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Problem 1. Let 0 denote the empty 1-manifold, 1 a �xed oriented circle and n the disjoint union n circle 1. We
consider Cob′(2) the full sub category of Cob(2) where objects are 0,1,2, . . . .

1. Prove that Cob′(2) and Cob(2) are equivalent as monoidal categories.

Solution. Cob′(2) being a sub-category of Cob(2), we have an injection functor I . Let us prove that I is fully
faithful and essentially surjective. Cob′(2) being a full sub-category of Cob(2), I is fully faithful. Let γ be an
object of Cob(2). It is a collection of say k circles. �e cylinder-like cobordism between γ and k = I(k) is an
isomorphism. Hence, I is essentially surjective. Hence it is an equivalence of category. Furthermore, I respect
the tensor product. So that Cob′(2) and Cob(2) are equivalent as monoidal categories.

2. Remark that the category Cob′(2) is strict monoidal. We admit that the category Cob′(2) is generated as
a strict monoidal category by the following morphisms: , , , , . What does mean generated as a
monoidal category?

Solution. Let (fi)i∈I be a collection of morphism of a strict monoidal category C. We say that (fi)i∈I generated
C, if for every morphism g of C, there exist an integer k, a collection (ij)j∈[1,k] of element of I , and two
collections (cj)j∈[1,k] and (c′j)j∈[1,k] of objects of C such that:

g =

k∏
j=1

idcj ⊗ fij ⊗ idc′j .

where the product is (of course) the composition. One should actually add to (fI)i∈I the identity of the unit
object in order to produce the identity of all object of C

3. We admit that the di�eomorphism type of a connected oriented surface is characterized by the number of
component of its boundary and its genus. We admit as well that a connected cobordism from m to n has
a unique representation of the form: How to interpret this surface wheneverm = 0 or n = 0 ?

Figure 1: Example form = 6, n = 5 and g = 3.
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Solution. Ifm = 0, one should think that the le� tree part of the surface is replaced by . If n = 0, one should
think that the right tree part of the surface is replaced by .

4. What does mean for a strict monoidal category to be presented by generators and relations?

Solution. It means that there is a family of morphisms (fi)i∈I and a family of couple (rj , r
′
j)j∈J where rj

and r′j are �nite words in the alphabet A := (idc ⊗ fi ⊗ idc′)c,c′∈obj(C),i∈I the interpretation of this words as
morphism of C makes sense and with this interpration we have rj = r′j for all j. Furthermore, we if two words
w1 and w2 in the alphabet A make sense interpreted as morphism of C and are equal as morphisms, One can
go from one to the other by a �nite sequence of substitution of the type:

idc ⊗ ri ⊗ idc′ ! idc ⊗ r′i ⊗ idc′ ,

for c and c′ objects of C so that this substitution make sense, and

(idc ⊗ fi ⊗ idc′)(idd ⊗ fj ⊗ idd′) ! (idd ⊗ fi ⊗ idd′)(idc ⊗ fi ⊗ idc′)

For any object c, c′, d and d′ so that this substitution makes sense and that the source and the target of fi and
fj are “disjoint”.

5. Proves that Cob′(2) is presented by the relations given on �gures 2 to 7.

=
=

Figure 2: Braid-like relations.

= =

Figure 3: Twist and unit or counit.

= =

Figure 4: Twist and pair of pants.

Solution. Let us denotew1 andw2 two words in the alphabetA representing the same morphism. First remark,
that we can push all the twists to the le�, we obtain then two words w′1 = v1t1 and w′2 = v2t2 where t1 and
t2 are composition of twists and v1 and v2 do not contain any twist. �e cobordism v1 and v2 represents a
collection of disjoint surfaces presented without twist.
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= =

Figure 5: Associativity and coassociativity

= = = =

Figure 6: Unity and counity

= =

Figure 7: Frobenius-like relations

Let us suppose for a moment that v1 and v2 are connected. We will prove that both v1 and v2 can be transform
into the normal form given on �gure 1. Hence we just need to consider v1. Letm be the number of input circles
and n be the number of output circles. we have then χv1 = 2 − 2g −m − n Let us denote by a the number
of , by b the number of , by c the number of and by d the number of . From the additivity of the Euler
characteristic, we get: χv1 = c+d−a−b = 2−2g−m−n. �e surface represented by v1 hasm input circles
and n output circles, this comes as a composition of elementary pieces, so that we have: n−m = d−c+b−a.
Hence we have: {

a = m+ g − 1 + c

b = n+ g − 1 + d

And let us “push” on the right as much as we can the . �ree situations prevent us to push on the le�:

, , and

In the �rst two situations, we replace the local picture by a simple cylinder thanks to the relation of �gure 6.
�is may happen at most c times since there are c . �e last situation can happen at most g times since the
surface have genus g.

Remark now using the Frobenius-like condition and the associativity or the coassociavity that the handle op-

erator commutes with and .

�is means that we can “push” to the le� all the way through at least a − g − c = m − 1 . On the other

hand, starting fromm circle one cannot have more thatm− 1 successive (one should treat the casem = 0
a li�le di�erently, saying that the cobordism have to start with a , we do not treat this case completely, since
it is easy to adapt the general argument). Hence exactly c disappear thanks to the unit relation and exactly

g are stuck in an handle operator. Doing the same reasoning for pushing the on the right we obtain that

v1 is equivalent to u1 which consists of a tree ofm− 1 followed by g handle operators followed by a tree of

n− 1 . Using the coassociativity and the associativity, we have that v1 is equivalent to a normal form. �is
proves that one can go from v1 to v2 in a �nite sequence of substitution.

If v1 and v2 have several connected component, we use the argumentation for each connected component and
we get the result.
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We know have to deal with the twisted parts: for this we can use we have the braids-like relations (but note
that there is no notion of over- and under- crossings). Using this relation we can write t1 and t2 such that all
the twist involving the same connected component come �rst (we call t′1 and t

′
2 the corresponding words) and

then all the twists involve two connected components (we call t′′1 and t′′2 the corresponding words). Supposing
that our connected untwisted cobordisms are in the normal form, and thanks to the relation of �gure 4, we
can delete the words t′′1 and t′′2 . Now t′′1 and t′′2 represent the same permutation (which is an invariant of the
cobordism) and hence one can go from one to the other using the braid-like relations.

6. Let F : Cob′(2) → VectK be a TQFT. Prove that F(1) has a natural structure of commutative Frobenius
algebra.

Solution. �e multiplication is given by . It is associative commutative and is a unit thanks to the cor-

responding relations. �e comultiplication and the counit are given by and . And as the Frobenius like
relation are satis�ed, this proves that F(1) is a Frobenius algebra.

7. Prove on the other hand that if A is a Frobenius algebra, this de�nes a (1 + 1)-TFT.

Solution. �is is clear: we send the multiplication, the comultiplication, the unit and the counit to the corre-
sponding cobordisms. All the relation of Frobenius algebras are satis�ed.

8. Prove that if

F

( )
= 0,

then

F

( )
= 0.

Prove that the same holds for

( )k
for any integer k.

Solution. We have:

= .

A similar picture proves the case

( )k
.

Problem 2. Let A be a commutative Frobenius algebra and FA : Cob(2) → vectK the TFT that sends the
generators of Cob(2) to the corresponding structure morphisms of A. We denote the closed surface of genus g
by Σg .
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1. Show that the K-linear map ω : A → A de�ned by µ∆ is an A-bimodule homomorphism, where we
consider A as the bimodule with action given by le� and right multiplication.

Solution. �is comes from the following equality at the level of cobordism:

= =

2. Show that there is an element w ∈ A such that ω(a) = wa = aw for all a ∈ A.

Solution. If such an element exists, it is equal to ω(1). We set:

w = FA

( )

�e equality follow from:

= =

3. Compute F (Σg) ∈ K for every g ∈ N.

Solution. We have:

Σg = . . .︸ ︷︷ ︸
appears g times

Hence we have:
FA(Σg) = ε(ωg(1)) = ε(wg).

Problem 3. LetG be a �nite group (and hence endowed with the discrete topology) andM be a manifold (with
or without boundary). A principal G-bundle overM is a smooth manifold X with a right G-action (by smooth
maps) and a map smooth map π : X →M such that:

5



For all point m inM there exists a neighborhood U of m, such that φU : π−1(U) ' U × G and the following
diagram commutes:

π−1(U)
φU //

π

��

U ×G

pU
yy

U

where pU is the projection on the �rst coordinate. We require as well that all the maps are compatible with the
action of G where G acts by multiplication on G and trivially on U .

Two principal G-bundle (X,π) and (X ′, π′) are isomorphic if there exists a di�eomorphism ψ : X → X ′

which commutes with the G-action and such that π′ ◦ ψ = π.

1. Find two non-isomorphic Z/2Z-bundle of the circle S1. Find three non-isomorphic Z/3Z-bundle of the
circle S1. Find 6 non-isomorphic Z/6Z-bundle of the circle S1.

Solution.
Case G = Z/2Z:

Let us denote by +1 and −1 the two element of Z/2Z and let us consider S1 = z ∈ C||z| = 1. �e two
principal G-bundles we are looking for are:

S1 × {+1,−1}

π1:(z,a)7→z
��

S1

and

S1

π2:z 7→z2
��

S1

where the action ofG is the multiplication on the second coordinate for the �rst bundle and the multiplication
on by +1 and −1 interpreted as element of C for the second bundle. �e two underlying covering being non-
di�eomorphic we clear have two non-isomorphic principal G-bundles.

Case G = Z/3Z:
Let us denote by g a �xed generator of Z/3Z. �e three bundles we are looking for are:

S1 × Z/3Z

π1:(z,a) 7→z
��

S1

,

S1

π2:z 7→z3
��

S1

and

S1

π3:z 7→z3
��

S1

where the actions of G are:

• �e multiplication on the second coordinate for the �rst bundle.
• g acts by multiplication by j = exp

(
2iπ
3

)
for the second bundle.

• g acts by multiplication by j2 for the second bundle.

�ese three principal G-bundles are clearly not isomorphic.

Case G = Z/6Z:
Let us denote by g2 a �xed element of order 2 of G and by g3 a �xed element of order 3 of G. �en g6 = g2g3
is a generator of G. We denote by G2 and G3 the subgroups of G generated by g2 and g3 respectively. �e 6
principal G-bundles we are looking for are:

S1 ×G

π1:(z,a)7→z
��

S1

,

S1 ×G2

π2:(z,a)7→z3
��

S1

,

S1 ×G2

π3:(z,a) 7→z3
��

S1

,

S1 ×G3

π4:(z,a)7→z2
��

S1

,

S1

π5:(z,a)7→z6
��

S1

and

S1

π6:(z,a) 7→z6
��

S1

.
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where the G-action are given by:

• �e multiplication on the second coordinate for the �rst bundle.

• For the second bundle, g2 acts by multiplication on the second coordinate and g3 acts by multiplication
by j = exp

(
2iπ
3

)
on the second coordinate.

• For the third bundle, g2 acts by multiplication on the second coordinate and g3 acts by multiplication by
j2 on the second coordinate.

• For the fourth bundle, g3 acts by multiplication on the second coordinate and g2 acts by multiplication
by −1 on the second coordinate.

• For the ��h bundle, g3g2 acts by multiplication by exp
(
2iπ
6

)
.

• For the sixth bundle, g3g2 acts by multiplication by exp
(
2iπ
6

)
.

Note that there is a 1-1 correspondence between these principal G-bundles and the element of G: if 1 is a
generator of π1(S1) the deck transformation corresponding to 1 is an element of G.

2. Suppose thatM is connexe. Prove that there is a bijection:

{principal G-bundle ofM}/isomorphisms ' hom(π1(M), G)/G.

where G acts by conjugation. Let us recall that the fundamental group of a compact manifold is always
�nitely presented1

Solution. First remark that to any based (i. e. we �x a base point of the base and the covering in a coherent
way: the base point of the total space should correspond to the neutral element of G and project on the base
point of M ) principal G-bundle, is associated a unique morphism φ : π1(M) = π1(M, ∗) → G: let [γ] an
element of the π1, then φ([γ]) is the unique element g of G such that γ̃(0) · g = γ̃(1) where γ̃ is the unique
based li� of γ . Let us change the base point ∗ of M̃ to ∗ · h and denote γ̃′ the new li� of γ, then we have
γ̃′ = γ̃ · h, hence (̃′γ(0) · h) · g = ′̃γ(1) · h.
�is proves that we have a canonical map:

{principal G-bundle ofM}/isomorphisms→ hom(π1(M), G)/G.

Let φ be an element of hom(π1(M), G). �en the kernel of φ only depend on [φ] and is a normal subgroup
of π1(M). Hence there is a unique connected covering of N associated to kerφ. �is has a natural structure
of principal Imφ bundle. Using the isomorphism Imφ ' g(Imφ)g−1 for g ∈ G we have that N is have a
principal g(Imφ)g−1-bundle structure. Let g1, . . . gk a set of element ofG representing Imφ\G. We have the
following partition of G: ⋃

i

(Im,φ)gi = G

Let M̃ = N × {g1, . . . , gk}. It is endowed with a natural G-bundle structure, we denote it by M̃φ. �e
conjugation cg by an element by g gives us a an isomorphism betweenMφ andMch◦φ. �is proves that we
have a canonical map:

hom(π1(M), G)/G→ {principal G-bundle ofM}/isomorphisms.

One easily check that this two maps are inverses one from the other.

1�is follows from the fact that any compact manifold can be given a structure of �nite CW-complex.
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3. We consider the category Cob(n+ 1). IfM is a closed n-manifold, we set:

F(M) = K{principal G-bundle ofM}/isomorphisms

and ifW : M1 →M2 is a cobordism betweenM1 andM2 two n-manifolds andX1 andX2 two principal
G-bundle overM1 andM2 respectively. We set

C(X1,W,X2) = {(φ1, Y, φ2)|Y is a principal G-bundle ofW , φi’s are isomorphisms from Y|Mi
to Xi}

Two elements of (φ1, Y, φ2) and (φ′1, Y
′, φ′2) ofC(X1,W,X2) are equivalent if there exists an isomorphism

of G-bundle Y → Y ′ such that: φi = φ′i ◦ α|Mi
(if moreover (φ1, Y, φ2) = (φ′1, Y

′, φ′2), the set of such
morphism is denoted by Aut((φ1, Y, φ2))). We denote by ' this equivalence relation. We set:

F(W )([X1], [X2]) =
∑

[φ1,Y,φ2]∈C(X1,W,X2)/'

1

|Aut(X2)||Aut((φ1, Y, φ2))|

where F(W )([X1], [X2]) is the coe�cient of [X2] in the image of [X1] by F(W ). Prove that this de�nes
a functor. Is it monoidal?

Solution. Let us �rst prove that the cylinder M × [0, 1] on M is sent on the identity: A principal G-bundle
overM ⊗ [0, 1] is nothing but a (principal G-bundle overM )×[0, 1]. Hence the set C(X1,M × [0, 1], X2)
is empty if X1 6' X2 and a set of representants of equivalence classes of C(X1,M × [0, 1], X1) is given by
(φ1, X1 × [0, 1], φ ◦ φ1)φ∈Aut(X1). �us, we have:

F(W )([X1], [X2]) =

{
0 if [X1] 6= [X2],
1 else.

Let W1 : M1 → M2 and W2 : M2 → M3 and let X1 and X3 be principal G-bundle over M1 and M3

respectively. We want to compare F(W2) ◦ F(W1)([X1], [X3]) and F(W2 ◦W1)([X1], [X3]).

Before starting the computations let us make a few remarks which will be useful in the sequence.

• Let X2 be a principal G-bundle overM2. �en Aut(X2) acts on: C(X1,W1, X2) and C(X2,W2, X3)
via:

β · (φ1, Y1, φ2) = (φ1, Y1, β ◦ φ2) and β · (φ′2, Y2, φ3) = (β ◦ φ′2, Y2, β ◦ φ3)

�is action is clearly compatible with the equivalence relations and leads to actions onC(X1,W1, X2)/ '
and C(X2,W2, X3)/ '. We have β · (φ1, Y1, φ2) ' (φ1, Y1, φ2) if and only if there exists an automor-
phism α1 of the G-bundle Y1 such that φ1 = φ1 ◦ (α1)|M1

and φ2 = β ◦ φ2 ◦ (α1)|M2
. Similarly We

have β · (φ1, Y2, φ3) ' (φ′2, Y2, φ3) if and only if there exists an automorphism α2 of the G-bundle Y2
such that φ3 = φ3 ◦ (α2)|M3

and φ′2 = β ◦ φ′2 ◦ (α2)|M2
.

• LetX2 be a principal G-bundle overM2 and (φ1, Y1, φ2) and (φ′2, Y2, φ3) elements of C(X1,M1, X2)
and C(X2,M2, X3), then (φ1, Y1 ∪(φ′2)−1◦φ2

Y2, φ3) is an element of C(X1,M2 ◦ M1, X3). More-
over, every element of C(X1,M2 ◦M1, X3) are obtain via this construction (X2 should run on a set of
representant of isomoprhism classes of principal G-bundle overM2.)

• As we just said, we have a natural injection ι from C(X1,W1, X2) × C(X2,W2, X3) in C(X1,W2 ◦
W1, X3). �e (diagonal) action ofAut(X2) onC(X1,W1, X2)×C(X2,W2, X3) let ι−1((φ1, Y1∪(φ′2)−1◦φ2

Y2, φ3)) stable since (β ◦ φ′2)−1 ◦ βφ2 = (φ′2)−1 ◦ φ2 and is transitive on this set.

• Let (φ1, Y, φ3) be an element of C(X1,W2 ◦W1, X3) and α is an element of Aut((φ1, Y, φ3)). �e
restriction of α toM2 is an automorphism of the Y|M2

. If X2 is a principal G bundle overM2 and we
have an identi�cation of Y|M2

with X2, this yields a morphism:

Aut((φ1, Y, φ3))→ Aut(X2)
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• With the canonical notation, we have the following exact sequence:

1→ Aut((φ1, Y1, φ2))×Aut((φ′2, Y2, φ3))→Aut((φ1, Y1 ∪(φ′2)−1◦φ2
Y2, φ3))→ Aut(X2)

�e �rst arrow is well de�ned, since the automorphisms of (φ1, Y1, φ2)) and (φ′2, Y2, φ3) are the identity
on (Y1)M2

and (Y2)M2
. �e second arrow comes from the previous remark and the identi�cation provided

by φ2. �e exactness is traight forward, since the �rst arrow is clearly injective and because an automor-
phism of (φ1, Y1∪(φ′2)−1◦φ2

Y2, φ3) induces the identity onX2 precisely when it decomposes as automor-
phisms of (φ1, Y1, φ2)) and (φ′2, Y2, φ3) glued together alongM2 (where they are trivial by hypothesis).
Note that the last arrow need not to be surjective. Note that the image of the last arrow are precisely
the automorphism are given by φ2α|M2

φ−12 where α is an automorphism of (φ1, Y1 ∪(φ′2)−1◦φ2
Y2, φ3).

Hence this is precisely the stabilizer of ([φ1, Y1, φ2], [φ′2, Y2, φ3]) for the (diagonal) action of Aut(X2)
we consider in the �rst remark. �is proves that:

|Aut((φ1, Y1∪(φ′2)−1◦φ2
Y2, φ3))| = |Aut((φ1, Y1, φ2))||Aut((φ1, Y1, φ2))||StabAut(X2)([φ1, Y1, φ2], [φ′2, Y2, φ3])|

We are now ready to compute:

F(W2) ◦ F(W1)([X1], [X3])

=
∑

[X2]eq. cl. of ppalG-bundle overM2

∑
[φ1,Y1,φ2]∈C(X1,W1,X2)/'
[φ′1,Y2,φ2]∈C(X2,W2,X3)/'

1

|Aut((φ1, Y1, φ2))||Aut((φ1, Y1, φ2))||Aut(X2)||Aut(X3)|

=
∑
[X2]

∑
[φ1,Y,φ3]∈C(X1,W2◦W1,X3)/'

such that Y|M2
' X2

∑
[φ1,Y1,φ2]∈C(X1,W1,X2)/'
[φ′1,Y2,φ2]∈C(X2,W2,X3)/'

such that [φ1, Y1 ∪(φ′2)−1◦φ2
Y2, φ3)] ' [φ1, Y, φ3]

1

|Aut((φ1, Y1, φ2))||Aut((φ1, Y1, φ2))||Aut(X2)||Aut(X3)|

=
∑
[X2]

∑
[φ1,Y,φ3]∈C(X1,W2◦W1,X3)/'

such that Y|M2
' X2

∑
[φ1,Y1,φ2]∈C(X1,W1,X2)/'
[φ′1,Y2,φ2]∈C(X2,W2,X3)/'

such that [φ1, Y1 ∪(φ′2)−1◦φ2
Y2, φ3)] ' [φ1, Y, φ3]

|StabAut(X2)([φ1, Y1, φ2], [φ′2, Y2, φ3])|
|Aut((φ1, Y, φ3))||Aut(X2)||Aut(X3)|

=
∑
[X2]

∑
[φ1,Y,φ3]∈C(X1,W2◦W1,X3)/'

such that Y|M2
' X2

∑
[φ1,Y1,φ2]∈C(X1,W1,X2)/'
[φ′1,Y2,φ2]∈C(X2,W2,X3)/'

such that [φ1, Y1 ∪(φ′2)−1◦φ2
Y2, φ3)] ' [φ1, Y, φ3]

1

|Aut((φ1, Y, φ3))||ι−1(φ1, Y, φ3)||Aut(X3)|

=
∑
[X2]

∑
[φ1,Y,φ3]∈C(X1,W2◦W1,X3)/'

such that Y|M2
' X2

|ι−1(φ1, Y, φ3)|
|Aut((φ1, Y, φ3))||ι−1(φ1, Y, φ3)||Aut(X3)|

=
∑
[X2]

∑
[φ1,Y,φ3]∈C(X1,W2◦W1,X3)/'

such that Y|M2
' X2

∑
[φ1,Y1,φ2]∈C(X1,W1,X2)/'
[φ′1,Y2,φ2]∈C(X2,W2,X3)/'

such that [φ1, Y1 ∪(φ′2)−1◦φ2
Y2, φ3)] ' [φ1, Y, φ3]

| 1

|Aut((φ1, Y, φ3))||Aut(X3)|

=
∑

[φ1,Y,φ3]∈C(X1,W2◦W1,X3)/'

1

|Aut(X3)||Aut((φ1, Y, φ3))|

= F(W2 ◦W3)([X1], [X3]).

�e functor is clearly monoidal.
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