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Problem 1 (Tensor product). Let K be a field, V and W be two K-vector spaces. We consider B = (b;);er
and C' = (cj) e bases of V and W. Let us denote by V ®(p,c) W the K-vector space spanned by the set
(bi7cj)i€l,j€J and by ¢(B,C) VW=V ®(B,C) W the bilinear map defined by (,25(370)(1)1‘, Cj) = (bl, Cj).

1. Show that if B’ and C’ are other bases for V and W, there exists a unique isomorphism of vector
spaces ¥ : V ®@g,cy W — V ®@(pr oy W such that the following diagram commutes:

\%4 R(B,0) w

VxW P

W\)

\%4 ®(B’7C’) 14

From now on, the symbol V @ W denotes the vector space V ®@(p,cy W for some arbitrary but fixed
bases B and C. If (z,y) is an element of V' x W, the symbol x ® y denotes the image of (x,y) by
¢(B,c) and is called an elementary tensor. In the following we write ¢ instead of ¢ c), If we
want to emphasize the ground field, we might write V ®x W and = ®k y.

By definition (bi,c;)ier,jes is a base of V @ W, hence to define a morphism from V @p.cy W to
V ®pr,cry W, we only need to set the image of (bs,c;) for every (i,j) € I x J. As we want the
diagram to commute we have to (this gives uniqueness) set 1 (bi, c;) = ¢(pr,cry(bi, cj). It is routine
to check that the diagram commutes. Note that the uniqueness of vV allows us to speak about r ® y
without specifying in which space we consider it.

2. If V and W are finite dimensional, what is the dimension of V@ W 7

It is of course the product of the dimension of V. and W.

3. Prove that, for every K-vector space £ and for every bilinear map f from V x W, there exists a
unique linear map f such that the following diagram commutes:

VeWw



The bilinear map f is completely determined by the image of a of B x C. This suggests to define f
by setting the images of (b ® ¢) to be equal to f ((b,c)) for b in B and ¢ in C. It is easy to check
that the diagram indeed commutes. The uniqueness is clear.

. Prove that the property given in the previous question determines the pair (V ® W, ¢) up to a
unique isomorphism (meaning that if a pair (U, p) satisfies the property, then there exists a unique
isomorphism 7 from V @ W to U such that ¢ = 7o p.

Let (U, p) be a pair such that for every vector space FE and every bilinear map f : V X W — E there
exists a linear map f U — E such that f = f o p. We can apply this property to the vector space
V @ W and the bilinear map ¢. We find a (unique) map ¢ such that ¢ = qb op. The map qb is an
isomorphism: indeed, if we apply the property of V@ W to the vector space U and the bilinear map
p we obtain a linear map p: VW — U such that: p = po¢. Using the uniqueness of the property
twice, we obtain that p o gﬁ =idygw and zj;o p=idy

. Generalizing the previous questions, define the tensor product of a finite collection of vector spaces.

Let Vi, Vo, ..., V,, be a collection of K-vector spaces, and suppose that there exist a vector space, W
and a n-linear map ¢, such that for every K-vector space E and every n-linear map f : V3 x Vo X
.. Vn o E, there exists a linear map f: W — E such that the following diagram commutes:

The argument of last question shows that such a pair (W, @) is unique. For the existence, this
18 clear: if By, B, ... B, are bases of V1,Va,...,V, we consider the vector space spanned by the
element of By X By X ... B, and the map ¢ is defined exactly as in the first question.

. Suppose that V and W are finite dimensional, prove that W* ® V' is “canonically” isomorphic to
Hom (W, V). This means that every linear map from W to V can be expressed as a finite linear
combination of elementary tensors.

Actually we only need W to be finite dimensional. Let us define x the isomorphism between W*®V
and Hom (W, V):
x: W@V — Hom(W,V)
fev » Wazw flz)veV).
To prove that x is an isomorphism, we exhibit its inverse: let B = (by,...by) be a base of W and
B* = (by,...,b5) its dual base, then we define:

xt: Hom(W,V) — W*®V
(9:W =V) = i b @gb).

One easily checks that these two morphisms are inverse from each others.



7. If V is finite dimensional and if g is an endomorphism of V', write a formula for the trace of g tanks
to the identification of End(V) with V* ® V.

Let g be an endomorphism of V. We want to express the trace of g thanks to x'(g). If x *(g9) =
Yo fi @ v we claim that tr(g) = Y, fi(vr). Indeed the right-hand side of this formula defines a
linear form from W* @V to K, and it agrees with the trace on the base of W* @V given by b7 ®b;.

8. Let V4, V5, W1 and Ws be four K-vector spaces, let f; : V3 — W7 and fo : Vo — Wy two linear
maps. Use the question 3 to define a “natural” linear map f1 ® fo : V1 @ Wy — Vo @ Wy, If My
and M, are matrices of fi; and fo in some bases, describe a matrix representing f; ® fo in some
appropriate bases.

In order to use the question 3,/_11\)6/3h0uld find a “natural” bilinear map from Vi x Va to Wy @ Ws.
The composition of the map f1 X fo : V1 @ Vo — Wy x Wy with the map ¢ : W1 x Wy — W @ W
1s exactly what we want, and this defines a linear map from Vi ® Vo to W1 ® Ws. Furthermore one
easily checks that:
fi® f2(z@y) = fi(z) ® f2(y).

Let us fix some bases By, B, Cy and Cy for Vi, Vo, Wi and Ws. A base of Vi ® Va is given
by B1 x By with the lexicographical order and a base of W1 @ Wsy is given by C1 x Cy with the
lezicographical order. If Vi and Va have dimension my and ms and Wy and Wy have dimension
ny and ng, the matriz My of f1 has size m1 X ny, the matriz My of fo has size mo X ny and the
martic Migs of f1 ® fo has dimension mimeo X ning and is obtained by replacing every entry A of
the matriz My by the matriz A - Ms.

Problem 2 (Group algebra). Let K be a field and G a group. Let K[G] denote the K-vector space with
basis G.

1. Show that the multiplication of the group G induces a multiplication on K[G] making this vector
space an (associative) K-algebra. It is called the group algebra of G. Is K[G] unital? For which
groups G is the algebra K[G] comutative?

The multiplication of K[G] is commutative if and only if the group G is abelian.

2. Let n be a positive integer and let us denote by A,, the set of matrices with shape

ay an o Ap—1 Qg

for aq,...a, elements of K. Prove that A,, is an algebra isomorphic to a group algebra.

It is isomorphic to the algebra K[Z/nZ): an isomorphism is completely determined by the data:

0 1 o ... O

0 0 1 0
1.1+

0o . 1

1 0 0



3. We denote by K[X*!] the set of Laurent polynomials over K. It is defined by the following formula:
K[X*!] = {f(X) € K(X)|3l € N such that X'f(X) € K[X]}

Prove that K[X ] is isomorphic to a group algebra.

It is isomorphic to K[Z] via sending X - k to AX".

4. Suppose that G is finite of order n and K is of characteristic 0. Show that K[G] decomposes as a
direct sum of an ideal of dimension n — 1 and an ideal of dimension 1.

We consider the map
¢ : K[G] — K
deG )‘qg = Zg )‘g'
This is a morphism of algebras, hence its kernel is an ideal. It is clear that it has dimension n — 1.
The other ideal we are looking for is generated by deGg and consists of the element of K[G| of
the form )\degg with A element of K. They are in direct sum since every element of K[G] can
be decomposed (and the dimensions fit):

o= (Lo (5] (S9) + 3 (50) (52)

Problem 3. We consider the category Z given by the following data whose objects are compact oriented
0-manifold (ie collection of points with signs) and whose hom-sets are given by the following formula:

{fa,m,}  if there exists a compact oriented 1-manifold W such that W is diffeomorphic to —M; U Mo,

Hom(MNy, Nz) = {@ else

1. Prove that every morphism is an isomorphism.

Done during the exercise session.

2. Give the isomorphism classes of the category Z.

If N is a compact oriented 0-dimensional manifold, let us denote by n(N) € Z the number of

point of N counted with orientation (ie the number of positive points minus the number of negative

points). We claim that N1 and N are isomorphic if and only if n(N1) = n(Nz). First, let us

consider two objects N1 and Na, such that n(N1) = n(Nz). The manifold —Ny, U Ny has as many

negative points as positive points because n(—Ny U Nz) = —n(Ny) + n(N2) = 0, we label them m;
k

and p; for 1 < i < k. The manifold |_|[O7 1] and the obvious identification of the boundary with

=1
— Ny U Ny proves that Ny and Ny arez equivalent. The other direction is similar: let N1 and No
be two isomorphic objects. It means that there exists W a compact oriented 1-manifold such that
OW s diffeomorphic to —N1 U Ny but W is a collection of circles and intervals, in particular its
boundary has as many positive points as negatives points. This gives n(Ny1) = n(Nz).



3. What happens if we consider the same category but without the orientability / orientation conditions
?

This leads to Z./27.

Problem 4. Let n be an integer greater than or equal to 2. In this problem, we will prove that the
symmetric group S, has the following presentation’:

szl for1 <i<n-—1,

<T1,...,Tn1 TiTj = T;Ti for1<é,j<n-—1and|i—j|>2 >
TiTi+1Ti = Ti+1TiTi4+1 for 1 <i1<n-— 2.

For the moment let us denote by G,, the group given by the presentation.

1. Prove that there exists a surjective homomorphism ¢ from G,, to S,.

Done in the Exercise session.

2. We want to prove that ¢ is an isomorphism. Why is it enough to show that the order or G,, < n!
?

Done in the Ezxercise session.

3. Prove that every element of GG,, has an expression as a product of 7; with at most one 7,,_1.

This is done by induction on n. If n = 2 this is clear since in this case G, ~ Z/2Z. Suppose now
that the statement holds for n. Let o be an element of Gypy1 and let w be a word in the T; such
that w = o and such that the number of T, is minimal. Suppose that this number is greater than or
equal to 2. Then we can write: w = w1T,WaTy, with wo a word in the letter T, ..., 7,—1. The word
wy represent an element of Gy, and this element has an expression wh as a product of ; with at
most one T,_1. Hence we can write: w = wiT,whT,. Now using the relations of the presentation
of Gy, we found a contradiction (done in the exercise session).

4. Consider the canonical injection ¢ : G,,_1 — G, and prove that the sets
(Grn-1); Tn—1t(Gn=1), Tn—2Tn—1(Gn=1), - - s Tn—i " Tn—1t(Gn=1), - - -, T1 -+ Tn—1t(Gn-1)

cover G,,.

5. Conclude.

11t is the same presentation as the one of the braid group B, with the additional relations TiZ = 1. One says that B, is
the Artin group and S, the Coxeter group of the same Coxeter system.



