

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

## Sheet 7

- **Problem 1** (Adjoint functors). 1. If A is an algebra, we denote by  $A^{\times}$  the set of invertible element in A. Show that this fits in a functor setting, and find a left adjoint functor of  $\bullet^{\times}$ .
  - 2. If  $\mathfrak{g}$  is a Lie algebra, we denote by  $U(\mathfrak{g})$  the enveloping algebra of  $\mathfrak{g}$ . Show that this fits in a functor settings, and find a right adjoint functor of  $U(\bullet)$ .
  - 3. If C is a coalgerba, we denote by G(C) the set of group like element of C. Show that this fits in a functor settings, and find a left adjoint functor of  $G(\bullet)$ .
  - 4. If *R* is a commutative ring without zero divisors, we denote by  $\mathfrak{F}(R)$  the field of fractions of *R*. Show that this fits in a functor settings, and find a right adjoint functors of  $\mathfrak{F}(\bullet)$ .

**Problem 2** (The Hopf algebra  $U(\mathfrak{sl}_2)$ ). We consider the Lie algebra  $\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C})$ . As a vector space, it consists of all  $2 \times 2$  matrices with complex coefficient and which have trace equal to 0. The Lie bracket is given by the commutator of the classical matrix product. Choose a base of  $\mathfrak{sl}_2$ :

1. Prove that  $\mathfrak{sl}_2$  is isomorphic to the Lie algebra generated by *E*, *F* and *H* subjected to the relations:

$$[H, E] = -[E, H] = 2E, \quad [H, F] = -[F, H] = -2F \text{ and } [E, F] = -[F, E] = H.$$

- 2. Recall the definition of  $U(\mathfrak{sl}_2)$ , compute  $\Delta$ ,  $\epsilon$  and S on the generators.
- 3. Prove that  $\mathfrak{sl}_2$  has no non-trivial ideal<sup>1</sup>, that is: there is no non-trivial subspace i such that  $[\mathfrak{i},\mathfrak{sl}_2] \subseteq \mathfrak{i}$ . (Consider an element X in such a subspace and compute [H, [H, X]], then discuss according to the different possible cases).
- 4. A representation of  $\mathfrak{sl}_2$  is *irreducible* if it contains no non-trivial sub-representation of  $\mathfrak{g}$ . Let V be a finite dimensional irreducible representation of  $\mathfrak{sl}_2$ . Let v be an element of  $V \setminus \{0\}$  such that there exists a complex number  $\lambda$  such that  $H \cdot v = \lambda v$  (we say that v is an *weight vector*). Prove that if  $E \cdot v \neq 0$ , it is as well a weight vector.
- 5. Prove that there exists an *highest weight vector* in V, that is a weight vector such that  $E \cdot v = 0$ .
- 6. Let v be an highest weight vector in V. Prove that  $V = \langle F^n \cdot v | n \in \mathbb{N} \rangle$ .
- 7. Describe all the finite dimensional representation of g.

**Problem 3.** Let *H* be a Hopf algebra of dimension  $n (< \infty)$ .

- 1. Suppose first that as a  $\mathbb{K}$ -algebra, H is isomorphic to  $\mathbb{K} \times \mathbb{K} \times \cdots \times \mathbb{K}$ , prove that  $G(H^*)$  has order n.
- 2. Deduce that H is isomorphic as a Hopf algebra to  $(\mathbb{K}G)^*$  for some group G (the dual of the group algebra of G).
- 3. Suppose now that *H* is isomorphic as a Hopf algebra to  $(\mathbb{K}G)^*$ , for some finite group *G*, prove that *H* is isomorphic to  $\mathbb{K} \times \mathbb{K} \times \cdots \times \mathbb{K}$ .

<sup>&</sup>lt;sup>1</sup>This property is the *simplicity* of  $\mathfrak{sl}_2$ .

**Problem 4.** We define  $\mathcal{O}(M_n(\mathbb{K}))$  as the commutative algebra  $\mathbb{K}[X_{i,j} \mid 1 \leq i, j \leq n]$  of polynomials in  $n^2$  indeterminates  $\{X_{i,j}\}_{1 \leq i,j \leq n}$  together with the maps  $\Delta$  and  $\epsilon$  defined by

$$\Delta(X_{i,j}) := \sum_{k=1}^{n} X_{i,k} \otimes X_{k,j} \quad \text{and} \quad \epsilon(X_{i,j}) := \delta_{i,j}.$$

- 1. Show that  $\mathcal{O}(M_n(\mathbb{K}))$  is a bialgebra.
- 2. Consider the  $(n \times n)$ -matrix  $X = (X_{i,j})_{1 \le i,j \le n}$  with entries in  $\mathbb{K}[X_{i,j}]$ . Show that  $g := \det X \in \mathcal{O}(M_n(\mathbb{K}))$  is group-like, i.e.  $\Delta(g) = g \otimes g$ .
- 3. Show that  $\mathcal{O}(M_n(\mathbb{K}))$  is not a Hopf algebra. (Hint: Is det X multiplicatively invertible?)
- 4. Let I be the two-sided ideal of  $\mathcal{O}(M_2(\mathbb{K}))$  generated by det X-1. Show that  $\mathcal{O}(M_2(\mathbb{K}))/I$  is a Hopf algebra where the antipode is given by  $S(X_{i,j}+I) = (X^{-1})_{i,j} + I$ . Here  $X^{-1}$  is the matrix  $\begin{pmatrix} X_{2,2} & -X_{1,2} \\ -X_{2,1} & X_{1,1} \end{pmatrix}$ . How can one generalize this for larger n?