

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

Sheet 9

Problem 1. Let A and B be Hopf algebras. Consider the tensor categories A-mod and B-mod of finite dimensional left modules over A and B. A functor F : A-mod $\rightarrow B$ -mod is called exact, if for any short exact sequence

$$0 \to X \to Y \to Z \to 0$$

in $A{-}\mathsf{mod}$ the sequence

$$0 \to FX \to FY \to FZ \to 0$$

is exact in B-mod.

Recall that an A-module P is called projective, if $\operatorname{Hom}_A(P, \bullet) : \mathcal{C} \to \operatorname{Vect}_{\mathbb{K}} = \mathbb{K} - \operatorname{mod}$ is an exact functor.

- 1. If *P* is projective, then $\bullet \otimes P$ is exact.
- 2. If P is projective, then P^{\vee} is projective.

Problem 2. Let A be an algebra over \mathbb{K} . An A-module M is called indecomposable, if $M = N \oplus N'$ implies that either N or N' is the zero module. An A-module M is called simple, if M and 0 are its only submodules. Show that for a semi-simple algebra A every indecomposable module is simple.

Problem 3. We consider the following Hopf algebra *H* (called Sweedler's Hopf algebra): as an algebra it is given by the following quotient:

$$\mathbb{C}\langle C, X \rangle / (C^2 - 1, X^2, CX + XC)$$

where $\mathbb{C}\langle C, X \rangle$ is the algebra of non-commutative polynomials. The comultiplication is given by:

$$\Delta(C) = C \otimes C$$
 and $\Delta(X) = C \otimes X + X \otimes 1$.

- 1. Find a counity and an antipode and prove that H is indeed a Hopf algebra. Remark that H is neither commutative nor cocommutative.
- 2. Find all (up to isomorphism) simple *H*-modules.
- 3. Prove that the tensor product of two simple modules is simple.
- 4. Find all (up to isomorphism) projective indecomposable *H*-modules.
- 5. Prove that the tensor product of any two projective indecomposable *H*-modules is a direct sum of 2 projective indecomposable *H*-modules.

Problem 4. Let *H* be a finite dimensional Hopf algebra. We suppose that *S* as an odd order (ie the smallest positiv *n* such that $S^n = id_H$ is odd).

- 1. Prove that H is commutative.
- 2. Prove that H is cocommutative.
- 3. Prove that S = id
- 4. Give an example of such a Hopf algebra.