg1,g2,g3 are computed similarly. Namely,

α1,1,1 = id1 (3.19)

α1,1,g = αg,1,1 (3.20)

αg,1,1 = α1,1,g (3.21)

α1,g,1 = α1,g,1 (3.22)

The bimodule map αg,g,1 : T1,1 ⊗ Tg,g → Tg,g → Tg,1 is

αg,g,1 =

The result is

αg,g,1 =
⊕
i,j,k

Nk
ij∑

λ=1

di
D

⊗K

m

m i
θ

m j

i

j

k k

λ λ
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The bimodule map α1,g,g : Tg,g ⊗ T1,g → T1,1 ⊗ T1,1 → Tg,g is defined by

α1,g,g =

This coincides with the diagram (3.9) which implies α1,g,g = r1.
Finally, the bimodule map αg,g,g : T1,g ⊗ Tg,g → Tg,1 ⊗ Tg,g is given by

αg,g,g =

which implies

αg,g,g =
⊕
i,j,r,s

∑
k

∑
λ,µ

dj
D

⊗K

m m

im

mr s r s

i jj

k

k

λ

λ

µ µ

θ−1

The above data form the bimodule map

α : T ⊗ T → T ⊗ T (3.23)

The point insertions are
ψ = idA1 ⊕ d−1/2

m idAg (3.24)

and

φ =
1

|Z2|
=

1

2
. (3.25)

This concludes all the elements of the permutation orbifold datum, which is stated in the
following theorem.

Theorem 1. The datum A = (A, T, α, α, ψ, φ) from (3.8), (3.13), (3.18), (3.23), (3.24) and
(3.25) forms an orbifold datum for the bilayer C � C.

32



Example 3.3. Consider the trivial category C = Vect. The double copy Vect � Vect is
equivalent to just Vect. Choosing the half-twist isomorphism σ = id, the Z2-extension of
Vect coincides with the category VectZ2 , see Example 2.1.

From Example 3.2, we know that the associated orbifold theory is isomorphic to the
Turaev-Viro theory of VectZ2 or equivalently the RT TQFT of Rep(D(Z2)). In particular,
this is an instance of the Kitaev’s Toric Model [KK12].

3.3 Computations of Invariants of the Orbifold TQFT

In this section, we will compute some invariants associated to the permutation orbifold the-
ory. Since the construction of the orbifold theory involves oriented triangulations and their
Poincare duals, it quickly becomes complicated and tedious to work with, even for cases like
the state space of S2 or invariants of S1 × S2 etc. Therefore, we will make the assumption,
that every stratification with local neighborhoods as in Figure 3 and with contractible10

strata in all dimensions is the result of a Poincare stratification by the use of the orbifold
axioms. We refer to such stratifications as orbifold stratifications. Every surface defect ap-
pearing in this section, will inherit the paperplane orientation.

The 3-sphere
Consider the stratification of S3 in Figure 4a. One can think of the S2 as a surface

defect, together with a bubble sitting on its surface and a smaller bubble on the side. In
total, there are four separate regions, the interiors of the sphere and the bubbles as well as
the exterior part. The surfaces give rise to six different strata and there are four line strata,
all between the two 0-strata. Every stratum is contractible and in particular, the 3-strata
and the 2-strata come with φ resp. ψ2-insertions. Using the axioms of orbifold data, one can
separate the bubbles in expense of two ψ2-insertions and obtain the stratification in Figure
4b.

φ

φ

φ

φ

ψ2

ψ2

ψ2

ψ2 ψ2

ψ2

(a) Orbifold stratification of S3 with an
S2-defect with two stacked bubbles.

φ

φ

φ

φψ2

ψ2

ψ2

ψ2

(b) Stratification of S3 with an S2-
defect and two separated bubbles.

Figure 4

10A j-stratum Mα
j in a bordism M is called contractible, if it is a contractible j-manifold and ∂M ∩Mα

j

is contractible as a (j − 1)-manifold.
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Moreover, the stratification of Figure 4b can be simplified via the bubble move of orb-
ifolds. The result is illustrated in Figure 5, where there is only the surface defect of S2

together with a ψ4-insertion and two φ’s.

φ

φ

ψ4

Figure 5: Stratification of S3 via an S2-defect.

In Example 3.1, we have seen that RT TQFT with defects replaces a sphere stratum by
the dimension of the Frobenius algebra label. In the same way, a sphere stratum with point
insertion ψ4 gives a factor of trA(ψ4). Hence, the orbifold invariant is

ZA(S3) = φ2trA(ψ4)ZRT(S3) =
φ2

D
trA(ψ4).

In the case, where the orbifold data is coming from a G-crossed extension, i.e.

φ =
1

|G|

and
ψ =

⊕
g

d−1/2
m idAg ,

the orbifold theory on the sphere is

ZA(S3) =
1

DC|G|2
∑
g

1

d2
m

dim(Ag) =
1

DC|G|2
∑
g

1 =
1

DC|G|
. (3.26)

On the other hand, the gauge theory assigns

ZRT,DG(S3) =
1

DDG
=

1

DC|G|
,

where the last equality follows from equation (2.3), which agrees with the result of the orb-
ifold theory as expected by Remark 3.1.

The space S1 × S2

To compute the orbifold theory on S1 × S2, we consider the stratification in Figure 6a.
One can think of this stratifcation as the result of a torus defect with the meridian disks of
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ψ2

ψ2
ψ2

ψ2 ψ2 ψ2

ψ2

ψ2

ψ2 φ

φ
φ

(a) Orbifold stratification of S1 × S2

via a torus defect, two meridinan disks
and a half-cylinder wrapping aroung the
torus.

ψ2

ψ−2

ψ2

ψ2 ψ2

φφ

φ

(b) Stratification of S1 × S2

via a torus, two meridian
disks and a bubble on the
torus.

Figure 6

itself and its complement torus. Moreover, there is a half-cylinder that wraps around the
torus as depicted in the figure. Obviously, this stratification is sufficient, but too complicated
as it consists of many strata, including six 0-strata. However, we are able to use the orbifold
axioms once again to obtain a simpler stratification. Using the axioms we can retract the
outer half-cylinder into a bubble as depicted in Figure 6b. As before, the bubble move gives
the stratification shown in Figure 7.

There are two 3-strata, which are open balls and therefore get a φ factor each. There are
four 2-strata Σ1,Σ2, C0 and C2. The surface defects σ1 and Σ2 are disks and therefore carry
ψ2-insertions, while C0 and C2 are cylinders, hence there come without point insertions. The
line defects separating these surfaces are the two green lines.

The next step is to evaluate this decorated manifold using the RT TQFT with defects
as constructed in [CRS17]. For this, we need to obtain a ribbon network by stratifying each
surface by its dual triangulation and then attaching each algebra ribbon to the corresponding
module ribbons. If the surface is a disk carrying a ψ2-insertion, then it is easy to see
that by construction, this will only result to a ψ2-insertion on the adjacent module via the
corresponding action. This can be seen by the following identities, which make use of the
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ψ2

ψ2

φφ

Figure 7: Stratification of S1 × S2 via a torus surface and two meridian disks.

algebra properties and the fact that ψ is an A-A-bimodule map.

= = = = =

ψ2 ψ2

ψ2 ψ2

ψ2 ψ2

Hence, the disk defects Σ1 and Σ2 each insert ψ2
1 resp. ψ2

2 on the neighbouring line defects.
Consider now the cylinder defects. Choose the triangulation and its dual of a cylinder as

shown in Figure 8a, where the left and right side get identified. The resulting ribbon graph
gives rise to a morphism κ : A∗ → A∗. The two free ends of this ribbon graph will then
attach via the action maps onto the adjacent line defects.

(a) Stratification

=: κ

(b) Ribbon network

Hence, the resulting ribbon graph embedded in S1 × S2 is
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κ

κ

ψ2
2

ψ2
1

2

1

φ2

It only remains to evaluate the ordinary RT TQFT on this bordism. The space S1 × S2

is obtained via surgery of S3 along the unknot (with no framing) (see [PS10] on surgery).
Therefore, by the construction of the Reshetikhin-Turaev invariants we get the formula

ZA(S1 × S2) = D−2
C φ2 = φ2

∑
λ

κ

κ

ψ2
2

ψ2
1

2

1

κ

κ

ψ2
2

ψ2
1

2

1

Let us now restrict to the G-graded case. One can show for the morphism κ restricted to
the algebra Ag that
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= d−1
mg

κ

Then, the above formula becomes

ZA(S1 × S2) = |G|−2
∑

g,h∈G
d−2
mh
d−2
mgh

Tg,h

Th,h−1gh

ψ2
1

ψ2
2

= |G|−2
∑
g,h

d−2
mh
d−2
mgh

d−1
mgd

−1
mh−1gh

dim(Tg,h) dim(Th,h−1gh)

= |G|−2
∑
g,h

1 = 1

since the dimension of Tg,h is equal to dmghdmgdmh . This result comes to no surprise as this
invariant counts the dimension of the state space on S2.

Lens Space
We now consider the lens space L(−2, 1) and pick the stratification obtained via its

Heegaard diagram [PS10] as shown in Figure 9. There are two regions corresponding to the
interior of the solid tori. There are four 2-strata, which are all just disks. These are the
two meridian disks as well as the two surface regions on the torus. The four line defects are
the line segments on the meridians, which are separated by the two 0-strata placed in the
intersection points of both meridians. One can check, that this is a valid stratification for
our orbifold theory.

The next step is to replace each surface defect by ribbons colored by the algebra A and
attach them to the ribbons of the bimodule T . The 0-strata will then be replaced by the
bimodule maps α (in both cases) because of their orientation. Since the surfaces are all
disks, they only contribute via ψ2-insertions on one adjacent line. The resulting ribbon
graph embedded around the core of the inner torus is given in Figure 10, where we define
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Figure 9: Heegaard diagram of a lens space

the morphism Λ : T ⊗ T → T ⊗ T by

Λ :=

α

α

ψ2

ψ2
1

ψ2
2

ψ2
1

(3.27)

Λ

θ−1

φ2

Figure 10: Lens Space with embedded graph.

Recall that a Lens space L(n, 1) for an integer n is obtained via surgery on S
3 along

the unknot with an n-framing, i.e. L(n, 1) = MOn [BK01]. Hence, by definition of the
Reshetikhin-Turaev invariants, we get
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ZA(L(−2, 1)) = D−2
C φ2·

θ−1

θ−2

Λ

(3.28)

Consider now the G-graded case. Then, equation (3.28) becomes

ZA(L(−2, 1)) = D−2
C |G|−2

∑
g,h∈G
g2=1

θ−1

θ−2

Λg,h

Th,h−1gh

Tgh,h−1gh

, (3.29)

where Λg,h : Th,h−1gh⊗Tgh,h−1gh → Tgh,h−1gh⊗Th,h−1gh are the components of the morphism
Λ, i.e.

Λg,h = d−1
mgd

−1
mh
d−1
mgh

d−1
h−1gh·

α

α

Th,h−1gh Tgh,h−1gh

Th,h−1ghTgh,h−1gh

. (3.30)

After a short calculation, by inserting the definition of αg,h,k, one gets
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Λg,h = d−1
mh
d−1
mgh

d−1
h−1gh·

Th,h−1gh Tgh,h−1gh

Th,h−1ghTgh,h−1gh

mh−1gh mh−1gh

mh mgh

mhmgh

. (3.31)

where the empty coupons are the identities and blue strands indicate the use of G-crossed
graphical calculus.

For the group G = Z2, there are four summands in equation (3.29). One can easily see
that the summand with Λ1,1 gives just

∑
i θ
−2
i d2

i , which is the contribution of the uncolored
link with framing -2. The map Λ1,g : Tg,1 ⊗ Tg,1 → Tg,1 ⊗ Tg,1 is given by

Λ1,g = d−2
m ·

Tg,1 Tg,1

Tg,1Tg,1

m m

mm

(3.32)

It easily follows that the corresponding summand gives
∑

i θ
−2
i d2

i . Furthermore,

Λg,1 = d−2
m ·

T1,g Tg,g

T1,gTg,g

m m

m
m

(3.33)
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and

Λg,g = d−2
m ·

Tg,g T1,g

Tg,gT1,g

m m

m
m

(3.34)

After a short calculation, in both cases, inserting the above into the summands of equation
(3.29), we find that the part remaining is

m

θ−1

θ−2d−1
m ·

(3.35)

Example 3.4. Let C = Vect with the Z2-extension VectZ2 . From (3.29), we find

ZA(L(−2, 1)) =
1

4

∑
g,h∈Z2

g2=1

1 = 1.

Remark 3.3. To find an orbifold stratificaton for the Lens space L(−2, 1), we used its
Heegaard diagram. One can do this for any lens space L(p, q), where the number of strata
depends on each space. For instance, the Heegaard diagram of S3 will contain exactly one
0-stratum.

42



4 A family of G-crossed categories and orbifold data

4.1 Parametrizing G-crossed categories

In this section, we provide modifications of the structure maps of G-crossed categories, which
lead to a family of distinct G-crossed categories. This is inspired from passing from VectG
to Vectω,σG for an abelian group G with an abelian cocycle (ω, σ) [EGNO15].

Parametrized Associators
Let D be a (right) G-crossed category as described above. Then, we can modify the

associators by defining for a 3-cochain ω : G×G×G→ K× the associators

aωX,Y,Z = ω(g1, g2, g3)aX,Y,Z (4.1)

where g1, g2, g3 are the degrees of the objects X, Y, Z. These are still natural isomorphisms as
the category is G-graded. To ensure that the pentagon axioms are still satisfied, we impose
the equation

ω(g1, g2, g3g4)ω(g1g2, g3, g4) = ω(g2, g3, g4)ω(g1, g2g3, g4)ω(g1, g2, g3). (4.2a)

Thus, ω is a 3-cocycle, i.e. ω ∈ Z3(G). Moreover, the triangle axioms imply

ω(g1, 1, g2) = 1, (4.2b)

which by the cocycle equation (4.2a) implies

ω(g1, 1, g2) = ω(g1, g2, 1) = ω(1, g1, g2) = 1,

i.e. ω is a normalised cocycle. So far, this modification ensures that Dω is a G-graded
monoidal category. The compatibility condition with the action is satisfied

ω(g−1g1g, g
−1g2g, g

−1g3g) = ω(g1, g2, g3), (4.2c)

i.e. invariant under conjugation.

Modified Braidings Let D be now a G-crossed braided category with braidings cX,Y .
Let σ : G×G→ K× be a 2-cochain. As before, we now modify the braiding by defining

cσX,Y := σ(g1, g2)cX,Y , (4.3)

where g1, g2 are the degrees of X and Y . The unitality of the braiding is satisfied, if

σ(g, 1) = σ(1, g) = 1. (4.4a)

The hexagon axioms are satisfied if

(g1g2, g3)ω(g1, g2, g3)−1 =ω(g3, g
−1
3 g1g3, g

−1
3 g2g3)σ(g1, g3)

ω(g1, g3, g
−1
3 g2g3)−1σ(g2, g3) (4.4b)

σ(g1, g2g3)ω(g1, g2, g3) =ω(g2, g3, (g2g3)−1g1(g2g3))−1σ(g−1
2 g1g2, g3)

ω(g2, g
−1
2 g1g2, g3)σ(g1, g2) (4.4c)

43



The action coherence condition is satisfied if

σ(g−1g1g, g
−1g2g) = σ(g1, g2), (4.4d)

i.e. if σ is invariant under conjugacy.

Remark 4.1. Notice that if G is an abelian group, this is the same as the notion of abelian
cocycles (ω, σ) ∈ Z3

ab(G) (see [EGNO15]).

Example 4.1. Consider G = Z2 = {1, g}. It is well known, that the abelian cohomology
of Z2 is given as H3

ab(Z2) ∼= Z4. Namely, after normalizing the four inequivalent abelian
cocycles, they are given by

ω(g, g, g) := eiπj

and
σ(g, g) := eiπj/2

for j ∈ {0, 1, 2, 3}.

If in additionD is rigid, then the dualities pick up the modification made to the associator.
Namely, let D be rigid with evaluation and coevaluation maps −→ev,−−→coev,←−ev,←−−coev. The rigidity
conditions are:

1. (−→evX ⊗ idX) ◦ a−1
X,X∗,X ◦ (idX ⊗−−→coevX) = idX

2. (idX∗ ⊗−→evX) ◦ aX∗,X,X∗ ◦ (−−→coevX ⊗ idX∗) = idX∗

3. (idX ⊗←−evX) ◦ aX,X∗,X ◦ (←−−coevX ⊗ idX) = idX

4. (←−evX ⊗ idX∗) ◦ a−1
X∗,X,X∗ ◦ (idX∗ ⊗←−−coevX) = idX∗

Hence, the evaluation and coevaluation maps change according to the associator modifi-
cation. For an object X ∈ Cg, we set:

−→ev′X = −→κ (g) · −→evX (4.5a)

−−→coev′X = −→κ (g) · −−→coevX (4.5b)

and similarly with ←−κ (g) for the left evaluation and coevaluation maps, where we fix −→κ (g)
as a square root of ω(g, g−1, g) and ←−κ (g) as a square root of ω(g−1, g, g−1).

In this way, Dω (and Dω,σ if braided) becomes G-crossed (braided) rigid category. Notice
also, that by definition the dual functor on morphisms remains the same as for f ∈ Cg(X, Y ),

f ∗ := (idX∗ ⊗−→evY )⊗ (idX∗ ⊗ (f ⊗ idY ∗)) ◦ aX∗,X,Y ∗ ◦ (−−→coevX ⊗ idY ∗)

Modified Twists
Let D be now a G-crossed ribbon category with twist θ. The left dualities are induced

using the twist, i.e. ∗X = X∗ with maps

• ←−evX := −→evX ◦ cX∗,X ◦ (idX∗ ⊗ θX)
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• ←−−coevX := (θ−1
X ⊗ idX∗) ◦ c̃X∗,X ◦ −−→coevX

just like in the non-crossed case.
Thus, it is pivotal with ∗f = f ∗. Let us now modify the twist by introducing a function

ν : G→ K× and define for X ∈ Cg

θνX := ν(g)θX . (4.6)

This defines a natural isomorphism. To ensure that the twist axioms are satisfied, we
impose

ν(1) = 1 (4.7a)

ν(h−1gh) = ν(g) (4.7b)

ν(gh) = σ(h, h−1gh)σ(g, h)ν(g)ν(h) (4.7c)

and for the ribbon property

ν(g−1) = ν(g). (4.7d)

The modification on the twist implies

←−κ (g) = −→κ (g)σ(g−1, g)ν(g)

and
←−κ (g) = ν(g)−1σ(g, g−1)−1−→κ (g).

All in all, out of a given G-crossed ribbon extension of C one obtains a family of distinct
G-crossed extensions by modifying the structure maps. This is formulated in the following
proposition.

Proposition 4.1. Let D be a G-crossed ribbon fusion extension of a ribbon fusion category C
with associativity constraints aX,Y,Z, bradings cX,Y and twist θX and let Dω,σ,ν be the category
equipped with the modified structure maps of equations (4.1), (4.3), (4.6). If ω, σ, ν satisfy
equations (4.2a)-(4.2c),(4.4a)-(4.4d) and (4.7a)-(4.7d), then Dω,σ,ν is a G-crossed ribbon
extension of C.

Example 4.2. Continuing the example of G = Z2 we find that the modification of the twist
should satisfy ν(1) = 1 and σ(g, g)2ν(g)2 = 1, i.e. ν(g) = ±σ(g, g). Thus we have

ν(g) = eiπ(j/2+k)

for j as before and k ∈ {0, 1}. We also fix for the dualities

−→κ (g) = e−iπj/2

as a square root of ω(g, g, g) and thus

←−κ (g) = eiπ(j/2+k).

Since j ∈ {0, 1, 2, 3} and k ∈ {0, 1}, we have a family of eight distinct Z2-crossed ribbon
categories D(j,k). The dimension of an object in the twisted sector is then modified as
d

(j,k)
X = eiπkdX .
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4.2 Parametrized orbifold data

Let {Dj,k} be the family of Z2-crossed ribbon fusion categories from example 4.2. Let
A = (A, T, α, α, ψ, φ) be the orbifold datum of C derived by D ≡ D0,0 as in [CRS18].
We now describe a family of orbifold data Aj,k = (Aj,k, T j,k, αj,k, αj,k, ψj,k, φj,k) which are
obtained by the different Z2-crossed structures.

The underlying objects of Aj,k and T j,k are the same as those of A and T respectively.
In what follows, we only give the non-trivial changes. The component algebra Aj,kg has the
following structure maps.

µ(j,k)
g = eiπj/2µg

η(j,k)
g = e−iπj/2ηg

∆(j,k)
g = e−iπj/2∆g

ε(j,k)
g = eiπj/2εg

(4.8)

The bimodule components T j,kg,1 and T j,k1,g are just the algebra object Aj,kg and therefore, their
left and right non-trivial actions are given by µj,k. The bimodule T j,kg,g is a right module over
Aj,kg ⊗ Aj,kg . The actions are given by

r
(j,k)
1 = eiπj/2r1

r
(j,k)
2 = eiπj/2r2

(4.9)

The bimodule maps αj,k : T ⊗ T → T ⊗ T are given by

α
(j,k)
g,1,1 = e−iπj/2+iπkαg,1,1

α
(j,k)
1,1,g = eiπj/2α1,1,g

α
(j,k)
1,g,1 = eiπkα1,g,1

α
(j,k)
1,g,g = e−iπj/2+iπkα1,g,g

α
(j,k)
g,g,1 = eiπj/2αg,g,1

α
(j,k)
g,1,g = eiπkαg,1,g

α(j,k)
g,g,g = eiπjαg,g,g

(4.10)

and

α
(j,k)
g,1,1 = eiπj/2αg,1,1

α
(j,k)
1,1,g = e−iπj/2+iπkα1,1,g

α
(j,k)
1,g,1 = eiπkα1,g,1

α
(j,k)
1,g,g = eiπj/2α1,g,g

α
(j,k)
g,g,1 = e−iπj/2+iπkαg,g,1

α
(j,k)
g,1,g = eiπkαg,1,g

α(j,k)
g,g,g = eiπjαg,g,g

(4.11)
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Moreover,

ψ(j,k)|Ag = eiπk/2ψAg . (4.12)

The scalar φj,k = φ = 1/|G| remains as before.

Theorem 2. The datum Aj,k = (Aj,k, T j,k, αj,k, αj,k, ψj,k, φ) for any j ∈ {0, 1, 2, 3} and
k ∈ {0, 1} forms an orbifold datum for C. In particular, the orbifold datum A ≡ A(0,0) is
part of a family of eight orbifold data.

In particular, the orbifold datum of C�C in Theorem 1 is part of an eight element family
of orbifold data.

Example 4.3. Consider C = Vect with the extension VectZ2 . Then, the modification by
the cocycle ω leads to the category VectωZ2

. One can easily check, that the orbifold datum
derived by the extension coincides, once again, with the orbifold datum for the Turaev-Viro
theory of VectωZ2

, which is isomorphic to the RT TQFT of Rep(Dω(Z2)). Therefore, this
datum describes Dijkgraaf-Witten theories.

If we restrict our attention to the algebras A
(j,k)
g , then we notice that they only depend

on j, i.e. A
(j,0)
g = A

(j,1)
g . Moreover, they are isomorphic as Frobenius algebras with the

isomorphism f : A
(j,k)
g

∼−→ Ag = A
(0,0)
g given by f = eiπj/2 · id. Hence, the Frobenius algebras

Aj,k, which are part of the orbifold data Aj,k are all pairwise isomorphic.

4.3 Comparison of the modified orbifold data

In [CRS18] they give the notion of a Morita transport of an orbifold datum. Let A =
(A, T, α, α, ψ, φ) be an orbifold datum for a MTC C and let B be a symmetric ∆-separable
Frobenius algebra, such that A and B are Morita equivalent with Morita module X ∈ A-B-
Mod, i.e. X∗⊗AX ∼= B as B-B-bimodules and X⊗X∗ ∼= A as A-A-bimodules. The Morita
transport of A along X is the list

AX = (B, TX , αX , αX , ψX , φ),

where TX = X∗⊗A T ⊗AA (X ⊗X) is an B-(B ⊗B)-bimodule. For the precise definition of
each object, we refer to [CRS18, Def. 3.7].

We consider now the case where B and A are even isomorphic as Frobenius algebras
with f : A→ B such an isomorphism. In particular, they are Mortia equivalent with Morita
module X = B. We write T̃ for the object T with the induced B-(B⊗B)-bimodule structure.
Define ψB := f ◦ ψ ◦ f−1.

Lemma 1. The list B := (B, T̃ , α, α, ψB, φ) forms an orbifold datum and its orbifold theory
is isomorphic to the orbifold theory of the Morita transport AX , i.e.

ZB ∼= ZAX .
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Proof. To prove that B is an orbifold datum, one needs to check the orbifold equations.
One can easily check these by using that f is an isomorphism of Frobenius algebras and the
definition of the induced B-actions.

Next, we want to show that the associated orbifold theory is isomorphic to that of the
Morita transport. To see this, we first notice that

TX :=B∗ ⊗A T ⊗AA (B ⊗B)

∼=B∗ ⊗B T̃ ⊗BB (B ⊗B)

∼=B∗ ⊗ T̃ ∼= B ⊗B T̃ ∼= T̃

(4.13)

as B-(B⊗B)-bimodules, where we used, that B∗ ∼= B as Frobenius algebras (from equation
(2.2)). Using this bimodule isomorphisms, we find that the diagrams

TX ⊗ TX TX ⊗ TX

T ⊗ T T ⊗ T

αX

∼= ∼=

α

and

TX ⊗ TX TX ⊗ TX

T ⊗ T T ⊗ T

αX

∼= ∼=

α

commute.
This is exactly the notion of a T -compatible isomorphism between the orbifold data AX

and B := (B, T, α, α, ψX , φ) [CRS18, Def. 3.12]. Therefore, by [CRS18, Lem. 3.13, Prop.
3.11] we have isomorphic orbifold theories

ZA ∼= ZAX ∼= ZB.

Let us now return to our case, where we have the algebra isomorphism f : A(j,k) → A.
Then, we get by the above lemma the orbifold datum

B(j,k) = (A, T, α(j,k), α(j,k), ψ(j,k), φ),

which is T -isomorphic to the Morita transport of Aj,k along A and describes the same orb-
ifold theory as Aj,k. Thus, to compare the orbifold theories of the distinct orbifold data, it is
sufficient to compare the ones associated to B(j,k) and the original orbifold theory A. These
differ only in their bimodule maps and ψ insertions.

Comparison of Invariants
In section 3.3, we computed the invariants of the orbifold theory on S

3, S1 × S2 and
L(−2, 1). The first two invariants do not change under the different orbifold data Aj,k as
they are just equal to 1

2D
respectively 1. However, there are certain non-trivial terms of the

bimodule maps and the dimensions in equation (3.29) which depend on the parameters j, k.
Namely, for the different orbifold data Bj,k, Λ gets modified as
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• Λj,k
1,1 = Λ1,1

• Λj,k
1,g = Λ1,g

• Λj,k
g,1 = eiπjΛg,1

• Λj,k
g,g = eiπjΛg,g

Example 4.4. Consider the orbifold data for Vect derived by the Z2-extension. Then, we
get

ZBj,k(L(−2, 1)) =
1

4
(2 + 2eiπj) =

1

2
(1 + eiπj).

Therefore, the lens space L(−2, 1) detects the 3-cocycle ω.
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A Partition Properties

Let C be a ribbon fusion category and I the set of representatives of isomorphism classes of
simple objects. For an object X and i ∈ I, let {pλ} and {qλ} be an i-partition as introduced
in Section 2.1. Then, such partitions satisfy the following equalities, which can be found in
[TV17, Lemma 4.9].

∑
λ

i

j

⊗K ⊗Kλλ = δi,j

i i

i

j (A.1)

⊗K ⊗K∑
λ

i j
λ

λ
=

δi,j
di

i

i
i j

(A.2)

∑
λ

i

j

λλ = di
dj

∑
λ λ λ

X

X

Xi

i j X

j j

i

⊗K ⊗K

(A.3)

∑
j,λ,µ

=
∑
λ

=
∑
j,λ,µ

⊗K ⊗K ⊗K

λ

µ
λ

µ
λ

λ

λ

λ

µ

µ

X

i

Y

j

X

i

Y

j

X

i

Y (A.4)

.
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B Right Z2- crossed structure on D = C � C ⊕ C

B.1 From left to right G-crossed categories

Let D =
⊕

g∈G Cg denote a G-crossed category with left action functor L : G → Aut(D)

[EGNO15]. We will write DL ≡ D for this left stucture. However, we also get a right
G-crossed structure by defining the right action functor by the composite

Gmop → G
L−→ End(D),

where we pass through group inverses. Thus, we have Rg := Lg−1 and structure maps
ρg,h := λh−1,g−1 . This functor is monoidal as a composition of monoidal functors. We will
also write DR for D seen as a right G-crossed category.

If in addition, DL is left G-crossed monoidal, then DR is right G-crossed monoidal with
the same underlying monoidal structure, since Rg(Ch) := Lg−1(Ch) ⊂ Cg−1hg. The coherence
isomorphisms βRg are given by the (left) coherence isomorphisms βLg−1 . The same happens if

we have a rigid structure. If DL is G-crossed braided with braiding cLX,Y : X⊗Y → g.Y ⊗X,
then we find braidings for its right crossed counterpart. The (right) crossed braiding cRX,Y :
X ⊗ Y → Y ⊗X.h := Y ⊗ h−1.X is defined via the (left) under-crossing

cRX,Y := c̃LX,Y .

We notice that by doing that, the neutral sector is given the opposite braiding. Thus, if DL
was a braided extension of the braided category C, then its right counterpart DR is a right
crossed extension of Crev.

If in addition, we have a (left) twist θLX : X → g.X, then we get a (right) twist θRX : X →
X.g := g−1.X by

θRX := g−1.(θLX)−1 ◦ λ−1
g−1,g

.
Again, restricted to the neutral sector, this corresponds to changing the twist by the

opposite twist. Therefore, if DL was the G-crossed ribbon extension of a ribbon fusion
category C, then DR is a right G-crossed ribbon extension of Crev.

B.2 Z2-crossed extension of C � C
In[BS11], they input an anomaly free modular tensor category C and they obtain a (left)
Z2-crossed extension of C � C. Let C be the modular tensor category of interest. In this
section, we input Crev in their results, to obtain a left crossed extension of Crev�Crev. Passing
to the convention of right crossed extensions as instructed in the previous section, we obtain,
as wished, a right crossed extension of C � C.

We adopt the same convention as in [BS11] and omit writing the tensor product of C on
objects, i.e. X⊗C Y ≡ XY and by ⊗ we denote the tensor product of D. The tensor product
of two objects in the neutral sector is just the tensor product in the Deligne product, i.e.

(A1 � A2)⊗ (B1 �B2) = A1B1 � A2B2.
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For the tensor product of a neutral and a twisted object, we have

(A1 � A2)⊗X = A1A2X

and
X ⊗ (A1 � A2) = XA1A2.

Finally, the tensor product of two twisted objects is given by

X ⊗ Y =
⊕
i∈I

XY i∗ ⊗ i.

The unit 1D is the unit in C � C, i.e. 1 � 1 and the left and right unitality constraints
are identities.
Associators:

The associativity constraint on three neutral objects is

aA1�A2,B1�B2,C1�C2 = idA1B1C1�A2B2C2 .

For the associativity constraints of two neutral objects and one twisted object, we get:

aA1�A2,B1�B2,X = idA1 ⊗C c−1
A2,B1

⊗C idB2X

aX,A1�A2,B1�B2 = idXA1 ⊗C cA2,B1 ⊗C idB2

aA1�A2,X,B1�B2 =

A1 A2 X B1 B2

Remark B.1. The above associativity constraints endow C with a bimodule structure over
C � C. They are part of a family of such bimodule structures, found in [BFRS10].

The associativity constraints between one neutral object and two twisted objects are
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aX,Y,A1�A2 =
⊕

i,j

∑
λ

X Y i A1

λ

A2 j

λ

j

i A2

⊗K

aA1�A2,X,Y =
⊕

i,j

∑
λ

A1 A2

θ

X Y i

λ

j

λ

jA2

i

⊗K

aX,A1�A2,Y =
⊕

i

X A1 Y i i

⊗K

Finally, the associativity constraint of three twisted objects is

aX,Y,Z =
⊕

i
di
D

X Y Z

i

j

Braiding:
The braiding of two neutral objects is just the braiding in C � C, i.e.

cRA1�A2,B1�B2
= cA1,B1 ⊗K cA2,B2 .

The braiding between a neutral and a twisted object is
and
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cRA1�A2,X
=

A1 A2 X

cRX,A1�A2
=

X A1 A2

θ−1

cRX,Y =
⊕

i

X
σ

Y i
θ

i

⊗K

The braiding of two twisted objects is
where σ is the morphism described in [BS11] coming from the half-twist, which squares

to θ.
The twist of a neutral object coincides with the twist in C � C, i.e.

θA1�A2 = θA1 ⊗K θA2 ,

while the twist of a twisted object is given by the half-twist morphism θX = σX .

54



References

[BBCW14] Maissam Barkeshli, Parsa Bonderson, Meng Cheng, and Zhenghan Wang. Sym-
metry, Defects, and Gauging of Topological Phases. 2014.

[BFRS10] Till Barmeier, Jürgen Fuchs, Ingo Runkel, and Christoph Schweigert. Mod-
ule Categories For Permutation Modular Invariants. International Mathematics
Research Notices, 2010(16):3067–3100, 01 2010.

[BJQ13] Maissam Barkeshli, Chao-Ming Jian, and Xiao-Liang Qi. Twist defects and
projective non-abelian braiding statistics. Phys. Rev. B, 87:045130, Jan 2013.

[BK01] Bojko Bakalov and A.A. Kirillov. Lectures on tensor categories and modular
functors. Amer. Math. Soc. Univ. Lect. Ser., 21, 01 2001.

[BN13] Sebastian Burciu and Sonia Natale. Fusion rules of equivariantizations of fusion
categories. Journal of Mathematical Physics, 54(1):013511–013511, Jan 2013.

[BN17] Costel-Gabriel Bontea and Dmitri Nikshych. Pointed braided tensor categories.
arXiv e-prints, page arXiv:1701.00510, Jan 2017.

[BS11] Till Barmeier and Christoph Schweigert. A geometric construction for permu-
tation equivariant categories from modular functors. Transformation Groups,
16(2):287–337, Jun 2011.

[CGPW16] Shawn X. Cui, César Galindo, Julia Yael Plavnik, and Zhenghan Wang. On
Gauging Symmetry of Modular Categories. Communications in Mathematical
Physics, 348(3):1043–1064, Dec 2016.

[CMS16] Nils Carqueville, Catherine Meusburger, and Gregor Schaumann. 3-dimensional
defect TQFTs and their tricategories. arXiv e-prints, page arXiv:1603.01171,
Mar 2016.

[CRS17] Nils Carqueville, Ingo Runkel, and Gregor Schaumann. Line and surface defects
in Reshetikhin-Turaev TQFT. arXiv e-prints, page arXiv:1710.10214, Oct 2017.

[CRS18] Nils Carqueville, Ingo Runkel, and Gregor Schaumann. Orbifolds of Reshetikhin-
Turaev TQFTs. arXiv e-prints, page arXiv:1809.01483, Sep 2018.

[CRS19] Nils Carqueville, Ingo Runkel, and Gregor Schaumann. Orbifolds of n-
dimensional defect TQFTs. Geom. Topol., 23:781–864, 2019.

[DGNO09] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. On
braided fusion categories i. Selecta Mathematica, New Series, 16, 06 2009.

[DKR11] Alexei Davydov, Liang Kong, and Ingo Runkel. Field theories with defects and
the centre functor. pages 71–128, 2011.

55



[DPR] R. Dijgraaf, V. Pasquier, and P. Roche. Quasi Hopf Algebras, Group Cohomol-
ogy and Orbifold Models. Nuclear Physics B.

[EGNO15] Pavel Etingof, Schlomo Gelaki, Dmitri Nikshych, and Viktor Ostrik. Tensor
categories. AMS Mathematical Surveys and Monographs, 205, 2015.

[EJP18] Cain Edie-Michell, Corey Jones, and Julia Plavnik. Fusion Rules for Z/2Z
Permutation Gauging. arXiv e-prints, page arXiv:1804.01657, Apr 2018.

[ENOM09] Pavel Etingof, Dmitri Nikshych, Victor Ostrik, and Ehud Meir. Fusion categories
and homotopy theory. Quantum Topology, 1, 09 2009.
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