




Chapter 19

– Non, dit Rambert avec amertume, vous ne
pouvez pas comprendre. Vous parlez le langage
de la raison, vous êtes dans l’abstraction.
...
Mais là oû les uns voyaient l’abstraction,
d’autres voyaient la vérité.

(Albert Camus, La peste)
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Chapter 19

Supplement: A short introduction to
complex analytic spaces

The main results of former Chapters including the existence of resolutions for all normal surface sin-
gularities have been accomplished - among others - by reference to the theory of branched coverings of
complex analytic spaces. This and more will be developed here in full generality (but, of course, without
complete proofs) thereby giving us the opportunity to fix our vocabulary concerning the language of
coherent sheaves that is also heavily used in more advanced parts of the book. The experienced reader
may omit reading these notes or consult them if the main text should not be clear enough.

19.1 Holomorphic functions on analytic subsets

As we already have remarked at several occasions in the previous Chapters, we must take into our con-
siderations not only the geometry of singularities but also their function–theoretic properties. Therefore,
we endow a closed analytic subset X of an open set U ⊂ Cn (or of any complex analytic manifold)
not only with the relative topology coming from U but also with a complex analytic structure by
calling a function f : V → C on an open set V ⊂ X holomorphic, if it is locally induced from a
holomorphic function on Cn : for all x ∈ V there exists a neighborhood W of x in U and a function
F ∈ H0(W, OCn) such that f|X∩W = F|X∩W .

Under the natural addition and multiplication of complex–valued functions, the set of all holomorphic
functions on V forms a ring containing the constants c ∈ C , hence a C–algebra. We denote it by

H0(V, OX) or by OX(V ) .

If we want to refer to continuous functions only, we use the symbols CX , CX(V ) and so on. In particular,

OX(V ) ⊂ CX(V )

as C–algebras.
By definition, we have a canonical C–algebra–homomorphism

H0(U, OCn) −→ H0(X, OX)

which in general is neither surjective (for n ≥ 2 ) nor injective. It is an epimorphism, if U ⊂ Cn is
a domain of holomorphy (in particular, a polydisk or a ball) or more generally a Stein manifold (c.f.
Chapter 7).

If X is defined as the common zero–set of finitely many holomorphic functions f1, . . . , fr ∈
H0(U, OCn) , then it is clear that each holomorphic function f contained in the ideal (f1, . . . , fr)
generated by the elements f1, . . . , fr in H0(U, OCn) vanishes on X . But in general, there exist func-
tions f not belonging to this ideal, yet vanishing on X : just notice that, given g1, . . . , gs , we can
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define Y = N (g1, . . . , gs) also by Y = N (gℓ11 , . . . , g
ℓs
s ) for any ℓj ≥ 2 , and not always will g1 be

contained in the ideal (gℓ11 , . . . , g
ℓs
s ) .

The Rückert Nullstellensatz (or better: one of its versions; see Section 2 and 7) asserts that there are
locally no other functions vanishing on X than those having a power which is contained in (f1, . . . , fr) .
For a precise statement, we must have the theory of sheaves at our disposal which we begin to develop
in the next Section. It is clear from the preceding remarks that the notion of the radical of an ideal a
in a ring R will play the crucial role:

rad a = { f ∈ R : it exists ℓ ∈ N∗ with f ℓ ∈ a } .

In the algebraic category, there is an analogous global result called Hilbert’s Nullstellensatz :

*Theorem 19.1 Let P1, . . . , Pr be complex polynomials in n variables, and denote by X the common
zero–set of P1, . . . , Pr . Then

{P ∈ C [x1, . . . , xn ] : P|X = 0 } = rad (P1, . . . , Pr)C [x1, . . . , xn ] .

19.2 Germs of holomorphic functions

For local considerations, it is convenient to go over to germs of functions. This concept is a special
manifestation of forming inductive limits that can be explained in a few words as follows:

Let (Aι)ι∈I be a system of sets Aι indexed by a partially ordered set I , where the ordering is
denoted by ≤ . Thus, (I, ≤) satisfies by definition the two axioms{

ι ≤ ι for all ι ∈ I

ι ≤ κ , κ ≤ λ =⇒ ι ≤ λ for all ι, κ, λ ∈ I .

Further, assume that for all ι, κ ∈ I with ι ≤ κ there exists a map ακι : Aι → Aκ such that the
collection (ακι) is subject to the conditions{

αιι = idAι
for all ι ∈ I

αλκ ◦ ακι = αλι for all ι, κ, λ ∈ I with ι ≤ κ ≤ λ .

Then the system (Aι, ακι) is called an inductive system of sets. Such a collection demands the name of
an inductive system of groups, if all Aι have a group structure and the ακι are group homomorphisms
(and similarly for all other categories).

The inductive limit of such a system is defined by an equivalence relation in the disjoint union of
the sets Aι . Call aι ∈ Aι and aκ ∈ Aκ equivalent , if there exists a λ ∈ I with ι ≤ λ , κ ≤ λ , and
such that

αλι(aι) = αλκ(aκ) .

When the partially ordered set I satisfies the condition that each pair of elements admits a common
larger element, then the definition establishes an equivalence relation. Denoting the set of equivalence
classes [ aι ] by

lim−→
ι∈I

Aι = A

(suppressing the system of maps ακι only for economical reasons), we get the inductive limit A together
with canonical maps

αι :

{
Aι −→ A

aι 7−→ [ aι ] .

It is absolutely straightforward how to equip the inductive limit A with the structure of a group
(ring, algebra, etc.) for inductive systems of groups (rings, algebras, etc.) such that all maps αι are
homomorphisms.
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As an Example, which is of paramount importance for the sequel, look at an arbitrary topological
space X and associate to any open set U ⊂ X the C–algebra of continuous functions CX(U) . The
system Ux of open neighborhoods of a point x ∈ X is partially ordered by

U ≤ V ⇐⇒ U ⊃ V

and satisfies the extra axiom mentioned above since U, V ∈ Ux implies U ≤ U ∩ V , V ≤ U ∩ V .
This ordering induces C–algebra homomorphisms

rVU : CX(U) −→ CX(V )

by restricting h ∈ CX(U) to V . So, by setting AU = CX(U) , αV U = rVU , we get an inductive system
whose limit is usually denoted by

CX,x = lim−→
x∈U
CX(U)

and whose elements fx := [ f ] are precisely the germs of continuous functions f ∈ CX(U) at x .
Since restrictions of holomorphic functions f ∈ OX(U) on an open subset U in an analytic subset

X to open sets V ⊂ U are also holomorphic on V by definition, the same procedure as above gives us
the algebra of germs of holomorphic functions on X at x :

OX,x .

The analogous local morphism corresponding to the map studied in the second half of Section 1 is now
the canonical epimorphism

ε : OCn,x −→ OX,x
induced by restrictions of representatives of holomorphic function germs in n variables near x to X .
If X can be written, in a neighborhood U of x , as the zero–set of functions f1, . . . , fr ∈ H0(U, OCn)
and if Ix denotes the ideal generated by the germs f1,x, . . . , fr,x in OCn,x , then we can state Rückert’s
Nullstellensatz as follows:

*Theorem 19.2 ker ε = rad Ix .

In other words: if g ∈ H0(U, OCn) vanishes on X , then there exists for all x ∈ U an open neighborhood
V ⊂ U of x , holomorphic functions h1, . . . , hr ∈ H0(V, OCn) and a positive integer ℓ such that

gℓ(x) =

r∑
ρ=1

hρ(x) fρ(x) for all x ∈ V .

19.3 Presheaves and sheaves on topological spaces

It is quite obvious that there is a unifying concept behind the constructions in Section 2: This procedure
works for all systems S (U) , U ⊂ X open, of sets (groups, rings, algebras) together with given maps
(homomorphisms of groups, rings, algebras, resp.)

rVU : S (U) −→ S (V ) , V ⊂ U

such that
rUU = idS(U) and rWV ◦ rVU = rWU , W ⊂ V ⊂ U .

Such systems are usually called presheaves (of sets, groups, rings, algebras) and are denoted by the
symbol S (which is regarded as a functor). By the same recipes, it is clear how to define a presheaf
S of modules over a presheaf of rings R . Although the restriction maps rVU play an important role,
they will in general not be mentioned explicitly, since they are in most examples canonically given (by
“obvious” restrictions of objects on U to V ).
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For any presheaf S on a topological space X , we can form the inductive limit

Sx = lim−→
x∈U

S (U)

which is also called the stalk of the presheaf S at x (having the germs of elements in S (U), x ∈ U ,
as elements). The restriction map S (U) → Sx is then usually denoted by rxU , and, as a rule, we write
sx for the image rxU (s) , s ∈ S (U) . It goes almost without saying that these stalks carry the same
algebraic structure as the defining presheaf does, and that the restriction maps rx are homomorphisms
in the respective category.

Besides the presheaves CX on a topological space X and OX on an analytic set X , we met
implicitly other ones in connection with holomorphic vector bundles π : E → M on a complex analytic
manifold M by associating to an open set U ⊂ M the OM (U)–module of holomorphic sections over
U in E :

H0(U, O (E)) = { s : U → E holomorphic with π ◦ s = idU } .

There are canonical restriction maps rVU making this system into a presheaf O (E) or OM (E) ; we
hope that the reader will not be confused by the fact that we use OM (U) for the algebra of holomorphic
functions on U and OM (E) for the presheaf of holomorphic sections in E . It should be evident that
the stalk OM (E)x has a canonical structure of a finitely generated free OM,x–module.

All of these examples satisfy the additional properties of sheaves. A presheaf S is called a sheaf , if
the following two axioms are fulfilled for S (here U, Uj , j ∈ J , denote open sets in X with U = ∪Uj) :

i) if s, t ∈ S (U) and r
Uj

U s = r
Uj

U t for all j ∈ J , then s = t ;

ii) if sj ∈ S (Uj) is a system of elements with r
Uj∩Uk

Uj
sj = r

Uk∩Uj

Uk
sk for all j, k ∈ J , then there

exists an element s ∈ S (U) with r
Uj

U s = sj for all j .

Let us briefly sketch the method for associating a sheaf Š to a given presheaf S having the same
stalks (and the same algebraic structure). Denote by Š the disjoint union of all stalks Sx , x ∈ X , and
engrave a topology on Š by using the fundamental system of open sets

{ sx : x ∈ U } , s ∈ S (U) .

Then the canonical projection π : Š → X sending sx ∈ Sx to x ∈ X is a continuous (locally
homeomorphic) map, and we can form the set of (continuous) sections

Š (U) = {σ : U → Š continuous with π ◦ σ = idU }

which - together with the obvious restriction maps - builds up a sheaf Š . Moreover, Š (U) can be
equipped with additional algebraic structures if those are given on S (U) .

There exist canonical maps (homomorphisms)

S (U) −→ Š (U) , U ⊂ X open ,

which are easily seen to be bijective for all U , if and only if S is a sheaf. Therefore, we sometimes
identify a sheaf S with the topological space Š → X , and we call S (U) simply the set (group, etc.)
of sections in S over U , denoting it also by H0(U, S) .

19.4 Analytic sheaves

We are now returning to analytic sets X together with their associated structure sheaves OX of germs
of holomorphic functions. We also have sometimes to make use of the sheaf O∗

X of invertible elements
in OX , i.e. of the sheaf of germs of nowhere vanishing holomorphic functions. Of course, O∗

X has the
structure of a sheaf of (multiplicatively written) abelian groups. Further, we will consider the sheaf of
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locally constant functions with values in a ring R which is usually denoted by the same symbol R ,
that is

H0(U, R) = { g : U → R , g locally constant on U } .

The latter (especially for R = Z, R, C) appear in topological arguments.
In analytic contexts, we will be concerned most of the time with sheaves S of modules over OX ,

that is with analytic sheaves. So, for all open sets U ⊂ X , the abelian group S (U) of sections in S
over U has always the additional structure of an OX(U)–module. (Notice that OX(U) has always
a unit, namely the function being identically equal to 1; we therefore assume tacitly that the module
structure of S (U) is unitary , i.e. 1 · s = s for all s ∈ S (U) ) . Examples of such analytic sheaves are
the sheaf of holomorphic sections in a holomorphic vector bundle E → M on a complex manifold or
ideal sheaves I associated to elements f1, . . . , fr ∈ H0(X, OX) via the presheaf assigning to U the
ideal generated in OX(U) by the restrictions fρ|U .

The last example is a very special type of sheaves that can be constructed by using the concept
of sheaf homomorphisms. Such a homomorphism φ : S → S̃ of sheaves (of abelian groups, say) is a

collection of group homomorphisms φU : S (U) → S̃ (U) making all diagrams

S (V ) S̃ (V )

S (U) S̃ (U)-φU

?

rVU
?̃

rVU

-φV

commutative. We always denote the canonically induced homomorphism

lim−→
x∈U

φU : Sx = lim−→
x∈U

S (U) −→ lim−→
x∈U

S̃ (U) = S̃x

by φx .
For a sequence

(∗) S′ φ−→ S
ψ−→ S′′

of sheaf homomorphisms, exactness at S is measured by the exactness of the sequences of all group
homomorphisms

S′
x

φx−→ Sx
ψx−→ S′′

x , x ∈ X .

In other words: (∗) is exact at S , if and only if ker ψx = im φx for all x ∈ X .
Denoting by 0 the trivial sheaf of abelian groups, we call φ a monomorphism, if

0 −→ S′ φ−→ S

is an exact sequence at S′ (the left arrow being self explanatory).
ψ is an epimorphism, if the sequence

S
ψ−→ S′′ −→ 0

is exact at S′′ .
As in the case of groups, exactness of any sequence longer than (∗) means exactness at all places

where the definition makes sense. In particular, a short exact sequence is a sequence of type

0 −→ S′ −→ S −→ S′′ −→ 0

where exactness holds at S′ , S and S′′ .
One of the crucial facts about exact sequences of sheaves is the following
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Lemma 19.3 Let 0 → S′ φ→ S
ψ→ S′′ be an exact sequence of sheaves of abelian groups. Then, for

all open sets U ⊂ X , the associated sequence of groups of sections

0 −→ H0(U, S′) −→ H0(U, S) −→ H0(U, S′′)

is exact.

Regarding H0(U, ·) as a functor assigning abelian groups to sheaves of abelian groups, Lemma 3 is
usually phrased by saying that H0(U, ·) is left–exact. Before we prove this result, we give an Example
which shows that H0(U, ·) is in general not right–exact (and hence not exact): Associate to any
holomorphic function f ∈ H0(U, OX) the function exp f defined by

exp f (x) = ef(x) , x ∈ U .

Then exp f ∈ H0(U, O∗
X) , and the morphisms of abelian groups

H0(U, OX) −→ H0(U, O∗
X)

are compatible with restrictions. It is clear that the corresponding sequence of sheaves of abelian groups

0 −→ Z ·2πi−→ OX
exp−→ O∗

X −→ 0

is exact. (Here, ·2πi means that locally constant Z–valued functions are multiplied by 2πi ). The main
point is that nonvanishing holomorphic functions have locally well–defined branches of logarithms.
However, if U is not simply connected, it is in general not possible to patch these local logarithms
together to get a global logarithm on U . Hence,

OX,x −→ O∗
X,x

is surjective for all x ∈ X , whereas

H0(U, OX) −→ H0(U, O∗
X)

is not always an epimorphism.

Proof of Lemma 3. (a) Let s′ ∈ H0(U, S′) , and let s = φU (s
′) be zero in H0(U, S) . Then φx(s

′
x) =

sx = 0x ∈ Sx for all x ∈ U such that s′x ∈ ker φx = (0x) ⊂ Sx . By the first axiom for sheaves, s′

must be the zero element.

(b) Using the same argument as in (a) yields ψU ◦ φU = 0 , i.e. im φU ⊂ ker ψU . If, on the other
hand, s ∈ ker ψU , then sx ∈ ker ψx = im φx for all x ∈ U . Therefore, we can find for all x a
neighborhood Ux ⊂ U of x and an element s′Ux

∈ H0(Ux, S
′) with φUx

(s′Ux
) = s|Ux

:= rUx

U s .
Applying (a) to Ux ∩ Uy leads to s′Ux|Ux∩Uy

= s′Uy|Ux∩Uy
for all x, y ∈ U . Hence, the second axiom

for sheaves guarantees the existence of an element s′ ∈ H0(U, S′) with φU (s
′) = s . □

For studying morphisms G
φ→ G̃ of groups (vector spaces, modules, etc.), it is sometimes very

useful to go over to the canonical short exact sequences

0 −→ ker φ −→ G −→ im φ −→ 0 ,

0 −→ im φ −→ G̃ −→ coker φ −→ 0 .

For a sheaf morphism φ : S → S̃ , these constructions are a little bit more complicated. In view of
Lemma 3, only the definition of ker φ is straightforward: just put

(ker φ) (U) := ker φU ,
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show that the system (ker φ) (U) is compatible with the restriction maps rVU of S and that this
collection of groups and homomorphisms satisfies all axioms of a sheaf which we then call ker φ . The
functorial exact sequences

0 −→ ker φU
iU−→ S (U)

φU−→ S̃ (U)

can be viewed as a sequence of sheaves

0 −→ ker φ
i−→ S

φ−→ S̃

which is exact, since forming inductive limits is an exact functor. In particular, we have (ker φ)x =
ker φx for all x .

In order to define im φ correctly, we have to do so in such a way that im φ = S̃ for an epimorphism
φ . Therefore, it is not correct to define the image by (im φ) (U) = im φU , which in general is only

a presheaf (together with the obvious restriction maps coming from r̃VU : S̃ (U) → S̃ (V ) ). However,
it is an easy exercise to prove that the associated sheaf, which we call im φ , has the following natural
description:

(im φ) (U) =

s̃ ∈ S̃ (U) :
for all x ∈ U there exists a neighborhood
V ⊂ U such that r̃VU (s̃) is the image
of an element sV ∈ S (V ) under φV

 .

In particular, im φU ⊂ (im φ) (U) such that there exists a canonical functorial factorization

S (U) S̃ (U)-φU

(im φ) (U)

φU
@
@

@
@R

jU
�

�
�

�	

where jU denotes the natural inclusion (im φ) (U) ⊂ S̃ (U) . Therefore, we get exact sequences of
sheaves

0 −→ im φ
j−→ S̃

0 −→ ker φ
i−→ S

φ−→ im φ .

But, by the definition of im φ , it is plain that (im φ)x = im φx and φx is equal to the natural map
φx : Sx → im φx . Thus, φ (which most of the time will be denoted by φ , too) is an epimorphism.

The construction of coker φ follows the same pattern. Suppose, more generally, we are given a
monomorphism

0 −→ S′ j−→ S̃ .

Then we can identify S′(U) via jU with a subgroup of S̃ (U) - that is we regard S′ as a subsheaf of

S̃ . The system of quotient groups S̃ (U)/ S′(U) has a natural structure as a presheaf whose associated

sheaf is called S̃/ S′ . The canonical projections S̃ (U) → S̃ (U)/ S′(U) define a sheaf homomorphism

p : S̃ → S̃/ S′ satisfying ker px = S′
x , im px = (S̃/ S′)x . Hence,

0 −→ S′ j−→ S̃
p−→ S̃/ S′ −→ 0

is an exact sequence, and (S̃/ S′)x is canonically isomorphic to S̃x/ S
′
x .

It is clear that for any exact sequence 0 → S′ j→ S̃
p→ S′′ → 0 the sheaf S′′ can be identified

with the quotient sheaf S̃/ S′ . Therefore,

im φ = S/ ker φ ,

and, by definition,
coker φ = S̃/ im φ .
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The reader may convince himself/herself that these constructions of ker φ , im φ and coker φ
together with the exact sequences

0 −→ ker φ −→ S −→ im φ −→ 0

0 −→ im φ −→ S̃ −→ coker φ −→ 0

carry over to sheaves of modules, in particular to analytic module sheaves.
There are other purely algebraic devices to build up new sheaves from old ones. Suppose that S1

and S2 are two sheaves of modules over the sheaf R of rings, then

(S1 ⊕ S2) (U) = S1(U)⊕ S2(U)

defines a new one with (S1⊕S2)x = S1,x⊕S2,x , the direct sum of S1 and S2 . This procedure can be
extended to more than two summands. In particular, if S1 = · · · = Sr = S , then S1 ⊕ . . . ⊕ Sr will
also be denoted by Sr or S⊕r .

There is also no problem in restricting sheaves S on X to open subsets V ⊂ X . We denote this
restriction by S|V :

S|V (U) = S (U) for all U ⊂ V , U open .

19.5 Finitely generated sheaves and the permanence principle

Of particular interest in the following are free R–modules Rp . For instance, it is simply checked that the
existence of a morphism φ : Rp → S for a sheaf S of modules over R on X is equivalent to selecting
p sections s1, . . . , sp ∈ S (X) , namely the φ–images of the basis elements ej = (0, . . . , 1, . . . , 0) in the
free R (X)–module Rp(X) . The subsheaf S′ = im φ ⊂ S is then called the sheaf generated by the
sections s1, . . . , sp . By definition,

S′
x = Rx–submodule of Sx generated by s1,x, . . . , sp,x .

We usually write
S′ = R (s1, . . . , sp) ;

we say that S is finitely generated , if S = R (s1, . . . , sp) for some sections s1, . . . , sp ∈ H0(X, S) .
With the notion of restricting a sheaf, the concept of a sheaf being generated by finitely many

sections can easily be localized . We say that S is of finite type, if it is locally finitely generated, i.e. if
for all x(0) ∈ X we can find a neighborhood V of x(0) and an epimorphism

Rp|V −→ S|V

(where, of course, p may depend on x(0) ). Under this assumption, all stalks Sx in a neighbourhood
of x(0) are finitely generated Rx–modules. But locally finite generation is more than this: we must be
able to choose a system of generators for all stalks Sx simultaneously in a “continuous” manner.

The “permanence principle” we have applied already several times in the core part of the manuscript
can be formulated in the following way.

Theorem 19.4 Let S be a sheaf of modules over R of finite type. If s1, . . . , sp are sections in S in
a neighbourhood of a point x ∈ X such that the germs s1,x, . . . , sp,x generate the stalk Sx over Rx ,
then s1|V , . . . , sp|V generate S|V over R|V , i.e.: S|V = R|V (s1, . . . , sp) , for some neighbourhood V

of x .

Proof . Suppose without loss of generality that all sections s1, . . . , sp are defined on the same neighbor-
hood W of x . Look at the exact sequence

0 −→ R|W (s1, . . . , sp) −→ S|W −→ S|W /R|W (s1, . . . , sp) −→ 0

in which (
S|W /R|W (s1, . . . , sp)

)
x
∼= Sx/(Rx(s1,x, . . . , sp,x)) = 0 .

Since with S every quotient sheaf S/S′ is also of finite type, it remains to show the following Lemma.
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Lemma 19.5 Let S be a sheaf of finite type on X . Then the set of points x ∈ X in which Sx = 0x
is open in X .

Remark . The complement of this set is usually called the support of the sheaf S (see also Section ??).
For sheaves of finite type, this support is hence a closed subset of X . For coherent analytic sheaves on
a complex space X , it is even an analytic subset (see Section ??).

Proof of Lemma. Fix an arbitrary point x ∈ X and a neighbourhood W of x such that S is generated
over W by p sections s1, . . . , sp ∈ S (W ) . If Sx = 0x , then s1,x = · · · = sp,x = 0 such that there
exists an eventually smaller neighbourhood V of x with s1|V = · · · = sp|V = 0 . Consequently,
S|V = 0 . □

Remarks. 1. It is not difficult to construct ideals in the sheaf of differentiable functions on R , necessarily
not of finite type, that contradict the result of the preceding Theorem.

2. Notice that the theorem and the lemma are obviously equivalent.

19.6 Coherent analytic sheaves

Coherence is a finiteness property of sheaves that has its roots in Oka’s Coherence Theorem for the
sheaf of germs of holomorphic functions on Cn which can be stated as follows:

*Theorem 19.6 Let φ : Op|U → O|U , U ⊂ Cn open, be a sheaf homomorphism. Then the kernel

ker φ is of finite type.

Notice that ker φx consists of those p–tuples (g1,x, . . . , gp,x) of germs satisfying

p∑
j=1

gj,xfj,x = 0 ,

where the functions fj ∈ H0(U, OCn) are the images of the basis elements ej . In other words: ker φ
is equal to the sheaf of germs of relations between the generators f1, . . . , fp of the ideal sheaf im φ .

Therefore, we say that an analytic sheaf S is of finite relation type, if for all homomorphisms

φ : Op|U −→ S|U , U ⊂ X ,

the kernel ker φ is of finite type. Whereas finite type carries over to homomorphic images, i.e. S/S′

is of finite type for all subsheaves S′ ⊂ S if S is of finite type, finite relation type will automatically
be transmitted to subsheaves.

An analytic sheaf S is called coherent , if it is of finite type and of finite relation type. Oka’s
Coherence Theorem says that the structure sheaf OCn is coherent (viewed as a sheaf of OCn–modules).
By the preceding remarks it follows that an ideal sheaf I ⊂ O|U , U ⊂ Cn open, is coherent, if and
only if I is of finite type.

Analytic sets in U and coherent ideal sheaves I ⊂ O|U are closely related. Suppose that I is such
a sheaf, and define the zero–set of I by

X = N (I) = {x ∈ U : Ix ̸= Ox } ,

where O stands for O|U . Then it is immediately checked that on all open sets V ⊂ U , where IV is
generated by functions f1, . . . , fr ∈ H0(V, O) , we have

X ∩ V = {x ∈ V : f1(x) = · · · = fr(x) = 0 } .

So, X is an analytic subset of U . On the other hand, if X is analytic in U , it is only locally defined
by such coherent ideal sheaves which, however, do not fit together globally in general. Nevertheless,
X can always be constructed from a coherent ideal sheaf on U by taking the sheaf of all germs of
holomorphic functions vanishing on X . This is a consequence of Rückert’s Nullstellensatz and another
important Coherence Theorem due to Cartan and Oka:
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*Theorem 19.7 Let I ⊂ O|U , U ⊂ Cn open, be a coherent ideal sheaf. Then its radical rad I is
coherent, too.

Here, rad I is the sheaf associated to the presheaf of all ideals rad I (V ) , V ⊂ U open, which
satisfies the identity

(rad I)x = rad Ix .

Next, we would like to mention Serre’s Coherence Criterion.

*Theorem 19.8 If in the exact sequence of OX–module sheaves

S1 −→ S2 −→ S −→ S3 −→ S4

the sheaves S1 , S2 , S3 and S4 are coherent, then so is S .

Since the trivial sheaf 0 is obviously coherent, this result implies

Corollary 19.9 In a short exact sequence

0 −→ S′ −→ S −→ S′′ −→ 0

all sheaves are coherent, if and only if two of the sheaves S′ , S , S′′ have this property.

In particular, the canonical exact sequence 0 → S1 → S1⊕S2 → S2 → 0 shows that direct sums
of coherent sheaves are coherent. Moreover, given a morphism φ : S → S̃ of coherent sheaves, im φ
is a subsheaf of S̃ of finite type, hence coherent, and the short exact sequences for ker φ and coker φ
yield the same conclusion for these sheaves.

We want to use these remarks to indicate how one can prove that all structure sheaves OX of
analytic sets X ⊂ U ⊂ Cn are coherent. More generally, we would like to describe the possibility
of restricting coherent sheaves S on U to X “coherently”: We start with the coherent ideal sheaf
I ⊂ O|U of all germs of holomorphic functions vanishing on X and form the sheaf

I ⊗O|U S ,

the tensor product of I and S over O|U , which is associated to the presheaf

I (V )⊗O|U (V ) S (V ) .

Since tensor products commute with inductive limits, we have(
I ⊗O|U S

)
x
∼= Ix ⊗|OU,x

Sx .

By definition of coherence, S can locally always be written as the cokernel of a map Oq|V → O
p
|V such

that we get sequences

(∗) IV ⊗O|V O
q
|V −→ IV ⊗O|V O

p
|V −→ IV ⊗O|V S|V ∼= (I ⊗O S)|V −→ 0 ,

where IV ⊗O Oℓ|V , ℓ = p, q , is canonically isomorphic to the ℓ–fold direct sum

IV ⊕ · · · ⊕ IV ,

hence coherent. Corresponding to (∗), we have the following sequence at x ∈ V :

(∗∗)

(I ⊗O Oq)x −→ (I ⊗O Op)x −→ (I ⊗ S)x −→ 0

∥ ∥ ∥

Ix ⊗Ox
Oqx −→ Ix ⊗Ox

Opx −→ Ix ⊗Ox
Sx
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which is induced from the exact sequence

Oqx −→ Opx −→ Sx −→ 0 .

Tensoring being a right–exact functor, it follows that the sequence (∗∗) is exact for all x ∈ V . Therefore,
the sequence (∗) is exact and I ⊗O|U S is seen to be coherent.

We use the tensor product via the canonical sheaf homomorphism

I ⊗O|U S −→ S

that associates to
∑

fj ⊗ sj ∈ I (V )⊗ S (V ) the element
∑

fjsj ∈ S (V ) . We denote its image sheaf
by I · S , or I S for short, since

(I · S)x = Ix · Sx = submodule of Sx generated by Ix .

By construction, the cokernel
S/ I S

of this homomorphism is a coherent O|U–module sheaf which is “concentrated” on X :

(S/ I S)x = Sx/ IxSs = Ox for all x ∈ U \X .

In particular, taking S = O|U , we get the coherent O|U–module sheaf O|U/ I which can be regarded
as the trivial extension of the structure sheaf OX to U , since

(O|U/ I)x ∼=

{
OX,x , x ∈ X

0x , x ∈ U \X .

It is now an easy matter to derive the coherence of OX (as an OX–module sheaf) from the coherence
of O|U/ I as O|U–module sheaf. Moreover, for the coherent analytic sheaf S on U , the quotient S/ I S
inherits the structure of a coherent sheaf of (O|U/ I)–modules. It is clear that for any two open sets
W1 , W2 ⊂ U with W1 ∩X = W2 ∩X = V the groups of sections

H0(W1, S/ I S) and H0(W2, S/ I S)

are identical as H0(W1 ∩W2, O|U/ I) = H0(V, OX)–modules. Hence, there exists a sheaf S of OX–
modules on X with

Sx = Sx/ IxSx , x ∈ X ,

which is called the analytic restriction of S to X . As a rule, we denote this analytic sheaf by S|X .
From the preceding remarks, one can also deduce that S|X is a coherent sheaf on X .

Let us summarize some of the previous results and a few of their immediate consequences in

Theorem 19.10 Let X ⊂ U ⊂ Cn be a closed analytic subset. Then the structure sheaf OX is coher-
ent. Kernels, images and cokernels of homomorphisms between coherent analytic sheaves are coherent.
In particular, an analytic sheaf S on X is coherent, if and only if it is locally presentable, i.e. if it
coincides with the cokernel of a homomorphism

Oq|V −→ O
p
|V , V ⊂ X open .

For two coherent analytic sheaves S1 , S2 on X , their direct sum S1 ⊕ S2 and their tensor product
S1 ⊗ S2 are coherent. Further, if I is a sheaf of ideals in OX of finite type and if S is coherent and
analytic, then so is I S .

Only the statement about the tensor product needs verification. However, for this one can follow
exactly the same pattern of reasoning as in the case of the tensor product I ⊗O S , since we used there
only the coherence of I , S and of the structure sheaf O .

In the rest of our manuscript, we adopt the widespread behaviour to call a sheaf of OX–modules
simply an OX–module. Similarly, we use the words ideal or ideal sheaf synonymously for a sheaf of
ideals in OX .
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19.7 Analytic sets and supports of coherent analytic sheaves

Since we now have available the notion of holomorphic functions on a closed analytic subset X ⊂ U ⊂
Cn , it is straightforward to give a definition for a closed subset A of X to be analytic in X : locally
in X , the set A has to be the precise zero–set of finitely many holomorphic functions on X . This
condition is, of course, equivalent to the following:

i) A is a closed in U and contained in X ;

ii) A is a closed analytic subset of U .

So, as sets, we do not find new objects. But, from the sheaf–theoretical point of view, we must carefully
distinguish between ideals J ⊂ OX and J̃ ⊂ O|U defining A . If the set X itself is given by the
coherent ideal I ⊂ O|U of all holomorphic functions vanishing on X , we obtain such a defining ideal

J̃ ⊂ O|U from a defining ideal J ⊂ OX by taking the kernel of the composite map

O|U −→ O|U/ I
∼−→ OX −→ OX/ J ,

where we identify OX with its trivial O|U–coherent extension to U . Hence, denoting by

εx : OU,x −→ OX,x

the canonical epimorphism, we have for all x ∈ X :

J̃x = ε−1
x (Jx) , εx(J̃x) = Jx ,

and consequently, by an easy exercise:

rad J̃x = ε−1
x (rad Jx) , εx(rad J̃x) = rad Jx .

Using the standard Rückert Nullstellensatz and the Coherence Theorem of Cartan and Oka, these
equations imply:

Theorem 19.11 Let A be a closed analytic subset of X ⊂ U ⊂ Cn . Then the ideal IA ⊂ OX of
germs of holomorphic functions on X vanishing on A is coherent and (locally) identical to the radical
of any coherent ideal in OX defining A .

It follows from our definitions that an analytic set A ⊂ X ⊂ U can be described as the set of points
x ∈ X , where we have

OX,x/ IA,x ∼= (OX/ IA)x ̸= 0x .

This is a special case of the support of a coherent OX–module sheaf S which is defined by

supp S = {x ∈ X : Sx ̸= 0x } .

One of the most important features of coherent analytic sheaves lies in

Theorem 19.12 The support of a coherent OX–module S is a closed analytic subset of X .

Proof . We work locally at a point x(0) ∈ X and present S in a neighborhood V of x(0) by the
cokernel of a map

φ : Oq|V −→ O
p
|V ,

where φ is given by a q × p matrix of holomorphic functions φjk ∈ H0(V, OX) . Consequently, we
have for A = supp S :

(∗)
A ∩ V = {x ∈ V : φx : Oqx → Opx not surjective }

= {x ∈ V : rank (φjk(x)) j=1,...,q
k=1,...,p

< p } .
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Now, if x(0) ̸∈ A , then there exists a p× p submatrix of (φjk) whose determinant at x(0) is not zero.
By continuity of holomorphic functions and the determinant, this remains true in a whole neighborhood
of x(0) so that A is closed in X . But, again using (∗), A is easily seen to be locally analytic, since
A ∩ V is the set of points x ∈ V , where all p× p submatrices of (φjk(x)) vanish. □

Theorem 10 is only a very special form of what can be called the permanence principle for coherent
analytic sheaves: For most “good” properties of modules over local rings, it can be proved that, if a
stalk Sx(0) of a coherent analytic sheaf S has such a property, all neighboring stalks Sx are equally
good, and the “bad” points x ∈ X , where Sx does not satisfy the condition, form an analytic subset.
For instance, x(0) ∈ X being a smooth point can be translated into the purely algebraic statement that
the stalk of the structure sheaf at x(0) is a regular local ring. The permanence principle related to this
property of rings implies that the set sing X of singular points in X is a closed analytic set.

We will come back to such questions later. For the moment, we draw only some simple conclusions
from Theorem 10. So, for instance, we can state:

Corollary 19.13 Let φ : S′ → S′′ be a morphism of coherent analytic sheaves. Then the following
sets are closed and analytic in X :

{x ∈ X : φx is not surjective } ,

{x ∈ X : φx is not injective } ,

{x ∈ X : φx is not an isomorphism } .

Moreover, we can generalize Theorem 10 to

Theorem 19.14 Let S′ , S′′ be coherent submodules of a coherent OX–module S . Then

{x ∈ X : S′
x ̸⊂ S′′

x }

is a closed analytic subset of X . In particular, if S′
x(0) ⊂ S′′

x(0) or S′
x(0) = S′′

x(0) for a point x(0) ∈ X ,

then S′
|V ⊂ S

′′
|V or S′

|V = S′′
|V in a suitable neighborhood V of x(0) .

Proof . Since S′
x ⊂ S′′

x if and only if S′
x = S′

x ∩S′′
x , we can reduce the problem to the investigation

of the set {x ∈ X : S′
x = S′′

x } . In fact, using the morphism ψ : S′ ⊕ S′′ → S defined by (s′, s′′) 7→
s′ − s′′ for s′ ∈ S′(V ) ⊂ S (V ) , s′′ ∈ S′′(V ) ⊂ S (V ) , yields the coherence of the sheaf ker ψ whose
stalks can be identified with the intersections S′

x ∩ S′′
x . Consequently, we write ker ψ = S′ ∩ S′′ .

Therefore, if we replace S′′ by the coherent sheaf S′ ∩ S′′ , we may assume that S′′ ⊂ S′ , so that
S′
x ̸⊂ S′′

x ⇔ S′
x ̸= S′′

x ⇔ (S′/ S′′)x = S′
x/ S

′′
x ̸= 0x ; i.e. {x ∈ X : S′

x ̸⊂ S′′
x } = supp (S′/ S′′) . □

It should be noticed that the result of Theorem 12 remains valid when we only assume that S is
of finite relation type, whereas the subsheaves S′ and S′′ are of finite type; because then S′ , S′′

are automatically coherent as subsheaves of S , im ψ is of finite type and hence coherent for the
same reason, and consequently ker ψ is coherent. We finally remark that the stalks of the coherent
OX–module im ψ are the sums S′

x + S′′
x of S′

x and S′′
x in Sx . Therefore, we put S′ + S′′ := im ψ .

19.8 The annihilator of coherent sheaves and the generalized
Rückert Nullstellensatz

Closely related to an analytic sheaf S on X is an ideal sheaf in OX whose stalks are the annihilators
of the OX,x–modules Sx :

Ann Sx = { fx ∈ OX,x : fxSx = 0x } , x ∈ X .

We leave it as an exercise to the reader to show that there exists indeed an ideal sheaf Ann S ⊂ OX
having these stalks, if S is of finite type (just notice that any local representative f of an annihilator
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fx(0) ∈ Ann Sx(0) has then the property to annihilate all nearby stalks: fxSx = 0x for all x close to
x(0) ). Of course, we have 1x ∈ (Ann S)x , if and only if Sx = 0x . In other words, if we use the fact
that OX,x is a local ring (with maximal ideal m = mX,x which is the image of the maximal ideal in
OCn,x under the natural epimorphism OCn,x → OX,x) , we have the equivalence:

x ∈ supp S ⇐⇒ (Ann S)x ⊂ mX,x

⇐⇒ OX,x/ (Ann S)x ̸= 0x .

Therefore, the following is a stronger version of Theorem 10:

*Theorem 19.15 For any coherent analytic OX–module S , the annihilator Ann S is a coherent ideal
in OX .

By the very definition of Ann Sx , it is quite obvious that each module Sx can also be regarded
as an Rx = OX,x/ Ann Sx–module. Similarly to Section 5, we can think of S as being a sheaf on
A = supp S ⊂ X of modules over the sheaf R of rings on A , and again, it is not difficult to show
that S is a coherent R–module. However, R will in general not be the structure sheaf OA that we
introduced in Section 1. We have seen before that for f ∈ (Ann S) (V ) and x ∈ (supp S)∩V we must
have f (x) = 0 . This implies

(Ann S)x ⊂ IA,x ,

if IA denotes the sheaf of all holomorphic function germs vanishing on A , and hence the existence of
an epimorphism

R = OX/ Ann S −→ OX/ IA = OA ,

which, on the other side, is almost never an isomorphism such that S cannot be regarded as an OA–
module. The precise relationship between Ann S and IA is the content of the generalized Rückert
Nullstellensatz :

*Theorem 19.16 Let S be a coherent analytic sheaf on X . Then

rad Ann Sx = IA,x , A = supp S

for alle x ∈ X .

Notice that rad IA,x = IA,x and Ann Sx ⊂ IA,x implies rad Ann Sx ⊂ IA,x . So, Theorem 14 is
equivalent to its

Corollary 19.17 Let S be a coherent analytic sheaf, and let f vanish on A = supp S (locally near
x ). Then there exists a number t ∈ N∗ such that f tx ∈ Ann Sx .

If S is a coherent sheaf of type OX/ J for a finitely generated ideal sheaf J , we have Ann Sx = Jx
such that Theorem 14 implies the classical Rückert Nullstellensatz.

19.9 Complex analytic spaces and their reductions

We are now in a position to define ultimately the correct category we want to work in. The last
Section together with earlier examples bears evidence of the necessity not to deal completely within the
framework of analytic sets carrying their natural structure sheaf of holomorphic functions, that is we
should allow structure sheaves of type O|U/ J , U ⊂ Cn open, for arbitrary ideals J of finite type. On
the other hand, we are forced to make this concept to a global abstract one, as we have already seen in
the procedure to resolve singularities of curves. The second step uses the same patching idea as in the
case of complex analytic manifolds.

To begin with that step, we introduce the notion of a ringed space (X, R) , where X is a topo-
logical space (Hausdorff with a countable basis, as we always assume) and R denotes a fixed sheaf of
(associative, commutative) rings (with a unit). Examples of such spaces are:
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1. Topological spaces X with R = CX , the sheaf of germs of continuous functions on X .

2. Differentiable manifolds X with R = C∞X , the sheaf of germs of differentiable functions on X .

3. Complex analytic manifolds M with R = OM , the sheaf of germs of holomorphic functions on
M .

The space (X, R) is called locally ringed , if the stalks Rx , x ∈ X , are local rings (whose maximal
ideal is then denoted by mx ). In most cases, Rx carries the structure of a C–algebra which induces

an isomorphism C ∼→ Rx/mx from C to the residue field Rx/mx . In particular, Rx ∼= C ⊕ mx as
C–vector spaces. If (X, R) is a (locally) ringed space, so is (V, R|V ) for any open subset V ⊂ X .

In order to find the correct notion for morphisms between ringed spaces (X, R) and (X ′, R′) , recall
that a continuous map φ : X → X ′ between complex manifolds is holomorphic, if and only if f ′ ◦ φ
is holomorphic for any (locally given) holomorphic function f ′ on X ′ . But, in our general context, the
elements f ′ ∈ H0(V ′, R′) may not be functions; therefore, it makes no sense to speak directly about
the composition f ′ ◦ φ . The idea to circumvent that difficulty is to introduce an abstract sheaf on
X ′ associated to R and φ whose sections are sections in R , and to relate this new sheaf to R′ in a
functorial way.

To be more precise, we associate to any open set V ′ ⊂ X ′ the ring R (φ−1(V )) . Since the sys-
tem {φ−1(V ′) : V ′ open in X ′ } , is part of the topology of X , it is straightforward to check that
{R(φ−1(V ′) } defines a sheaf of rings on X . We denote it by

φ∗R

and call it the direct image of R under φ . It is clear that locality of R does not transfer to φ∗R
in general (take, for instance, the constant map φ : C → { 0 } and observe that (φ∗OC){0} =
H0(C, OC) ). However, for all x ∈ X , x′ = φ (x) ∈ X ′ , there exists a canonical map (φ∗R)x′ → Rx
given by

(φ∗R)x′ = lim−→
U ′∋x′

φ∗R (U ′) = lim−→
U ′∋x′

R (φ−1(U ′)) −→ lim−→
U∋x

R (U) = Rx .

For, e.g., continuous maps φ : X → X ′ there exists a canonical sheaf homomorphism CX′ →
φ∗CX , namely {

CX′(V ′) −→ CX(φ−1(V ′)) = (φ∗CX)(V ′)

f ′ 7−→ f ′ ◦ φ .

We denote this homomorphism by φ̂ . In the case of complex manifolds, analyticity of a continuous map
φ : X → X ′ can be expressed by the morphism φ̂ . Since OX ⊂ CX , it follows that φ∗OX ⊂ φ∗CX .
On the other hand, φ̂ maps OX′ into φ∗CX , and so, it makes sense to demand that

φ̂ (OX′) ⊂ φ∗OX .

The reader may convince himself that this is precisely the condition for φ to be holomorphic.
In general, φ̂ may not be determined by φ . Therefore, we simply assume that φ̂ exists. A morphism

of ringed spaces between (X, R) and (X ′, R′) is a pair (φ, φ̂) consisting of a continuous map φ :
R → R′ and a morphism of sheaves of rings φ̂ : R′ → φ∗R . If X and X ′ are locally ringed spaces,
we assume moreover that the composition

R′
x′

φ̂x′−→ (φ∗R)x′ −→ Rx , x′ = φ (x) ,

is local, i.e. that it maps the maximal ideal of R′
x′ into the maximal ideal of Rx . Holomorphic maps

between complex manifolds have obviously this property.
We leave it as an exercise to the reader to check that locally ringed spaces together with their

morphisms form a category. Isomorphisms are pairs (φ, φ̂) , where φ is a homeomorphism and φ :
R′ → φ∗R is an isomorphism of sheaves of local rings. Moreover, if R ⊂ CX′ , R′ ⊂ CX′ , then φ̂ is
uniquely determined by φ as in the case of holomorphic maps, i.e. φ̂ is the restriction of the canonical
map CX′ → φ∗CX to R′ ⊂ CX′ .
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To build up complex analytic spaces, we construct local models as indicated before: Take any coherent
sheaf IX in the structure sheaf O|U of an open set U ⊂ Cn , and denote by X the support of the
coherent O|U–module O|U/ IX , which is a closed analytic subset of U . Denote by OX the canonical
restriction of O|U/ IX to X satisfying

OX,x = O|U,x/ IX,x , x ∈ X .

Then OX is a coherent sheaf of local rings such that the pair (X, OX) forms a special example of a
locally ringed space: a local model of a complex space. One should notice that this symbol is slightly
misleading: it is not true that the set X determines the structure sheaf OX , since X1 = X2 for two
ideals IX1

, IX2
⊂ O|U , if and only if rad IX1

= rad IX2
by Rückert’s Nullstellensatz.

A complex analytic space, or complex space for short, is by definition a locally ringed space (X, OX)
which is locally isomorphic to a model of a complex space. Since coherence is a local property, the
structure sheaf OX is always coherent. Moreover, each stalk OX,x is an analytic algebra, i.e. a quotient

of a convergent power series ring by an ideal contained in the maximal ideal mn of O(n)
0 .

The concept of coherent analytic module sheaves can easily be introduced in this new set up. All
constructions and results presented so far remain valid mutatis mutandis. In particular, an ideal I ⊂ OX
is coherent, if and only if it is of finite type, and the support Z of OX/ I is a closed analytic subset
of X . The pair (Z, OZ) , where OZ is the restriction of OX/ I to Z , is again a complex space. We
call it a closed subspace of (X, OX) . Open subspaces are, of course, pairs (V, O|V ) , where V is open
in X and O|V equals the natural restriction of OX to V .

A holomorphic map between complex spaces (X, OX) and (Y, OY ) is just a morphism (φ, φ̂) :
(X, OX) → (Y, OY ) of locally ringed spaces. In particular, if y = φ (x) , then the natural map

φ̂x : OY,y −→ OX,x

is a local algebra homomorphism.
Any complex manifold M can be considered as a complex space (M, OM ) , and holomorphic maps

φ : M → N can be extended to holomorphic mappings (φ, φ̂) : (M, OM ) → (N, ON ) .
We would like to emphasize here that - although we will speak of holomorphic “functions” f ∈

H0(X, OX) - these sections are not really functions in the usual sense. The main point is that such
sections produce indeed continuous functions or - in other words - that there exists a canonical algebra
homomorphism

redX : H0(X, OX) −→ H0(X, CX) ,

but that the map redX is not always injective.
Let us illustrate this phenomenon by the simplest possible example: We take the structure sheaf OC

of C and the coherent ideal IX generated by the square x2 of a complex coordinate x ; then X =
supp OC/ I = { 0 } , but IX is not its own radical. In fact, we have rad IX = xOC ̸= x2OC = IX .
The structure sheaf of X consists of precisely one stalk OX,0 which is isomorphic to

OC,0/m
2
0
∼= C [x ]/ x2 .

So, denoting the residue class of x in OX,0 by ε , we have

OX,0 = C⊕ εC

with multiplication (a+ εb) (c+ εd) = a c+ ε (bc+ ad) , i.e. ε2 = 0. We sometimes denote this algebra
by C [ ε ] and call it the algebra of dual numbers. Clearly, H0(X, OX) = OX,0 , H0(X, CX) ∼= C , and
the canonical map redX assigns to such a section f0 the value of any representative F ∈ H0(U, OC)
of f0 at the origin:

C [ ε ] ∋ a + b ε
redX−→ a ∈ C ,

such that the kernel of redX is generated by the nilpotent element ε .
Up to now, we tried hard in the present text to avoid or even to mention such nonreduced spaces. The

restriction has been accomplished by considering in connection with an analytic subset A ⊂ U ⊂ Cn
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exclusively the sheaf of all holomorphic functions vanishing on A , whereas in the example above the
ideal I is not maximal with respect to this property. Although, at first thought, this example might
look to be extremely artificial, it is rather natural, if one is studying e.g. the simple map f : x 7→ x2

in C and tries to encode the tendency of the one point fiber f−1(0) = { 0 } to split up into two points
f−1(x) = {x1, x2 } for x ̸= 0 close to zero, which, of course, cannot be read off the point 0 alone.

We are confronted here with a general paradoxe that flashes up from time to time in every branch
of mathematics: The need to enlarge a category C in order to understand what is really going on in
C .

To reduce a complex space (X, OX) means to endow X with a new structure sheaf of continuous
functions denoted by red OX and defined by

(red OX)(V ) = im (H0(V, OX)
redV−→ H0(V, CX)) , V ⊂ X open .

Before we can outline the reasons for (X, redX) being indeed a complex space, we should define the
map redV rigorously: Whenever f ∈ H0(V, OX) and x ∈ X , we find a germ Fx ∈ OCn,x which is
mapped onto fx under the epimorphism

OCn,x −→ OCn,x/ Ix = OX,x ,

if X is realized as the zero–set N (I) locally near x , I a coherent ideal in O|U , U ⊂ Cn open. Taking

any representative F of Fx near x and restricting F to X gives a continuous function fx on X near
x which does not depend on the special choice of F (since the difference of two such representatives
vanishes on X ). By construction, we have for all functions fy , y close to x , the identity

fy(y) = fx(y)

such that all these local functions fx patch together to a continuous function f = redV (f) on V , V
open in N (I) .

It remains to show that red does not depend on the choice of local models. For each complex space
X and each point x ∈ X , there exists a canonical sequence of homomorphism

C −→ OX,x −→ OX,x/mX,x .

Since the composition is not trivial, it is necessarily an isomorphism. Analytic homomorphisms
φ̂x : OY,y → OX,x being local C–algebra homomorphisms, the induced field homomorphism in the
commutative diagram

C ∼= OY,y/mY,y OX,x/mX,x ∼= C

OY,y OX,x-

? ?
-∼

is always the identity. Now, for Y = Cn , y = 0 and F a representative of a germ F0 , the value of
F at 0 can simply be identified with the residue class of F0 in OCn,0/mCn,0

∼= C . Hence,

f (x) = fx(x) = F (x) = Fx mod mCn,x

= fx mod mX,x =: fx ,

yielding an intrinsic definition for the map red .
As a next step we want to compute the kernel of redX . By the last description, f ∈ ker (redX) , if

and only if

(∗) fx ∈ mX,x for all x ∈ X .
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Certainly, for each x ∈ X there exists (locally near x ) a finitely generated ideal sheaf I ⊂ OX
satisfying Ix = mX,x such that

x ∈ supp (OX/ I) = N (I) ⊂ N (f) .

Hence, (∗) is equivalent to
x ∈ N (f) for all x ,

which in turn is equivalent to
Xx = N (f)x , x ∈ X ,

where Ax denotes the germ of a set A ⊂ X at x to be defined in exactly the same manner as the
germ of a function at x .

On the other hand, the germ of X at x is obviously equal to N (0)x , 0 the trivial function, such
that by Rückert’s Nullstellensatz we get the necessary and sufficient condition

fx ∈ rad (0x) = nX,x , x ∈ X ,

where nX,x = n (OX,x) is the nilradical of OX,x consisting of all nilpotent elements.
As we have remarked earlier, rad (0) =: nX is in fact an ideal sheaf in OX having the stalks nX,x .

By the preceding considerations, it is also clear that

(red OX)x = OX,x/ nX,x ,

and we have for trivial reasons
supp (OX/ nX) = X .

Thus, (X, red OX) will be a complex analytic space, if the nilradical is of finite type. This, however, is
always true according to another classical Coherence Theorem to be commented on in the next Section.

19.10 The Coherence Theorem of Cartan and Oka

We formulate the result without proving it in a strong form and will say some words about its conse-
quences.

*Theorem 19.18 (Coherence Theorem of Cartan and Oka) Let (X, OX) be a complex space,
and let I ⊂ OX be a coherent ideal. Then its radical rad I is also coherent. In particular, the reduction
(X, red OX) exists together with a natural holomorphic map (X, red OX) → (X, OX) .

As an application of Rückert’s Nullstellensatz, Theorem 16 is equivalent to

Theorem 19.19 Let A ⊂ X be a closed analytic subset of the complex space X . Then the ideal sheaf
IA of all germs of holomorphic functions vanishing on A is coherent.

Another reformulation is

Theorem 19.20 A set A ⊂ X is closed analytic, if and only if to each point x ∈ X there exists
a neighborhood U of x and finitely many elements f1, . . . , ft ∈ H0(U, OX) such that A ∩ U =
N (f1, . . . , ft) .

Evidently, a factor ring A/ a is reduced (in the sense that it has no nontrivial nilpotent elements),
if and only if the ideal a coincides with its radical rad a . This remark implies:
Each closed analytic subset A ⊂ X carries one (and only one) natural structure OA of a reduced
complex space:

OA = (OX/ IA)|A .
Moreover, the space (X, OX) is reduced at all points x , where the canonical homomorphism of

coherent OX–modules
OX −→ OX/ nX

is an isomorphism. Thus, we conclude from Corollary 11:

Theorem 19.21 The set of points, where a complex space (X, OX) is not reduced, is a closed analytic
subset.
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19.11 The singular locus of complex spaces

We are now in a position to fix our notions of regular and singular points for the rest of the book. A
point x in a complex space (X, OX) is called regular or smooth or a manifold point , if there exists a
neighborhood V of x in X and an open set U in some number space Cn such that

(V, O|V ) and (U, O|U )

are biholomorphically equivalent (where O|V denotes the restriction of OX to V and O|U is the
restriction of OCn to U ), i.e. if there exist holomorphic maps

(f, f̂) : (V, O|V ) −→ (U, O|U ) , (g, ĝ) : (U, O|U ) −→ (V, O|V )

satisfying
g ◦ f = idV , f ◦ g = idU

and inducing the resp. identical sheaf homomorphisms under the compositions:

O|V
ĝ−→ g∗O|U

g∗(f̂)−→ g∗(f∗O|V ) = (g ◦ f)∗O|V = (idV )∗O|V = O|V

�
idO|V

and vice versa. In other words: f : V → U is a homeomorphism such that for all open sets W ⊂ U
the canonical homomorphism

H0(W, O|U ) −→ H0(W, f∗O|V ) ∼= H0(f−1(W ), O|V )

is a (C–algebra) isomorphism.
Since, by definition, (U, O|U ) consists of smooth points only, the set of regular points reg X in

(X, OX) is a priori an open set. Of course, the singular locus is the set of nonsmooth points:

sing X = X \ reg X .

It follows directly from the definition that the structure sheaf must be regular at a smooth point:

x ∈ X smooth =⇒ OX,x ∼= OCn,0 =: Rn for some n .

The opposite is also true as we will outline in the following Section.
Since the algebras Rn are integral domains, they are also reduced. Thus, a complex space is neces-

sarily singular at its nonreduced points. Notice that we have found examples of complex spaces which
are nonreduced at all points but smooth (of positive dimension) everywhere after reduction. In partic-
ular, we have to be precise about the coherent ideal sheaf I defining an analytic set A ⊂ X when
speaking about regular points of A . It should be clear now that our original definition for a smooth
point of an analytic set in Cn refers to the canonical reduced structure of A (see the remark just before
Theorem 19).

Using the same arguments as before it follows at once that sing X is the union of the set of
nonreduced points and the singular set of the reduction red X . Since analytic subsets of red X are
analytic in X (just lift a defining ideal under the epimorphism OX → OX/ nX ), it is sufficient to
analyze the structure of the singular set in reduced spaces.

Theorem 19.22 The singular set sing X of a reduced complex space (X, OX) is a nowhere dense
closed analytic subset of X .

Corollary 19.23 In an arbitrary complex space X , the singular locus is closed analytic.

For the proof of Theorem 20 we will apply a regularity criterion referring to Kähler differentials on
complex spaces (see Section 13 and 14).
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19.12 Complex analytic singularities

From now on, we use the word (abstract) complex analytic singularity as a synonym for a germ of a
complex analytic space (X, OX) at a point x ∈ X , even if x is a regular point of X (the “regular
singularity”). Instead of the correct notation (X, OX , x) for such a singularity we use very often the
shorter symbol (X, x) or speak about the singularity x ∈ X tacitly assuming that the structure
sheaf OX is a priori given. We always think of X as a concrete representative for the germ (X, x)
which, however, can be chosen as small as we wish. Mostly, we will assume X to be a Stein space (see
Chapter 6??).

A holomorphic map between singularities (X, x) and (Y, y) is by definition the germ of a holomor-
phic map

(f, f̂) : (X, OX) −→ (Y, OY )

with f (x) = y . Two singularities (X, x) and (Y, y) are called biholomorphically equivalent (or

isomorphic for short), if there exists a biholomorphic map (f, f̂) for suitably chosen representatives
(X, OX) and (Y, OY ) . (Follow verbatim the definition of regular points in the preceding Section in
order to introduce the concept of biholomorphic maps in full generality).

Whereas the sheaf homomorphism f̂ : OY → f∗OX is not determined by the continuous map
f underlying a holomorphic map (f, f̂) , the opposite is true at least locally: Let X be given by
N (I) , I ⊂ O|U a coherent ideal, U open in Cn , and put similarly Y = N (J) , J ⊂ O|V , V ⊂ Cm .

Let x be a point in X , and let y be its image f (x) such that the local homomorphism f̂x : OY,y →
OX,x fits into the diagram

OY,y OX,x

OCm,y OCn,x-

? ?
-f̂x

with surjective vertical arrows. Since OCm,y
∼= C y1, . . . , ym = Rm is a free algebra in the sense that

any local homomorphism φ : Rm → A into an analytic algebra A is completely fixed by the images
φ (y1), . . . , φ (ym) , we can easily make the diagram commutative by replacing the dotted arrow by a

substitution homomorphism F̂x sending yk to suitable elements Fk ∈ OCn,x , k = 1, . . . ,m . Defining
F (x1, . . . , xn) = F (x) = (F1(x), . . . , Fm(x)) and shrinking U if necessary yields a holomorphic map

F : U −→ V with F (x) = y ,

and if g1, . . . , gr are generators of J near y , then

(gj ◦ F )x = F̂x(gj,y) ∈ Ix ,

such that from the coherence of I we may conclude that

X = N (I) ⊂ N (g1 ◦ F, . . . , gr ◦ F ) ⊂ F−1(N (g1, . . . , gr)) = F−1(Y ) .

Hence, F restricts to a continuous map X → Y which we expect to be f .
To prove this, we can regard instead the maps j ◦ F|X and j ◦ f where j : Y → V is the natural

embedding. In other words: we are reduced to the special case Y = V open in Cm , and all we need
is the following Lemma whose proof is left to the reader:

*Lemma 19.24 Let (X, OX) be a complex space, and denote by Hol (X, Cm) the set of all holomor-
phic maps from X to the complex manifold Cm with the standard complex analytic structure. Then
there exists a canonical bijection

Hol (X, Cm)
∼−→ H0(X, OX)m .
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By way of these considerations we come to the important interplay between local complex analytic
geometry and local algebra which can simply be stated as follows.

Theorem 19.25 By the associations{
singularity (X, OX,x) 7−→ analytic algebra OX,x

morphism (f, f̂) : (X, OX,x) → (Y, OY,y) 7−→ map f̂x : OY,y → OX,x

we get an isomorphism between the categories of (isomorphism classes) of singularities
with (germs of) holomorphic maps

as morphisms

 and

 analytic algebras
with local homomorphisms
as morphisms

 .

In particular, two singularities (X, x) and (Y, y) are isomorphic, if and only if OX,x ∼= OY,y . The
singularity (X, x) is regular, if and only if OX,x ∼= Rn for some n ≥ 0 .

To be sure, the opposite direction OX,x 7→ (X, OX , x) is constructed by writing OX,x =
OCn,0/ a , a = (f1,0, . . . , fr,0) and putting X = N (f1, . . . , fr) , OX = O|U/ (f1, . . . , fr) , fj ∈
H0(U, OCn) representatives for fj,0 , j = 1, . . . , r .

19.13 Kähler differentials on complex spaces and analyticity of
the singular locus

Let us suppose that we are given a complex analytic manifold M with structure sheaf OM . Our first
aim will be to give in that situation different characterizations for the (complex analytic) tangent bundle
TM of M . Describing the sheaf of holomorphic sections in TM in terms of derivations, we will be able
to define the tangent sheaf ΘX for any complex analytic space (X, OX) in a purely algebraic way.
The sheaf Ω1

X of (holomorphic) Kähler differentials of degree 1 shall then be introduced by solving a
universal problem with respect to derivatives with values in arbitrary coherent analytic sheaves. The
sheaves ΩpX of Kähler differentials of degree p are finally easily defined by setting ΩpX = ΛpΩ1

X . We
close the present Section by filling in the remaining step in the proof of analyticity of the singular locus.

So, as we suggested above, let M be an n–dimensional complex analytic manifold. By definition,
a (holomorphic) tangent vector at the point x(0) ∈M is the equivalence class of germs of holomorphic
maps

v : (C, 0) −→ (M, x(0)) ,

where equivalence is defined by equality up to first order : if locally (M, x(0)) ∼= (Cn, 0) and vj =

(v
(j)
1 , . . . , v

(j)
n ) : (C, 0) → (Cn, 0) , j = 1, 2 , then v1 ∼ v2 if and only if v

(1)
ν − v

(2)
ν ∈ m2

0 , ν =
1, . . . , n , m0 the maximal ideal of OC,0 . It is a trivial exercise to show that this is an intrinsic definition
for M at x . We denote by TM,x(0) the set of these holomorphic tangent vectors to M at x(0) . Invoking

again a local isomorphism (M, x(0)) ∼= (Cn, 0) , we simply can state that TM,x(0) carries a natural
structure of a complex vector space. Sending s ∈ C to z = (0, . . . , 0, s, 0, . . . , 0) , the number s in the
j–th place, we construct tangent vectors vj , j = 1, . . . , n , and it is easily seen that TM,x(0) is minimally
generated by v1, . . . , vn . Hence, TM,x(0) is a complex vector space of dimension n = dimCM .

We next give the (above promised) description of TM,x(0) by algebraic means, i.e. by derivations.
Whenever v ∈ TM,x(0) and f ∈ OM,x(0) , we can form Dv(f) = f ◦ v ∈ OC,0 . Clearly, the maps

Dv :

{
OM,x(0) −→ OC,0

f 7−→ f ◦ v
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obey the following conditions:

i)

ii)

iii)

iv)

v)

Dv(f1 + f2) = Dv(f1) + Dv(f2) ,

Dv(c f) = cDv(f) ,

Dv(fg) = fDv(g) + gDv(f) ,

Dv1+v2(f) = Dv1(f) + Dv2(f) ,

Dcv(f) = cDv(f) .

Consequently, the map

(∗) ψx(0) : TM,x(0) −→ Der (OM,x(0) , OM,x(0))

where
Der (OM,x(0) , OM,x(0)) = {D : OM,x(0) → OM,x(0) satisfying i), ii) and iii) }

is a linear map of C–vector spaces. Now, it is easy to check that this morphism is injective and

dimC Der (OM,x(0) , OM,x(0)) = n = dimCM ,

since this C vector space of derivations is canonically spanned by the partial derivatives

∂

∂xj

∣∣∣∣
x=x(0)

: OM,x(0) −→ OM,x(0) , j = 1, . . . , n .

Therefore, the canonical map in (∗) is bijective for all x(0) ∈M .
Now, defining the (holomorphic) vector bundle TM in the usual way, means precisely the following:

Giving a holomorphic section s ∈ H0(U, OM (TM )) , the map

U ∋ x 7−→ ψx(sx) ∈ Der (OM,x, OM,x)

is holomorphic, i.e. if f is holomorphic in U , then

U ∋ x 7−→ ((ψx(sx)) (fx)) (x) ∈ C

is a holomorphic function on U .
Since the opposite is obviously true, we obtain the following

Theorem 19.26 The OM–sheaf ΘM = OM (TM ) of germs of holomorphic sections in the tangent
bundle TM is locally free of rank n = dimCM . Each stalk OM (TM )x(0) is canonically isomorphic to
the n–dimensional free OM,x(0)–module Der (OM,x(0) , OM,x(0)) .

Thus, any section ∂ ∈ H0(U, O(TM )) can in particular be interpreted as an operator

∂ : H0(U, OM ) −→ H0(U, OM )

satisfying conditions i), ii) and iii) as above. If U is (biholomorphic to) an open subset in Cn with
coordinates x1, . . . , xn , then the partial derivatives

∂j =
∂

∂xj
, j = 1, . . . , n ,

are special objects of this kind, and it is evident from the remarks above that every element ∂ can
uniquely be written in the form

∂ =

n∑
j=1

aj ∂j , aj ∈ OCn(U) .
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We call such elements in H0(U, OM (TM )) holomorphic vector fields on U .
Now, by definition, the sheaf Ω1

M of germs of holomorphic (Kähler) 1–forms on M is the OM–dual
of ΘM . It is therefore a locally free sheaf of rank n , as well. At every point x0 ∈M , the stalk Ω1

M,x(0)

has a basis dx1, . . . , dxn , dual to the partial derivatives ∂1, . . . , ∂n at x(0) . These germs extend to
sections in H0(U, Ω1

M ) , also denoted by dx1, . . . , dxn , in a coordinate system U with holomorphic
coordinates x1, . . . , xn , and H0(U, Ω1

M ) is a free OM (U)–module with basis dx1, . . . , dxn .
We next associate to any germ fx ∈ OM,x a germ of a holomorphic 1–form (df)x , called the

differential of f , by associating to each tangent vector vx ∈ Der (OM,x, OM,x) = OM (TM )x the
holomorphic function germ

(df)x(vx) = vx(fx) .

Then d is a C–linear sheaf homomorphism

d : OM −→ Ω1
M

satisfying the Leibniz rule
d(f g) = f dg + g df .

In local coordinates x1, . . . , xn , we easily calculate

(df)(∂k) = ∂kf =
∂f

∂xk

such that, by definition, the differential dxj of the function xj coincides with the element dxj intro-
duced above, and

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂x1
dxn

for every holomorphic function f ∈ OM (U) .
We are now going to generalize these notions to general complex analytic spaces (X, OX) . If S is

any coherent analytic sheaf on X , we can define the sheaf of germs of derivations with values in S by
the germs of C–linear maps

d : OX −→ S

satisfying the Leibniz rule d(f g) = f dg + g df . Obviously, that sheaf admits the canonical structure
of an OX–module and as such, it is coherent (since each derivation is determined by its values on a
parameter system of OX,x) . We denote this sheaf by

Der (O, S)

and, in the special case S = OX , by ΘX :

ΘX = Der (OX , OX) .

ΘX is the (analytic) tangent sheaf of X .
Next, observe that composing a derivation d0 : OX → S0 with an OX–module morphism φ :

S0 → S yields a derivation d = φ ◦ d0 : OX → S . Thus, we have a natural morphism

(∗) Hom (S0, S) −→ Der (OX , S)

induced by d0 , and we may ask the following natural question: Does there exist a universal object S0

together with a derivation d0 : OX → S0 such that (∗) is an isomorphism ?
It is not hard to show that S0 is uniquely determined (up to isomorphism) if it exists, and that, for

a complex analytic manifold M , this object is precisely the sheaf Ω1
M of Kähler 1–forms with d0 the

usual differential. Therefore, we will call S0 the sheaf Ω1
X of Kähler 1–forms on X .

By the uniqueness property just stated, it is only necessary to construct Ω1
X locally. So let X be

of the form (N (I), OU/ I) , U ⊂ Cn open, I a coherent ideal. Then set

Ω1
X = Ω1

U/ (I · Ω1
U + OU · dI) ,

which is a coherent sheaf on X . The differential d : OU → Ω1
U yields canonically a derivation

d : OX → Ω1
X , and the pair (Ω1

X , d) has the desired property:
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*Theorem 19.27 On each complex analytic space X , there exists a uniquely determined coherent
analytic sheaf Ω1

X and a derivation d : OX → Ω1
X such that the canonical homomorphism

Hom (Ω1
X , S) −→ Der (OX , S)

is bijective for all coherent analytic sheaves S on X . In particular, the dual of Ω1
X is canonically

isomorphic to the tangent sheaf ΘX :
(Ω1

X)∗
∼−→ ΘX .

Here, a word of warning is in order. Although we introduced Ω1 on a manifold M as the dual of
the tangent sheaf Θ , i.e. by Ω1

X
∼= Θ∗

M , this relation is not satisfied for general spaces X . Or, in other
terms: the canonical morphism

Ω1
X −→ (Ω1

X)∗∗

is in general neither injective nor surjective.
For a manifold M of dimension n , ΘM and Ω1

M are locally free of rank n . It is not known whether
the opposite is correct for the tangent sheaf (Zariski’s conjecture): Does ΘX,x free at a point x ∈ X
imply that x is a regular point of X ?

The corresponding statement for the sheaf of Kähler 1–forms, however, holds true:

Theorem 19.28 If Ω1
X,x is free for a point x ∈ X , then OX,x is a regular analytic algebra.

The main point of the proof lies in the fact that Ω1
X,x is minimally generated by e = emb OX,x

elements: Clearly, cg Ω1
X,x ≤ e , and the homomorphism ω : Ω1

X,x → mx/m
2
x attached to the deriva-

tion

δ :

{
OX,x −→ mx/m

2
x

f 7−→ f − f (x) mod m2
x

via (∗) is surjective by Theorem ? and mx Ω
1
X,x ⊂ ker ω . Because of

dimC Ω1
X,x/m

1
X,xΩ

1
X,x = cg Ω1

X,x ≤ e = dimC mx/m
2
x ,

we must have equality.
To prove the Theorem, take a representation (N (I), OU / I) of X near x with dim U = e =

emb OX,x . Then the images dx1, . . . , dxe of dx1, . . . , dxe generate Ω1
X,x minimally, and since Ω1

X,x

is locally free at x , they form a basis near x . But, for f ∈ I , we have

0 = df =

e∑
j=1

(
∂f

∂xj

)
dxj ;

hence ∂f/ ∂xj ∈ I for all j = 1, . . . , e . Thus, the claim follows from the next Lemma. □

Lemma 19.29 If a is a proper ideal in a regular algebra Rn such that ∂f/ ∂xj ∈ a for all f ∈ a , j =
1, . . . , n , then a = 0 .

Proof . By induction, all partial derivatives of f are in a ⊂ mn . Therefore, ∂
|ν|f/ ∂xν = 0 at

x = 0 , and, by Taylor expansion, f = 0 . □

We are now ready to conclude the analyticity of the singular locus of any complex analytic space.
In virtue of Theorem xx, we may assume that the complex analytic space X is reduced and purely
d–dimensional. Then x ∈ X is a regular point of X if and only if the module of Kähler differentials
Mx = Ω1

X,x is free of rank d . Now, the following criterion for freeness is very easy to prove:

*Theorem 19.30 A finitely generated module M over the local ring A is free of rank d if, and only
if, the canonical map

ΛdM ⊗ ΛdM∗ −→ A

is bijective.

Since there is a sheaf version of this homomorphism on complex analytic spaces, we are done. □
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19.14 Normal complex spaces

Suppose for the rest of this Chapter that (X, OX) denotes a reduced complex analytic space. One
of the main features of complex analysis are extension theorems like Riemann’s Removable Singularity
Theorems. We want to discuss these questions here in more detail.

We begin with a bunch of definitions. For U ⊂ X open, we call a function f ∈ H0(U \ A, OX)
weakly holomorphic on U , if A ⊂ U is an analytically thin subset of U and f is locally bounded at
A . It should be evident how the sheaf of germs of weakly holomorphic functions ought to be defined.
We denote this sheaf in the sequel by ÕX . A weakly holomorphic function f ∈ H0(U \A, OX) is called
continuous (resp. holomorphic) if it admits a (necessarily unique) extension to a continuous (resp. a
holomorphic) function on U (also called f in general).

One can show:

*Theorem 19.31 The following statements are equivalent :

i) Every germ f ∈ ÕX,x(0) is continuous at x(0) ;

ii) the germ of X at x(0) is irreducible ;

iii) the ring OX,x(0) is an integral domain.

Every point x(0) in a smooth space X satisfies the conditions ii) and iii) of Theorem ?. Therefore,
weakly holomorphic functions on complex analytic manifolds X are continuous. Of course, they are
even holomorphic.

The complex space X is called weakly normal resp. normal at the point x(0) ∈ X , if

(∗) ÕX,x(0) ∩ CX,x(0) = OX,x(0) ,

that is, if every germ of a continuous weakly holomorphic function at x(0) is actually holomorphic,
resp. if

(∗∗) ÕX,x(0) = OX,x(0) ,

that is, if every germ of a weakly holomorphic function at x(0) is automatically holomorphic.
The space X is called normal (weakly normal) if it is normal (weakly normal) at every point

x(0) ∈ X . Riemann’s first removable singularity theorem says exactly that a smooth space X is weakly
normal. Consequently, since the singular locus sing X of a reduced space X is analytically thin, it
follows from the definitions that the complex structure of a normal space X is completely determined by
the underlying topological structure and the complex analytic structure on the regular part X \sing X .

If X is irreducible at x(0) , one can show that ÕX,x(0) is contained in the algebraic closure of

OX,x(0) in its quotient field MX,x(0) which we always denote by ÔX,x(0) . The main result of this
theory is contained in

*Theorem 19.32 X is a normal space at x(0) if and only if the ring OX,x(0) is normal, i.e. if OX,x(0)

is algebraically closed in its quotient ring MX,x(0) ; in symbols :

OX,x(0) = ÔX,x(0) .

The set of points x(0) ∈ X , where a reduced complex analytic space X is not normal, is a closed
analytic subset. Since it is contained in sing X , it is analytically thin.

In normal spaces (X, OX) , also Riemann’s second removable singularity theorem remains correct:

*Theorem 19.33 If X is a normal complex analytic space, and A ⊂ X is a closed analytic subset of
X of codimension at least 2 , then the restriction map

O (X) −→ O (X \A)

is an isomorphism.
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The proof is reduced to the smooth case by a local Noether normalization X → U ⊂ Cd and by
the fact that we only have to show that functions in O (X \A) are locally bounded near A . □

Corollary 19.34 Let A be an analytically thin subset of a normal space X . Then f ∈ O (X \ A)
admits a holomorphic extension to X if and only if it can be continuously extended.

We add some remarks on the integral closure R̂ of a reduced analytic algebra R = OX,x(0) . If
p1, . . . , pr denote the minimal prime ideals of R , then it is not difficult to convince oneself that

R̂ =

r⊕
j=1

R̂/ pj .

Thus, R̂ is a semilocal algebra, having exactly as many maximal ideals as X has irreducible components
at x(0) . From this fact, one can conclude:

*Theorem 19.35 For a reduced space (X, OX) , the sheaf ÔX is a coherent OX–algebra.

We introduce the normalization of a complex analytic space via the notion of the analytic spectrum
of ÔX .

19.15 The analytic spectrum of a coherent algebra

We intend to associate to any coherent OX–algebra A on a complex analytic space (X, OX) a new
space (Y, OY ) such that there exists a finite covering ρ : Y → X with ρ∗OY ∼= A .

By coherence, it is easily checked that, locally, there exists an algebra epimorphism

OX(U) [ s1, . . . , st ] −→ A (U) ;

hence
A (U) ∼= OX(U) [ s1, . . . , st ]/ (f1, . . . , fr)

with functions f1, . . . , fr ∈ O (U × Ct) which are polynomials in s1, . . . , st . Therefore, one is more or
less forced to define Y locally by

|Y | = { (x, s) ∈ U × Ct : f1 = · · · = fr = 0 }

together with the structure of

OY ((U × Ct) ∩ |Y |) = O (U × Ct)/ (f1, . . . , fr) .

One can patch these local models together (in general not uniquely) to form a complex analytic space
(Y, OY ) together with a holomorphic map ρ : Y → X (locally induced by the projection U×Ct → U)
such that

(ρ∗OY )x(0)
∼=

⊕
y(0)∈ρ−1(x(0))

OY,y(0) ∼= Ax(0) .

Theorem 19.36 For any coherent analytic OX–algebra A on X , there exists a complex analytic
space (Y, OY ) together with a holomorphic map ρ : Y → X such that

ρ∗OY ∼= A .

By construction, (ρ∗OY )x(0)
∼= Ax(0) is semilocal, i.e. a finite direct sum of local algebras. Hence,

by definition, ρ is a finite holomorphic map which maps |Y | to the support of the sheaf A . We call
Y the analytic spectrum of A ; in symbols:

Y = SpecanA .

SpecanA is not canonically defined globally. However, if A has no nontrivial OX–morphisms,
SpecanA is globally well–defined (up to global isomorphisms).
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19.16 The normalization of reduced spaces

It is a simple exercise to check that the coherent OX–algebra ÔX admits only trivial OX–algebra
homomorphisms. Therefore, the results of the preceding Section imply:

Theorem 19.37 For every reduced complex analytic space (X, OX) there exists a uniquely determined

complex analytic space (X̂, OX̂) together with a finite holomorphic map ρ : X̂ → X such that(
ρ∗OX̂

)
x(0)
∼= ÔX,x(0)

for every point x(0) ∈ X .

By definition, there is a one–to–one correspondence between points x̂(0) ∈ ρ−1(x(0)) and the irre-
ducible components of X at x(0) , and

O
X̂,x̂(0)

∼=
(
OX,x(0)/ pj

) ̂
for precisely one minimal prime ideal pj ⊂ OX,x(0) . In particular, X̂ is a normal complex analytic

space, called the normalization of X . The map ρ : X̂ → X is surjective and finite, and ρ−1(A) , A

the set of nonnormal points in X , is analytically thin in X̂ .
Normalization is not a functor. In general, holomorphic maps of reduced spaces cannot be lifted to

the normalization. However, one can prove:

*Theorem 19.38 If f : X → Y is a holomorphic mapping between reduced spaces such that the
preimages of the nonnormal points in Y under f form an analytically thin subset of X , then there
exists exactly one holomorphic mapping f̂ : X̂ → Ŷ between the normalizations making the diagram

X Y

X̂ Ŷ-f̂

? ?
-f

commutative.

Corollary 19.39 Let X be a reduced, Y be a normal complex analytic space together with a finite
holomorphic map ρ : Y → X such that ρ−1(A) , A the nonnormal points of X , is analytically thin
in Y , and ρ is generically (locally with respect to X ) an isomorphism. Then Y is (isomorphic to)
the normalization of X .

19.17 The maximalization of complex structures

Normalization of a (reduced) complex space X in general changes the topological structure since it
separates the irreducible components. When one wants to keep the topology, one has to be satisfied with
an analytically weaker property, namely the so–called weak Riemann removable singularity theorem,
that is:

(∗) OX,x(0) = ÕX,x(0) ∩ CX,x(0) .

The complex structure (X, OX) is called maximal if (∗) is fulfilled. Plainly, normal spaces are maximal.
It is easily shown that a maximal structure has the property that for any other reduced complex analytic
structure A on the topological space |X | that contains OX , i.e. OX ⊂ A , one must have OX = A .
Hence the name.

The following is an easy consequence of the definition:
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*Theorem 19.40 Let (Y, OY ) be a maximal complex analytic space, and let f : X → Y resp.
g : Y → Z be a holomorphic resp. a continuous map, X , Z reduced spaces. Then

i) if f is a homeomorphism |X | → |Y | , then f is biholomorphic,

ii) if Y is normal, f is injective and dim OX,x = dim OY,f(x) for all x ∈ X , then f is open and
maps X biholomorphically onto f (X) ,

iii) g is holomorphic if and only if the graph of g is an analytic subset of Y × Z .

In contrast to the situation for normalization, maximalization is a functor :

*Theorem 19.41 a) If (X, OX) is a reduced complex space, then (X, ÕX∩CX) is a complex space
with a maximal structure (the maximalization or weak normalization of X ).

b) Every holomorphic map f : X → Y extends (uniquely) to a holomorphic map between the
maximalizations.

19.18 Preimages of coherent analytic sheaves

The σ–modifications considered earlier in this work are special cases of modifications attached to
coherent ideals or even coherent sheaves of modules. In order to understand the corresponding notion
of a monoidal transformation we first have to introduce the basic concept of analytic preimages.

The topological preimage of a sheaf S on X under a continuous map f : Y → X is most easily
understood by regarding S

π→ X as a fiber space with total space

S =
⋃
x∈X

Sx

conveniently topologized in such a way that S (U) , U ⊂ X , can be identified with the set of topological
sections s : U → S . The topological preimage is then nothing else but the topological fiber product

S ⋄ f := S ×X Y = { (s, y) ∈ S × Y : π (s) = f (y) }

endowed with the induced topology coming from the topology of the cartesian product S×Y . It is not
difficult to check that S ⋄ f is indeed a sheaf under the natural projection S ×X Y → Y having the
stalks

(S ⋄ f)y = Sf(y) ,

and for all U open in X there exists a canonical map

H0(U, S) −→ H0(f−1(U), S ⋄ f) = H0(U, f∗(S ⋄ f)) .

Everything here is compatible with abelian group structures. Moreover, for any sheaf S of R–modules,
S ⋄ f is a sheaf of (R ⋄ f)–modules.

If f is a morphism of complex spaces and if S1 and S2 denote analytic sheaves on Y and X ,
resp., we can form the abelian groups

HomY (S2 ⋄ f, S1) and HomX(S2, f∗S1)

of all sheaf homomorphisms between the sheaves involved. Given

φ ∈ HomY (S2 ⋄ f, S1)

there is an associated homomorphism f∗φ : f∗(S2 ⋄ f) → f∗S1 that can be combined with the natural
homomorphism S2 → f∗(S2 ⋄ f) (see above), leading to a group homomorphism{

HomY (S2 ⋄ f, S1) −→ HomX(S2, f∗S1)

φ 7−→ φ♭ .



19.19 Čech cohomology 615

On the other hand, the local maps

((f∗S1) ⋄ f)y
∼−→ (f∗S1)f(y) −→ S1,y

give rise to a natural sheaf homomorphism

(f∗S1) ⋄ f −→ S1

which can be used similarly to define{
HomX(S2, f∗S1) −→ HomY (S2 ⋄ f, S1)

ψ 7−→ ψ♯

via the composition

S2 ⋄ f
ψ⋄f−→ (f∗S1) ⋄ f −→ S1 .

It is an easy exercise to show that ♭ and ♯ are inverses of each other:

HomY (S2 ⋄ f, S1)
∼−→ HomX(S2, f∗S1) .

In particular, the morphism f̂ ∈ HomX(OX , f∗OY ) can always be replaced by the morphism f̂ ♯ ∈
HomY (OX ⋄ f, OY ) and vice versa. (We will also denote f̂ ♯ by f̂ in the following).

Of course, we would like to associate to an analytic sheaf S on X an OY –module sheaf on Y .
This is now easily done with the help of the topological preimage by putting

f∗S = (S ⋄ f)⊗OX⋄f OY

where OY is regarded as an (OX ⋄ f)–module via the map f̂ : OX ⋄ f → OY . Since

(f∗S)y = Sf(y) ⊗OX,f(y)
OY,y , y ∈ Y ,

we sometimes write shortly
f∗S = S ⊗OX

OY .

In contrast to the direct image, the analytic preimage f∗S is always coherent when regarded as an
OY –module provided that S was coherent on X . This is a consequence of f∗ being in fact a right
exact functor with f∗OX ∼= OY .

A slight modification of our arguments above produces another isomorphism of C–vector spaces

HomY (f
∗S2, S1)

∼−→ HomX(S2, f∗S1) .

In particular, when taking S1 = f∗S2 or S2 = f∗S1 and the identity on one of the two sides, we can
establish the existence of natural sheaf homomorphisms

S2 −→ f∗f
∗S2

and
f∗f∗S1 −→ S1 .

19.19 Čech cohomology

It is now time to say a few words about cohomology theory . We know that to have a sheaf epimorphism
ψ : S → S2 does not mean surjectivity of the homomorphisms

ψU : S (U) −→ S2(U) , U ⊂ X open .
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E.g., it is well-known that for the epimorphism exp : O → O∗ on C , surjectivity of the morphism

O (U)
exp−→ O∗(U)

holds on an open connected subset U ⊂ C if and only if U is simply–connected.
Let us examine the necessary and sufficient conditions under which an element s2 ∈ S2(U) has a

preimage in S (U) . Since we can regard the restrictions of the sheaves S and S2 to the subset U , we
restrict ourselves to the case U = X . Surjectivity of ψ then implies that we may find an open covering
U = {Uι }ι∈I of X and sections sι ∈ S (Uι) such that ψUι

(sι) = s2|Uι
. Of course, we would like to

have
sικ := sκ|Uικ

− sι|Uικ
= 0 , Uικ = Uι ∩ Uκ

for all ι , κ . However, we only know that

ψUικ
(sικ) = ψUικ

(sκ|Uικ
) − ψUικ

(sι|Uικ
)

= ψUκ(sκ)|Uικ
− ψUι(sι)|Uικ

= s2|Uικ
− s2|Uικ

= 0 ,

i.e.
sικ ∈ S1(Uικ) , ι , κ ∈ I ,

where
S1 = ker ψ .

By the very definition of the system

{ sικ ∈ S1(Uικ) : (ι, κ) ∈ I × I } ,

it satisfies obviously the conditions for a 1–cocycle in the sense of Chapter 2(??); i.e. for all ι, κ, λ ∈ I,
we have

(∗) sικ|Uικλ
+ sκλ|Uικλ

+ sλι|Uικλ
= 0 , Uικλ = Uι ∩ Uκ ∩ Uλ .

In particular, sικ = − sκι and sιι = 0 for all ι, κ ∈ I .
Recall, that we associated to any holomorphic linebundle L on a complex manifold M a 1–cocycle

in the sheaf O∗ with respect to a trivializing covering U of L , and vice versa. The group of such 1–
cocycles has been denoted by Z1(U, O∗) . Hence, we are now forced to contemplate on such 1–cocycles
in general sheaves S1 , the group of which we consequently will denote by

Z1(U, S1) = { (sικ)(ι,κ)∈I×I : sικ ∈ S1(Uικ) satisfying (∗) } .

We shall call the system (sικ) in our construction above the 1–cocycle associated to local liftings of the
section s2 ∈ S2(X) .

Now suppose that s2 ∈ S2(X) has a global lifting s̃ ∈ S (X) . Then, as above,

s̃ι := sι − s̃|Uι
∈ S1(Uι) for all ι ∈ I ,

and, on Uικ :

(∗∗) s̃κ − s̃ι = (sκ − s̃) − (sι − s̃) = sικ .

We call an element (s̃ι)ι∈I ∈
∏
ι∈I S1(Uι) a 0–cochain in the sheaf S1 . A 1–cocycle (sικ) ∈ Z1(U, S1)

is called a 1–coboundary , if (∗∗) holds for a 0–cochain in S1 . Hence, we have proved the
”
only if”–part

of the following

Lemma 19.42 A section s2 ∈ S2(X) has a global lifting s ∈ S (X) with respect to the sheaf epimor-
phism ψ : S → S2 , if and only if each 1–cocycle associated to local liftings is a 1–coboundary with
respect to S1 = ker ψ .
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Proof of the “if”–part: Let sι ∈ S (Uι) be local liftings, let sικ = (sκ − sι)|Uικ
be the associated

1–cocycle in S1 , and suppose that we have

sικ = s̃κ − s̃ι on Uικ

for a 0–cochain (s̃ι) ∈
∏
S1(Uι) . Then regard (sι − s̃ι)ι∈I as a 0–cochain in S . Since, on Uι ∩ Uκ ,

(sι − s̃ι) − (sκ − s̃κ) = (s̃κ − s̃ι) − (sκ − sι) = sικ − sικ = 0 ,

the system defines a global section in S (X) which maps onto s2 under ψ . □

It is, by the way, not difficult to convince oneself that two 1-cocycles in Z1(U, O∗) define the same
holomorphic linebundle L on X up to isomorphism, if their difference is a 1-coboundary in O∗ .

Hence, we have seen up to now two instances where it seems to make sense to introduce the group

H1(U, S) = Z1(U, S)/B1(U, S) ,

B1(U, S) denoting the subgroup of 1-coboundaries, which we call the first Čech cohomology group with
values in the sheaf S (with respect to the open covering U of X ). Two elements in Z1(U, S) are also
called cohomologuous to eachother, if they define the same class in H1(U, S) .

To get rid of the particular coverings, we observe that for a finer covering V < U, i.e. for a covering
V = {Vλ }λ∈Λ together with a map τ : Λ → I such that Vλ ⊂ Uτ(λ) for all λ , there are canonical
compatible restriction maps

Z1(U, S) −→ Z1(V, S) , B1(U, S) −→ B1(V, S) ,

inducing maps
r1U,V : H1(U, S) −→ H1(V, S) ,

which, in fact, do not depend on the specific map τ , and satisfying all axioms for an inductively ordered
system. Hence, we form the inductive limit

H1(X, S) = lim−→
U

H1(U, S)

and call it the first Čech cohomology group of X with values in S . Clearly, we have for all open
coverings U canonical maps

r1U,X : H1(U, S) −→ H1(X, S) ,

which can be shown to be injective (since, by a simple exercise, the maps r1U,V are monomorphisms for
all V < U ).

As a first application of this notion, we state the easily proven

*Theorem 19.43 There is a natural 1–1 correspondence between the set of isomorphism classes of holo-
morphic linebundles on a complex analytic manifold X and the Čech cohomology group H1(X, O∗) .
Moreover, this correspondence is a group isomorphism, when the group operation on linebundles is taken
as the tensor product.

If we go through the construction at the beginning of the present Section again, we easily recognize
that we have associated to a short exact sequence

0 −→ S1
φ−→ S

ψ−→ S2 −→ 0

of sheaves on X a group homomorphism

δ : S2(X) −→ H1(X, S1) ,

such that s2 ∈ im ψX , if and only if δ (s2) = 0 . In other words: The sequence

0 −→ S1(X) −→ S (X) −→ S2(X) −→ H1(X, S1)
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is exact.
Our next task is to prolong this sequence. In order to do so, we generalize all concepts developed so

far. Define first the groups of q–cochains in the sheaf S relative to a covering U by

Cq(U, S) =
∏

(ι0,...,ιq)∈Iq+1

S (Uι0...ιq ) ,

where Uι0...ιq = Uι0 ∩ . . . ∩ Uιq . There is a canonical map

δq : Cq(U, S) −→ Cq+1(U, S) ,

defined by

(δq(sι0...ιq ))κ0...κq+1
=

q+1∑
λ=0

(−1)λsκ0...κ̂λ...κq+1 |Uκ0...κq+1

,

which commutes with the restriction maps

Cj(U, S) −→ Cj(V, S) , j = q, q + 1

for any refinement V < U . Hence, denoting by

Zq(U, S) = ker δq ,

Bq+1(U, S) = im δq , B0(U, S) = 0

the groups of q–cocycles and q–coboundaries, resp., and remarking that δq+1 ◦ δq = 0 , we can define
the Čech cohomology groups

Hq(U, S) = Zq(U, S)/Bq(U, S) and Hq(X, S) = lim−→
U

Hq(U, S)

for all q ≥ 0 together with canonical homomorphisms

rqU,X : Hq(U, S) −→ Hq(X, S) .

It is immediately clear from the definition that

H0(X, S) = H0(U, S) = S (X)

for all open coverings U , justifying our notions in use since Chapter 2 (???).
Given a morphism φ : S → S′ of sheaves, we find associated group homomorphisms{

Cq(U, S) −→ Cq(U, S′)

(sι0...ιq ) 7−→ (φUι0...ιq
(sι0...ιq )) ,

which obviously give rise to group homomorphisms

φq : Hq(U, S) −→ Hq(U, S′)

and
φq : Hq(X, S) −→ Hq(X, S′) ,

such that
φ0 = φX : H0(X, S) = S (X) −→ S′(X) = H0(X, S′) .

Modifying the construction of the morphism δ : H0(X, S2) → H1(X, S1) for a short exact sequence

0 −→ S1
φ−→ S

ψ−→ S2 −→ 0 ,

we can also construct connecting homomorphisms

δq : Hq(X, S2) −→ Hq+1(X, S1)

for all q ≥ 0 , provided that the topological space X is paracompact , i.e. if each open covering U
allows for a locally finite refinement V < U. (Then we can represent cohomology classes by cycles in
Zq(V, S) with locally finite V ). - The main theorem for Čech cohomology now states:
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*Theorem 19.44 For any short exact sequence

0 −→ S1
φ−→ S

ψ−→ S2 −→ 0

on a paracompact space X , the associated long cohomology sequence

0 −→ H0(X, S1)
φ0

−→ H0(X, S)
ψ0

−→ H0(X, S2)
δ0−→

−→ H1(X, S1)
φ1

−→ H1(X, S)
ψ1

−→ H1(X, S2)
δ1−→

−→ H2(X, S1) −→ · · ·

is exact. This long exact cohomology sequence depends functorially on the given short exact sequence.

19.20 Acyclic sheaves and resolutions

A sheaf A is called acyclic on X , if all higher cohomology groups Hq(X, A) , q ≥ 1 , vanish. Assume
that we have an exact sequence

(+) A· : A0 d0−→ A1 d1−→ A2 −→ · · ·

of acyclic sheaves such that ker d0 ∼= S . Then we call A· an acyclic resolution of the sheaf S . We
shall see later that each sheaf admits such resolutions (even in a canonical fashion). The important
feature of acyclic resolutions consists in the fact that we are able to compute the cohomology of S by
means of the sequence of sections in A· . To be precise, regard the sequence of groups

A·(X) : 0 −→ A0(X)
d0X−→ A1(X)

d1X−→ A2(X) −→ · · · .

Since dq+1
X ◦ dqX = 0 for all q ≥ 0 (i.e. A·(X) is a complex ), we can form the cohomology groups

Hq(A·(X)) = ker dqX/ im dq−1
X , d−1

X := 0 .

Clearly, H0(A·(X)) = ker d0X = S (X) = H0(X, S) . That this is true for all cohomology groups, is
the content of the abstract de Rham Theorem:

Theorem 19.45 Let A· be an acyclic resolution of the sheaf S on a paracompact space X . Then
there are canonical isomorphisms

Hq(X, S) ∼= Hq(A·(X)) .

Proof . Denote by Kp the kernel of the sheaf homomorphism dp : Ap → Ap+1 . Then we have

K0 = S and Kp = ker dp = im dp−1 , p ≥ 1 .

Hence, the resolution (+) decomposes into short exact sequences

0 −→ Kp −→ Ap dp−→ Kp+1 −→ 0 , p ≥ 0 .

Due to the long exact cohomology sequence, we conclude that

0 = Hq(X, Ap) −→ Hq(X, Kp+1) −→ Hq+1(X, Kp) −→ Hq+1(X, Ap) = 0

is exact for q ≥ 1 . Therefore, by induction,

Hq(X, S) = Hq(X, K0) ∼= Hq−1(X, K1) ∼= · · · ∼= H1(X, Kq−1)
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for all q ≥ 1 . The initial part of the cohomology sequence contains the exact segment

H0(X, Ap)
dpX−→ H0(X, Kp+1) −→ H1(X, Kp) −→ H1(X, Ap) = 0

such that
Hq(X, S) ∼= H1(X, Kq−1) ∼= H0(X, Kq)/ im dq−1

X .

Applying the left–exact functor H0 to the exact sequence

0 −→ Kq −→ Aq dq−→ Aq+1

finally yields

H0(X, Kq) = ker dqX . □

There are some important classes of acyclic sheaves on paracompact spaces X . Generalizing the
concept of a partition of unity from functions to sheaves, we call a sheaf S fine, if for all locally finite
coverings U = {Uι }ι∈I there are sheaf homomorphisms hι : S → S with supp hι = {x ∈ X :
hι(Sx) ̸= 0x } ⊂ Uι and ∑

ι∈I
hι = idS .

Notice that each CX–module sheaf on a paracompact topological manifold X and also each C∞X –module
sheaf on a paracompact C∞–manifold X is fine.

Theorem 19.46 Every fine sheaf S on a paracompact space X is acyclic.

Proof . Since X is paracompact, it suffices to show that

Hq(U, S) = 0 , q ≥ 1

for all locally finite coverings U of X . Now, for a fixed partition (hι)ι∈I of idS , define homomorphisms

kq : Cq(U, S) −→ Cq−1(U, S) , q ≥ 1 ,

by

(kq(sι0...ιq ))κ0...κq−1
:=

∑
ι∈I

hι(sικ0...κq−1
) ,

where hι(sικ0...κq−1) denotes the trivial extension of this element from Uκ0...κq−1 \ Uι
to Uκ0...κq−1 . It is easily checked that δq−1 ◦ kq + kq+1 ◦ δq = idCq(U,S) , such that
Zq(U, S) = idCq(U,S)Z

q(U, S) ⊂ Bq(U, S) . □

Other examples of acyclic sheaves are the following, as we shall see in a moment: A sheaf F is called
flabby , if for all open subsets U ⊂ X the restriction homomorphism

H0(X, F ) −→ H0(U, F )

is surjective. Every sheaf S can be embedded into a flabby one (its “flabbyfication”), called F (S) ,
whose groups of sections consists of all (i.e. not necessarily continuous) sections in S ; in other words:

F (S) (U) = { s : U → S : π ◦ s = idU } .

Each section in F (S) (U) can trivially be extended to the whole space X by putting s (x) = 0x , x ∈
X \ U .

Moreover, we can build up a canonical flabby resolution of a given sheaf S by setting F 0 :=
F (S) , F 1 := F (F 0/ S) etc.:

0 −→ S −→ F 0 −→ F 1 −→ · · · .

In order to prove that flabby sheaves are acyclic, we need the following lemmata.
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Lemma 19.47 If 0 → F1 → F → F2 → 0 is a short exact sequence with a flabby sheaf F1 , then
the sequence

0 −→ H0(X, F1) −→ H0(X, F ) −→ H0(X, F2) −→ 0

is exact.

Proof . Given a section f2 ∈ F2(X) , we choose a lifting f ∈ F (U) with a maximal open set U ⊂ X
and claim that U = X . Suppose, to the contrary, that U ̸= X . Then there exists a nonvoid open set
V , not contained in U , and a lifting f̃ of f2 over V . f − f̃ can be extended from U ∩V to a global
section f1 in F1 , and the pair (f, f1 + f̃) defines a lifting of f2 to U ∪ V . Contradiction ! □

Lemma 19.48 For a short exact sequence 0 → F1 → F → F2 → 0 with flabby sheaves F1 and F ,
the cokernel F2 is also flabby.

Proof . Trivial.

Theorem 19.49 Flabby sheaves are acyclic.

Proof . Choose a flabby resolution 0 → F → F 0 → F 1 → · · · of F , and define the exact sequences

0 −→ Kp −→ F p −→ Kp+1 −→ 0 , p ≥ 0 ,

as in the proof of Theorem ?. By induction on p , we may conclude that all sheaves Kp are flabby.
Using Lemma ? above, we find

ker dp+1
X = im dpX , p ≥ 0 ,

and the conclusion follows from Theorem ?. □

It is also not difficult to show that the special flabby sheaves F (S) are even fine.
The same reasoning shows that there exists on a paracompact space X only one “cohomology

theory” normalized in such a way that flabby sheaves (or only sheaves of type F (S) ) have trivial
higher cohomology groups.

19.21 Leray and Stein coverings

We have remarked in the previous Section that the canonical homomorphisms r1U,X : H1(U, S) →
H1(X, S) are always injective. If the covering U is “cohomologically good”, these maps and the corre-
sponding ones in arbitrary dimension q are bijective.

An open covering U of X has the Leray property for the sheaf S in dimension p , if Hq(Uι1...ιp , S) =
0 for all q = 1, . . . , p and all p–fold intersections. It is called a Leray covering for S , if the Leray
property is satisfied for all natural numbers p ≥ 1 . With this notion, one can prove Leray’s Theorem:

*Theorem 19.50 For a covering U of X with the Leray property for S in dimension p the canonical
homomorphism rpU, X : Hp(U, S) → Hp(X, S) is bijective. This is true for all p ≥ 0 , if U is a Leray
covering for S .

It is now very important to have Leray coverings simultaneously for a whole class of sheaves. This
remark, for instance, applies to the class of constant sheaves, if all intersections Uι0...ιq are (connected
and) contractible (e.g. a covering of Rn with convex sets Uι ).

In the case of complex analytic spaces X , we would like to work with all coherent analytic sheaves
S at the same time. Therefore, we are interested in open subsets U ⊂ X with the property that
Hq(U, S) = 0 for every q ≥ 1 and each coherent analytic sheaf S on U . We call such sets B–
domains in X ; if X itself is a B–domain, it is called a B–space, which is shorthand for stating that
the space X satisfies Theorem B of Cartan.

B–spaces have very strong properties. They satisfy, for instance, the so–called Theorem A of Cartan,
as well:
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Theorem 19.51 Let S be a coherent analytic sheaf on the B–space X . Then, for all x ∈ X , there
are finitely many sections s1, . . . , sk ∈ S (X) such that the stalk Sx is generated as an OX,x–module
by the germs s1x, . . . , skx .

Proof . Denote by I = Ix the ideal sheaf of holomorphic function germs vanishing at the point x .
From the exact sequence

0 −→ I · S −→ S −→ S/ I · S −→ 0 ,

we deduce exactness of

H0(X, S) −→ H0(X, S/ I · S) −→ H1(X, I · S) = 0 ,

since I · S is a coherent subsheaf of S . But (S/ I · S)y ̸= 0y for all y ̸= x , whence

H0(X, S/ I · S) = Sx/mX,xSx ,

and the claim follows from Theorem 5. ??. □

By the same reasoning as above for the ideal sheaf Ix,y of germs of holomorphic functions vanishing
at x and y , x ̸= y , we also get immediately

Theorem 19.52 Every B–space X is holomorphically separable, i.e. for x1 ̸= x2 in X there exists
a holomorphic function f ∈ O (X) with f (x1) ̸= f (x2) .

Clearly, each of the last two Theorems implies that a B–space is compact if and only if it consists
of isolated points only .

Finally, the following holds true:

Theorem 19.53 Every B–space X is holomorphically convex , i.e. for each compact set K ⊂ X the
holomorphically convex hull

K̂ := {x ∈ X : | f (x) | ≤ sup | f (K) | for all f ∈ O (X) }

is compact.

Proof . Suppose that there exists a compact set K ⊂ X such that the convex hull K̂ is not compact.
Then there is an infinite series {xj }j∈N in K̂ without accumulation points in K̂ . Since K̂ is closed
in X , the set A = {xj : j ∈ N } has no accumulation points in X , as well. Hence, A is a discrete
analytic subset in X with a coherent ideal sheaf IA . By property B, we have exactness of the sequence

H0(X, OX) −→ H0(X, OX/ IA) −→ H1(X, IA) = 0 ,

such that we can find a holomorphic function f ∈ OX(X) with limj→∞ f (xj) = ∞ , contradicting

sup | f (xj) | ≤ sup | f (K) | < ∞ . □

Calling a complex analytic space X a Stein space (or holomorphically complete) if it is holomorphi-
cally separable and holomorphically convex, we may state that B–spaces are Stein spaces. Remember
that we assume all topological spaces to have countable topology. However, this follows automatically
(at least for each connected component) for holomorphically separable spaces. This taken for granted,
one can show that one may replace the assumption of a Stein space X to be holomorphically convex
by the following one:

For each infinite discrete closed set Z ⊂ X, there exists a holomorphic function f ∈ O (X) such that

sup
x∈Z
| f (x) | = ∞ .

For Stein spaces, the following permanence results are more or less obvious:
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*Theorem 19.54

1. Every region in C is a Stein space.

2. Products of Stein spaces are Stein; in particular, every polydisk P ⊂ Cn is a Stein space.

3. Closed subvarieties of Stein spaces are Stein spaces; in particular, each point x in a complex
analytic space X has arbitrarily small Stein neighborhoods.

4. Intersections of finitely many Stein domains in a complex space are Stein spaces; in particular,
every complex space X (with countable topology) has arbitrarily fine (locally finite) Stein coverings
U = {Uι }ι∈I , i.e. coverings with Uι0 ∩ . . . ∩ Uιq Stein for all ι0, . . . , ιq ∈ Iq+1 .

Our task concerning Leray coverings on complex spaces is now accomplished by the famous and
very deep Theorem B of Cartan:

*Theorem 19.55 Every Stein space is a B–space.

Let us finish the present Section by sampling some results for Stein domains in Cn . Obviously,
every such domain G is holomorphically separable. Hence, in these cases, “holomorphically convex” is
equivalent to “property B”. In fact, there are many different characterizations of such Stein domains in
Cn . Among them are the characterizations as

i) domains of holomorphy;

ii) pseudoconvex domains;

iii) domains with H1(G, I) = 0 for all coherent ideal sheaves I ⊂ OG with discrete zero–set N (I) ;

iv) domains with Hq(G, OG) = 0 for q = 1, . . . , n − 1 .

19.22 Grauert’s Coherence Theorem

In many applications, one is forced to study a relative situation f : X → Y together with some sheaves
S on X . Similarly to the absolute case, an exact sequence

(∗) 0 −→ S1 −→ S −→ S2

on X gives rise to an exact sequence

0 −→ f∗S1 −→ f∗S −→ f∗S2

of direct images. (Recall that the direct image sheaf f∗S of S , say, is defined by (f∗S) (V ) =
H0(f−1(V ), S) , V ⊂ Y open, the left–exactness of the functor f∗ following from Theorem ????).
It is clear that, for obvious reasons, we also have to introduce similar sheaves for all cohomology groups.

Therefore, we associate to any open subset V ⊂ Y the cohomology group Hq(f−1(V ), S) . If
U = {Uι }ι∈I denotes an open covering of f−1(V ), and if W is an open subset of V , then

V = U ∩ f−1(W ) = {Vι = Uι ∩ f−1(W ) }ι∈I

is an open covering of f−1(W ) with natural restriction maps

S (Uι) −→ S (Vι)

inducing homomorphisms Cq(U, S) −→ Cq(V, S) commuting with δ such that there are canonical
restriction homomorphisms

Hq(U, S) −→ Hq(V, S)
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and
Hq(f−1(V ), S) −→ Hq(f−1(W ), S)

for all q ≥ 0 . This, in fact, defines a presheaf which, in general, is not a sheaf for q ≥ 1 . The associated
sheaf is denoted by

Rqf∗S or fq∗S

such that R0f∗S = f0∗S = f∗S . R
qf∗S is usually called the q–th direct image sheaf of S under the

map f . In case that f is a morphism of ringed spaces (X, RX) → (Y, RY ) , these sheaves carry a
natural structure of RY –modules.

It should also be self–evident how to construct canonical morphisms Rqφ∗ : Rqf∗S → Rqf∗S
′ as-

sociated to sheaf homomorphisms φ : S → S′ on X and connecting homomorphisms δq : Rqf∗S2 →
Rq+1f∗S1 for exact sequences 0 → S1 → S → S2 → 0 on X .

*Theorem 19.56 For any short exact sequence 0 → S1 → S → S2 → 0 of OX–modules on a
complex analytic space X and any holomorphic map f : X → Y , one has a canonical long exact
sequence of OY –modules:

0 −→ R0f∗S1 −→ R0f∗S −→ R0f∗S2 −→

R1f∗S1 −→ R1f∗S −→ R1f∗S2 −→

R2f∗S1 −→ · · · .

Grauert’s Coherence Theorem now states:

*Theorem 19.57 For a coherent analytic sheaf S on X and all proper holomorphic maps f : X →
Y , the direct image sheaves Rqf∗S , q ≥ 0 , are coherent. Moreover, if V ⊂ Y is a Stein domain, then
the natural morphisms

Hq(f−1(V ), S) −→ H0(V, Rqf∗S) , q ≥ 0 ,

are bijective.

Every compact complex space X carries a (proper) constant holomorphic map. Hence, Grauert’s
Coherence Theorem implies:

*Theorem 19.58 The cohomology groups Hq(X, S) , q ≥ 0 , on a compact complex space X with
values in a coherent OX–module sheaf S are finite dimensional complex vector spaces.

We now want to compare the stalks (Rqf∗S)y , y ∈ Y fixed, with some canonical cohomology
groups on the fibers Xy := f−1(y) carrying the usual complex analytic structure with respect to the
proper holomorphic map f . We denote by Sy the analytic restriction of the sheaf S to the subvariety
Xy , i.e.

Sy = S ⊗OX
OXy = (S/ f∗(Iy)S)|f−1(y) ,

Iy ⊂ OY the ideal sheaf of the point y . Since any section in S over an open set U defines a section
of Sy on U ∩ f−1(y) , we have a canonical homomorphism

(Rqf∗S)y −→ Hq(Xy, Sy)

whose kernel contains my(R
qf∗S)y where my denotes the stalk of Iy at y ∈ Y , i.e. the maximal ideal

of OY,y . Hence, we find a canonical homomorphism of finite dimensional vector spaces

rqS(y) : (R
qf∗S)y ⊗OY,y

(OY,y/my) −→ Hq(Xy, Sy)

which, in general, is neither injective nor surjective. However, defining higher infinitesimal neighborhoods
of f−1(y) , namely the spaces

X(n)
y with structure sheaf OY / f∗(Iny )OY ,
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all having the same underlying topological space f−1(y) , and correspondingly forming the analytic
restrictions

S(n)
y = S ⊗OY

O
X

(n)
y

of S to X(n)
y

for all n , we get a projective system of homomorphisms

(Rqf∗S)y ⊗OY,y
(OY,y/mny ) −→ Hq(Xy, S

(n)
y )

giving rise to a homomorphism from the my–adic completion

(Rqf∗S)ŷ = lim←−
n

(Rqf∗S)y/m
n
y (R

qf∗S)y

of the finite OY,y–module (Rqf∗S)y into the projective limit

lim←−
n

Hq(Xy, S
(n)
y ) .

Grauert’s Comparison Theorem (called the Theorem of Formal Functions in Algebraic Geometry)
says that this is a bijection:

*Theorem 19.59 Let f : X → Y be a proper holomorphic map of complex spaces, and let S be a
coherent analytic sheaf on X . Then, for all points y ∈ Y and all q ≥ 0 , the canonical homomorphisms

(Rqf∗S)ŷ −→ lim←−
n

Hq(Xy, S
(n)
y )

are isomorphisms.

We finish this Section by formulating Grauert’s Semicontinuity Theorems. Here, we are dealing with
the functions

dqS(y) := dimCH
q(Xy, Sy) , y ∈ Y ,

for proper holomorphic maps f : X → Y and coherent analytic sheaves S that are flat over Y .
Under these assumptions, we have

*Theorem 19.60

1. The maps dqS are upper semicontinuous on Y . More precisely, for all k ∈ N , the sets

{ y ∈ Y : dqS(y) ≥ k }

are closed analytic subsets of Y .

2. If dqS is a locally constant function, and if Y is reduced, then Rqf∗S is a locally free sheaf, and
the canonical homomorphisms

rqS(y) : (R
qf∗S)y/my(R

qf∗S)y −→ Hq(Xy, Sy)

are bijections for all y ∈ Y .

3. The Euler–Poincaré characteristic

χS(y) =

∞∑
q=0

(−1)qdqS(y)

is (defined and) locally constant on Y .

We will have the opportunity to use the following Corollary to the Semicontinuity Theorem:
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Corollary 19.61 Under the assumptions of the preceding Theorem, if Hq(Xy, Sy) vanishes for some
y = y(0) ∈ Y and some q ∈ N , then

Hq(Xy, Sy) = 0

for all y in a neighborhood V of y(0) , and (Rqf∗S)|V = 0 .

This is a direct consequence of Theorem ? provided Y is reduced at y(0) . In the general case, it
follows from the next result, called the Base Change Theorem:

*Theorem 19.62 If the canonical homomorphism rqS is surjective at one point y(0) ∈ Y , then it is an
isomorphism in a whole neighborhood V of y(0) . Moreover, under this assumption, Rqf∗S is locally
free near y(0) if and only if rq−1

S (y(0)) is surjective.

Notes and References
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To be continued.


