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Problem 1. Let g, h be Lie algebras over a field K. Recall that the enveloping algebra U(g) of g was
constructed in the lecture as the quotient of the tensor algebra T (g) by the two-sided ideal I ⊂ T (g)
generated by the vectors x⊗ y− y⊗ x− [x, y] with x, y ∈ g. The canonical embedding ιg : g→ U(g) was
given by the map x 7→ x+ I.

1. Show that for every Lie algebra homomorphism ϕ : g → h there is a unique morphism U(ϕ) :
U(g)→ U(h) of associative algebras, such that ιh ◦ ϕ = U(ϕ) ◦ ιg.

Solution. Let us recall that the universal property of the universal enveloping algebra (U(g), ιg) of the
Lie algebra g reads like as follows. For every (unital associative)1 K-algebra, and every morphism
(of Lie algebras) f : g → A, there exists a unique unital2 morphism (of algebras) f̃ : U(g) → A.
This can be summarized by the following diagram:

U(g)

∃!f̃ (unital)

��
g
. �

ιg
>>

f
// A

The algebra U(h) is unital and associative. The map ιh ◦φ : g→ U(h) is a Lie algebra map, hence,

thanks to the universal property we know that there exist a unital map U(φ) := ι̃h ◦ φ such that the
following diagram commutes:

U(g)

ι̃h◦φ
��

g
. �

ιg
>>

ιh◦φ
// U(h)

This is what we wanted. The uniqueness follows from the fact that, as an algebra, U(h) is generated
by ιg(g) and by 1 and the image hence the images of these element by U(φ) are determined by the
required equality.

2. Let ϕ : g→ g′ and ψ : g′ → g′′ be Lie algebra homomorphisms. Show that the equalities U(idg) =
idU(g) and U(ψ ◦ ϕ) = U(ψ) ◦ U(ϕ) hold. (Hint: Use the universal property of the enveloping
algebra)

Solution. This says that U is a functor from the category of Lie K-algebra to the category of K-
algebra. The diagram

U(g)
idU(g) // U(g)

g
?�

ιg

OO

idg // g?
�

ιg

OO

1When not mentioned this hypotheses are implicit.
2This means 1 is mapped to 1, and this is NOT an implicit hypothesis!
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commutes and the uniqueness of the previous question implies that idU(g) = U(idg). In the following
diagram the two squares commutes:

U(g)
U(ϕ) // U(g′)

U(ψ) // U(g′′)

g
?�

ιg

OO

ϕ // g′
?�

ιg′

OO

ψ // g?
�

ιg′′

OO

This implies that the following diagram commutes:

U(g)
U(ψ)◦U(ϕ) // U(g′′)

g
?�

ιg

OO

ψ◦φ // g?
�

ιg′′

OO

And this gives U(ψ) ◦ U(ϕ) = U(ψ ◦ ϕ), once more by the uniqueness of the first question.

3. Show the existence of an isomorphism U(gopp)→ U(g)opp of associative algebras. (Hint: Show that
U(g)opp together with the linear map ι : gopp → U(g)opp, x 7→ x + I fulfills the universal property
of the enveloping algebra of gopp.)

Solution. As vector spaces U(g)opp and gopp are nothing but identical (I really mean identical,
not isomorphic) to U(g) and g. Hence the map ιg : g → U(g) can be regarded as a map from
gopp to U(gopp). We will show that the pair (U(g)opp, ιg) satisfies the universal property of the
universal enveloping algebra for gopp. This will implies that there exists a unique isomorphism
λ : U(gopp) → U(g)opp such that λ ◦ ιgopp = ιg. Let A be a K-algebra and f : gopp → A a (Lie
algebra) map. This is as well a map of Lie algebra from g to Aopp, hence there exists a unital
map of algebra f̃ : U(g) → Aopp such that f̃ ◦ ιg = f . The map f̃ can be regarded as a map from
U(g)opp → A. Hence we have the following commutative diagram:

U(g)opp

∃!f̃ (unital)

��
gopp
, �

ιg
::

f
// A

This proves that U(g)opp fulfills the universal property of the universal enveloping algebra gopp.

Problem 2. Let G be a finite group, C[G] its associated C-algebra. A C[G]-module is also called a
representation of G (:= Darstellung von G).

1. Let M be a finite dimensional C[G]-module. Prove that the C[G]-module structure of M induces
a group homomorphism ρM : G→ End(M). Prove the reciprocal statement: if V is a vector space
and ρ : G → End(V ) a group homomorphism, prove that we can endow V with a structure of
C[G]-module.

Solution. Easy.
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2. (Sorry there were a few typos in this questions) Let M be a finite dimensional C[G]-module and
N a sub-module of M . Let us consider N ′ a supplement of M as a vector space (in general N ′ is
NOT a C[G]-module), and denote p the projector from M to N along N ′. By using the map

π :=
1

#G

∑
g∈G

ρM (g) ◦ p ◦ ρM (g)−1,

prove3 that we can find a submodule N ′′ of M such that M = N ⊕N ′′.

Solution. Let us first prove that π is a projector on N : for all x ∈M , we have:

π ◦ π(x) =
1

#G2

∑
g1,g2∈G

ρM (g1) ◦ p ◦ ρM (g1)−1 ◦ ρM (g2) ◦ p ◦ ρM (g2)−1(x)

=
1

#G2

∑
g1,g2∈G

ρM (g1) ◦ p(ρM (g1)−1 ◦ ρM (g2) ◦ p ◦ ρM (g2)−1(x))

=
1

#G2

∑
g1,g2∈G

ρM (g1) ◦ (ρM (g1)−1 ◦ ρM (g2) ◦ p ◦ ρM (g2)−1(x))

=
1

#G2

∑
g1,g2∈G

ρM (g2) ◦ p ◦ ρM (g2)−1(x))

=
1

#G

∑
g2∈G

ρM (g2) ◦ p ◦ ρM (g2)−1(x))

= π(x).

So that π is a projector. It’s image is clearly contained in N and as its trace is equal to the trace
of p it’s image is exactly N . Let us now show that it is a C[G]-module map. It is enough to show
that π commutes with ρM (h) for every h in G. We have indeed:

π ◦ ρM (h) =
1

#G

∑
g∈G

ρM (g) ◦ p ◦ ρM (g)−1 ◦ ρ(h)

=
1

#G

∑
g∈G

ρM (g) ◦ p ◦ ρM (g−1h)−1

=
1

#G

∑
g∈G

ρM (g) ◦ p ◦ ρM (g−1h)

=
1

#G

∑
g∈G

ρM (g) ◦ p ◦ ρM (h−1g)−1

=
1

#G

∑
g′=h−1g∈G

ρM (hg′) ◦ p ◦ ρM (g′)−1

=
1

#G

∑
g′=h−1g∈G

ρM (h) ◦ ρM (g′) ◦ p ◦ ρM (g′)−1

= ρM (h) ◦ π.

The projector π is a C[G]-module map, hence N ′′ := kerπ is a C[G]-module (why ?), and we have
M = N ⊕N ′.

3If A is an algebra, we say that a A-module N is simple if N does not contain non-trivial sub-modules. And that an
object is indecomposable if it cannot be expressed as a direct sum of two sub-modules. This question shows that in the case
of group algebras for finite groups, these two notions coincide (why?), this is NOT true in general.
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3. Let M1 and M2 be two simple C[G]-module and f : M1 → M2 a morphism of C[G]-modules.
Suppose that f is different from 0. Prove that M1 and M2 are isomorphic.

Solution. The kernel and the image of f are submodules of M1 and M2, but this two modules are
simple, hence ker f = {0} or ker f = M1 and Im f = {0} or Im f = M2. As f is non zero we have:
ker f = {0} and Im f = M2, so that f is an isomorphism.

4. With the same notations and the same hypothesis as the previous question, and by considering the
eigenvalues of f , prove that f is an homothety (that is a multiple of the identity)4.

Solution. The question is not completely clear (sorry): since M1 and M2 are different (isomorphic
bu different!), one cannot speak about the identity morphism. So we have to suppose that f is an
endomorphism of M1. Let λ ∈ C be an eigenvalue of f , f − λidM1

is a C[G]-module map. Hence
its kernel has to be {0} or M1, since it is not {0}, it is M1 and f is an homothety.

Problem 3 (Burau representations of the braid group). We consider Bn the braid group on n strands
and with its standard generators (σi)1≤i≤n−1. Let t be a non-zero complex number.

1. Prove that the following data yields a well-defined complex n-dimensional representation of Bn:

σi 7→


Ii−1

1− t t
1 0

In−i−1


It is called the Burau5 representation of the braid group.

2. Prove that this representation is not irreducible (look for a common eigenvector).

3. Let us denote by b0, b2, . . . bn−1 the standard basis of Cn. Prove that the (n− 1)-dimensional space
spanned by (tibi − ti+1bi+1)0≤i≤n−2) is invariant by the action of Bn. This is a new representation
of the braid group called reduced Burau representation of the braid group.

4. Compute the matrix associated to σi by the reduced Burau representation in the given base.

4This is Schur’s lemma. Schur (1875 – 1945) was a German mathematician.
5Werner Burau (1906 – 1994 ) was a german mathematician and was professor in Hamburg.
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