




Chapter 8

Ich konnte [...] insofern auf
eigene Erfahrungen zurückgrei-
fen, als auch ich den größten
Teil meines Lebens in immer
kleiner werdenden Zimmern ver-
bringe, die zu verlassen mir im-
mer schwerer fällt. Ich hoffe
aber, eines Tages ein Zimmer zu
finden, das so klein ist und mich
eng umschließt, daß es sich beim
Verlassen von selbst mitnimmt .

(Patrick Süskind,
Remark to Der Kontrabaß )
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Chapter 8

Quotient singularities: General theory

The purpose of Chapter 8 is to justify all the results on analytic quotients that we used already in the
last Chapter and to make additional material available that is needed to complete the classification of
all quotient surface singularities. We close the Chapter with a topological characterization in the surface
case. Since we work in this Chapter and later on in the context of general complex analytic spaces and
not just on germs, the reader is advised to consult the Supplement (Chapter 19) if necessary.

8.1 The formation of quotients as a universal problem

Let (X, OX) be a reduced complex analytic space and let G be a subgroup of Aut X , the group of
biholomorphic transformations of X , acting from the right on X as described in Chapter 7. We want
to construct a reduced complex analytic space (Y, OY ) together with an open, surjective holomorphic
map ρ : X → Y which is invariant under G, i. e. ρ ◦ γ = ρ for all γ ∈ G , such that the following
universal properties hold:

1. For all G–stable open sets U ⊂ X and all G–invariant holomorphic maps φ : U → Z there exists
a uniquely determined holomorphic map ψ : ρ (U) → Z such that the diagram

U Z-φ

ρ (U)
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commutes. Recall that a set U is called G–stable or G–invariant , if x ∈ U implies γ (x) ∈ U for all
γ ∈ G .

2. The mapping ψ 7→ φ := ψ◦ρ gives a surjection between the set of all holomorphic maps from ρ (U)
to Z and the set of all G–invariant holomorphic maps from U to Z (and consequently, according to
1., a bijection of these sets).

As a universal object, Y is uniquely determined up to biholomorphic isomorphisms, if it exists. It is
then called the (analytic) quotient of X by G . If Y is a quotient of X by G with projection ρ and
if U ⊂ X is G–stable, then, by definition, ρ (U) is the quotient of U by G .

Since ρ : X → Y is assumed to be G–invariant, it maps G–orbits to points. Therefore, ρ factorizes
as a continuous map over the topological quotient space π : X → X/G where X/G is the set of all
G–orbits and V ⊂ X/G is open by definition, if and only if π−1(V ) = U is open in X such that π
is an open, closed and surjective continuous map (see Chapter 7):
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Necessarily, p is continuous and open. Hence, p is a homeomorphism, if it is bijective, that is if the set
of fibers ρ−1(y) , y ∈ Y , coincides with the set of G–orbits in X . If this is the case, we write X/G
also for the analytic quotient.

8.2 Groups acting properly discontinuously

Since we are only interested in the case, where p is bijective, we have to put strong conditions on the
action of G in order to make sure that the topological quotient X/G is good enough, i. e., for instance,
a Hausdorff space.

We assume in the following that G acts properly discontinuously on X , i.e., by definition, that for
all compact sets K ⊂ X the set

{ γ ∈ G : γ (K) ∩K ̸= ∅ }

is finite. In particular, this implies that the isotropy groups

Gx := { γ ∈ G : γ (x) = x }

are finite for all x ∈ X . Finite groups G have always this property for trivial reasons.

Remarks. 1. Replacing the compact set K by the (compact) union of two compact sets K and L and
noticing that γ (K) ∩ L is a subset of γ (K ∪ L) ∩ (K ∪ L) , one is lead immediately to the following
equivalent condition:

G acts properly discontinuously on X , if for all compact sets K, L ⊂ X the set

{ γ ∈ G : γ (K) ∩ L ̸= ∅ }

is finite.

2. We leave it as an exercise to the reader to prove that under this assumption the topological quotient
X/G is indeed a Hausdorff space.

A simple exercise shows that under this assumption there exist for all x ∈ X (arbitrarily small)
neighborhoods Ux of x such that

γ (Ux) = Ux , γ ∈ Gx ,

γ (Ux) ∩ Ux = ∅ , γ ∈ G \Gx .

It is then sufficient to construct the analytic quotient of Ux by Gx for all x ∈ X (which is obviously
identical with the quotient of ⋃

γ∈G
γ (Ux)

by G ). In fact, these spaces may be glued together (in a uniquely determined manner) to a space which
possesses the desired property, if (and only if) the underlying topological space is Hausdorff. But, as we
shall see, the local analytic quotients are topologically isomorphic to Ux/Gx such that this patching
method leads to the topological quotient X/G which in fact is a Hausdorff space.
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8.3 The local construction of analytic quotients

According to the previous Section, we may assume that X is small with respect to x ∈ X and that
G = Gx is finite. We then proceed along the lines already proposed in Chapter 7.5. Define topologically
Y = X/G and denote by ρ : X → Y the open projection. For V open in Y , the set ρ−1(V ) is open
and G–invariant in X such that we can form the invariant algebra

OY (V ) := (OX(ρ−1(V )))G ,

where G acts in the obvious manner on the algebra OX(ρ−1(V )) of holomorphic functions. Hence, we
have furnished the topological space Y with a ringed structure:

(Y, OY ) .

In order to see that (Y, OY ) is indeed a (reduced) complex analytic space, we need in the next Sections
the identity

OY,ρ(x) = OGX,x .

In fact, since ρ is finite and ρ−1(ρ(x)) = {x } , we can use Lemma 7.5 to get

OY,ρ(x) = lim−→
V ∋ρ(x)

H0(V, OY ) = lim−→
V ∋ρ(x)

H0(ρ−1(V ), OX)G

= [ lim−→
V ∋ρ(x)

H0(ρ−1(V ), OX)]G = OGX,x .

A substantial part of the remaining Sections of this Chapter will be devoted to derive the following
more detailed statement.

Theorem 8.1 If G acts properly discontinuously on the reduced complex analytic space X , then there
exists the analytic quotient Y = X/G . The holomorphic quotient map ρ : X → Y is locally finite and
surjective and (near any point x ) isomorphic to the quotient map X → X/Gx , where Gx denotes
the finite stabilizer subgroup of G at x . In particular, the analytic algebra OY,y can be identified with

the invariant algebra OGx

X,x for an arbitrary point x ∈ ρ−1(y) , and ρ̂x : OY,y → OX,x is just the finite

inclusion OGx

X,x ↪→ OX,x .

Remark . That the (necessarily reduced) complex space Y solves the universal problem formulated at
the beginning of the Chapter can be seen as follows: Let φ : X −→ Z be a G–invariant holomorphic
mapping, and let x ∈ X, z = φ (x) ∈ Z . Then, the corresponding local algebra homomorphism

φ̂x : OZ,z −→ OX,x

is Gx–invariant which implies that the image of φ̂x lies in the invariant algebra OGx

X,x
∼= OY,y .

Therefore, the holomorphic map φ factorizes (locally) uniquely over the canonical projection X −→
Y = X/G . These local factorizations patch globally together to a holomorphic map from Y to Z .

Definition and Remark . We say that the group G acts freely on X , if G acts properly discontinuously
and fixpoint free, i. e. if γ (x) = x for some x ∈ X and some γ ∈ G implies γ = id . The last
assumption being the same as Gx = trivial for all x ∈ X , we immediately deduce from the Theorem
before:

Theorem 8.2 If G acts freely on the reduced complex analytic space X , then the holomorphic quotient
map ρ : X → Y = X/G is locally an isomorphism. In particular, X/G is a manifold if X is so.

Example. Let Ω be the lattice in C2 generated by two R–linearly independent elements ω1, ω2 :
Ω = {ω = n1ω1 + n2ω2 , n1, n2 ∈ Z } . Ω acts additively on C2 by translations. Obviously, this is a
free action such that the complex torus C2/Ω has a natural structure of a complex analytic manifold.
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As we have already remarked in Chapter 7, an invariant algebra AG of a regular algebra A by a
(finite) automorphism group G may not be regular. (We give a necessary and sufficient condition on
finite groups G later in this Chapter). However, if A is reduced or an integral domain, AG is obviously
reduced or an integral domain for arbitrary automorphism groups G . Since by Theorem 1 the inclusion
AG ↪−→ A is a finite homomorphism for finite groups G , both algebras have the same dimension (see
Theorem 3.33 and Theorem 6.14)1. Hence, under our standard assumptions, the quotient X/G has in
y = ρ (x) the same dimension as X in x . We finally note that also “normality” will be inherited from
X .

Lemma 8.3 If G is any automorphism group of a normal analytic algebra A , then the invariant
algebra AG is normal.

Proof . A and AG being integral domains, their resp. quotient fields exist, and Q (AG) ⊂ Q (A) . Let
q = f/g ∈ Q (AG) be algebraic over AG , say

qn + f1 q
n−1 + · · ·+ fn = 0 , f1, . . . , fn ∈ AG .

Then, q is also algebraic over A such that, by hypothesis, q ∈ A . Hence, for all γ ∈ G ,

g q = f = γ (f) = γ (g q) = γ (g) γ (q) = g γ (q) .

Since g ̸= 0 , we have γ (q) = q for all γ ∈ G and therefore q ∈ AG . □

8.4 Invariant analytic subalgebras by finite groups

Before we really can embark into the proof of the central Theorem 1, we have to concentrate separately
on its punctial aspect. In other words, we are going to prove the following Theorem.

Theorem 8.4 Let A be an analytic algebra, and let G be a finite automorphism group of A . Then,
the invariant algebra AG is also analytic, and the canonical inclusion AG ↪−→ A is a finite homomor-
phism.

The proof affords a bit of trivial topology on local rings (see Appendix B of this Chapter).

Lemma 8.5 Let A be an analytic algebra, and let G be an arbitrary automorphism group of A . Then,
the invariant algebra AG is closed in A with respect to the mA–adic topology of A .

Proof . Since each γ ∈ G is continuous in the given topology, it follows that each set

{ f ∈ A : γ (f) = f } = { f ∈ A : γ (f) − f = 0 }

is closed in A and, consequently, also the intersection

AG = { f ∈ A : γ (f) = f for all γ ∈ G} =
⋂
γ∈G
{ f ∈ A : γ (f) = f } . □

If G is a finite automorphism group, we can attach to each element f ∈ A the polynomial

PG,f (Y ) :=
∏
γ∈G

(Y − γ (f)) .

Obviously, PG,f is a monic polynomial in Y of the order of the group G with coefficients in the
invariant algebra AG satisfying PG,f (f) = 0 .

This immediately implies the following

1One can also show that the profondeur of A and AG coincide. Therefore, AG for finite G is a Cohen–Macaulay ring
if and only if A itself has the Cohen–Macaulay property.
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Corollary 8.6 Let A be an analytic algebra, and let G be a finite automorphism group of A . Then,
the algebra A is algebraic over the invariant algebra AG .

So, in order to accomplish the proof of Theorem 4, we need the following result.

Theorem 8.7 Let A be an analytic algebra, B ⊂ A a subalgebra such that the maximal ideal mA has
a system f1, . . . , fn of generators that are algebraic over B , and let B be closed in A with respect
to the mA–adic topology. Then, B is an analytic subalgebra of A , and the natural monomorphism
B ↪−→ A is a finite homomorphism.

Proof . Let ψ : Rn = C ⟨x1, . . . , xn ⟩ −→ A be the analytic epimorphism given by ψ (xj) = fj , j =
1, . . . , n , and denote by g̃1, . . . , g̃N the system of all coefficients of the normed polynomials Pj ∈ B [ yj ]
satisfying Pj(gj) = 0 . Let C denote the subalgebra of B which is generated by these elements. By
subtracting constant terms from the g̃j as elements in A , we can replace these generators by elements
g1, . . . , gN ∈ mA which, together with g0 = 1 , generate the algebra C , too. Next, define the analytic
homomorphism γ : RN = C ⟨ y1, . . . , yN ⟩ −→ A by γ (yk) = gk, k = 1, . . . , N . By definition,
γ (SN ) = C ⊂ B, SN = C [ y1, . . . , yN ] . Since SN is dense in RN , the image γ (SN ) is also dense in
γ (RN ) such that the analytic algebra C := γ (RN ) is contained in B since B is closed by assumption.
Due to our construction, the elements f1, . . . , fn are algebraic over C and consequently also over C .
Hence, according to Theorem 3.23, the inclusion C ↪−→ A is a finite analytic homomorphism. C being
a Noetherian ring, A is a Noetherian module, too, such that the induced inclusion C ↪−→ B is finite
(B ↪−→ A is finite for trivial reasons). If h1, . . . , hm denote generators of B over C , there exists an
obvious epimorphism

RN [ ξ1, . . . , ξm ] −→ B

whose natural extension to RN+m maps onto B since B is closed. □

8.5 Existence proof for analytic quotient spaces

Since we have seen in the previous Section that the invariant algebra of an analytic algebra by a finite
group G is again analytic, there exists a complex analytic space (Z, OZ) and a point z ∈ Z such that

OZ,z ∼= OGx

X,x
∼= OY,ρ(x) .

Our existence proof can henceforth be completed by showing that locally at y = ρ (x) and z the
ringed spaces Y and Z are isomorphic.

So, we may assume from the beginning that G = Gx is finite. Then, we have finite injective
homomorphisms

OZ,z ∼= OGX,x
ιx−→ OX,x

such that γ ◦ ιx = ιx for all γ ∈ Gx . Hence, there exists (locally at x ) a finite holomorphic map

π : X −→ Z

with π ◦γ = π for all γ ∈ G . Since Y is topologically the quotient of X by G , there exists a uniquely
determined continuous map p : Y → Z such that the diagram

Y Z-
p

X

ρ

�
�

�
��	

π
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@

@
@@R
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commutes. It remains to show that p is an isomorphism of ringed spaces.
Since π and ρ are finite and the latter is surjective it follows by Lemma 6.23 iii) that p is at

least a finite continuous map. We will see in Appendix C of this Chapter, that the mapping π is also
surjective, at least locally at x , such that p is surjective near y = π (x) , too. Next, we prove that p is
injective. For this to be correct, we need at least that invariant holomorphic functions separate points
locally.

Lemma 8.8 Let X be an analytic subspace of an open subset U in Cm and let G ⊂ Aut X be a finite
subgroup. Then, to each pair x(1) , x(2) ∈ X with ρ (x(1)) ̸= ρ (x(2)) , there exist holomorphic functions
F1, . . . , Fn on U such that their restrictions f1, . . . , fn to X are invariant under G : f1, . . . , fn ∈
H0(X, OX)G , and

(f1(x
(1)), . . . , fn(x

(1))) ̸= (f1(x
(2)), . . . , fn(x

(2))) .

Proof . Denote by x1, . . . , xm, the coordinate functions of Cm and by x1, . . . , xm their restrictions to
X . For ν = (ν1, . . . , νm) , we define

xν := xν11 . . . xνmm ∈ H0(X, OX)

and form the average of xν with respect to G :

fν :=
∑
γ∈G

xν ◦ γ , 0 ≤ | ν | =
m∑
µ=1

νµ < 2r ,

where r = ord G . Obviously,
fν ∈ H0(X, OX)G for all ν .

Suppose now that the points x(1) , x(2) ∈ X have distinct images in X/G , i.e. ρ (x(1)) ̸= ρ (x(2)) .
Then there exists a linear form

ℓ (x1, . . . , xm) =

m∑
µ=1

aµxµ

such that
ℓ (x(1)) ̸= ℓ (γ (x(1))) for all γ ∈ G \Gx(1)

and
ℓ (x(1)) ̸= ℓ (γ (x(2))) for all γ ∈ G .

The polynomial

Q (x1, . . . , xm) :=
∏

γ∈G\G
x(1)

(ℓ (x1, . . . , xm) − ℓ (γ (x(1)))) ·
∏
γ∈G

(ℓ (x1, . . . , xm) − ℓ (γ (x(2))))

satisfies
Q (x(1)) ̸= 0 ,

Q (γ (x(1))) = 0 , γ ∈ G \Gx(1) ,

Q (γ (x(2))) = 0 , γ ∈ G .

Denote again by Q the restrictions of Q to X , and define

f :=
∑
γ∈G

Q ◦ γ ∈ H0(X, OX)G .

Then
f (x(1)) = ord Gx(1) ·Q (x(1)) ̸= 0 , f (x(2)) = 0 .

Since deg Q < 2r , Q is of the form

Q (x1, . . . , xm) =
∑

|ν|<2r

cνx
ν , cν ∈ C ,
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such that
f =

∑
γ∈G

Q ◦ γ =
∑

|ν|<2r

cν
∑
γ∈G

(xν ◦ γ) =
∑

|ν|<2r

cνfν .

It follows from f (x(1)) ̸= f (x(2)) that there exists an index ν such that fν(x
(1)) ̸= fν(x

(2)) . □

Lemma 8.9 The mapping p is injective.

Proof . Let us assume to the contrary that there exists a pair x(1) , x(2) ∈ X with ρ (x(1)) ̸= ρ (x(2))
and π (x(1)) = π (x(2)) . Now, due to Lemma 8, there are sections

f1, . . . , fn ∈ H0(X, OX)G

with
(f1(x

(1)), . . . , fn(x
(1))) ̸= (f1(x

(2)), . . . , fn(x
(2))) .

Since the germs fν,x are contained in OGX,x = OZ,z , there exist (after shrinking of Z ) sections

s1, . . . , sn ∈ H0(Z, OZ) with sν ◦ π = fν for all ν . But then, for the specific pair (x(1), x(2)) as
above, fν(x

(1)) = sν(π (x
(1))) = sν(π (x

(2))) = fν(x
(2)) for all ν , which contradicts our assumption.

□

Putting the puzzle pieces together we see that p is even bijective. However, as a finite map, it is
also closed such that the inverse p−1 is continuous. In other words: p is a homeomorphism.

It remains to prove that the canonical map

p̂ : p∗OY −→ OZ
is an isomorphism of sheaves of local rings. To see this, we first remark that π is G–invariant, such that
there is a natural action of G on the coherent OZ–module sheaf π∗OX . The invariant OZ–module
(π∗OX)G is locally finitely generated: Choose, locally, sections s1, . . . , st in π∗OX which generate each
fiber (π∗OX)z′ over OZ,z′ . Then, defining the mean value of sτ as

µ (sτ ) :=
1

ord G

∑
γ∈G

sτ ◦ γ ,

we produce sections of the sheaf (π∗OX)G . If now f ∈ (π∗OX)Gz′ , then there exist elements a1, . . . , at ∈
OZ,z′ , such that

f =

t∑
τ=1

aτsτ,z′ .

Since f is G–invariant, we have for all γ ∈ G :

f = f ◦ γ =

t∑
τ=1

aτ · (sτ,z′ ◦ γ) =

t∑
τ=1

aτ · (sτ ◦ γ)z′ .

Summation over all γ ∈ G yields the identity

f =

t∑
τ=1

aτ · (µ (sτ ))z′ .

Hence, (π∗OX)G is locally finitely generated, and therefore it is, as an OZ–subsheaf of the coherent
sheaf π∗OX , a coherent OZ–module. But

(π∗OX)Gz = OGX,x = OZ,z ,

such that (again after shrinking of Z ):

(π∗OX)G ∼= OZ .

From the G–invariance of ρ and the definition of the structure sheaf OY , we finally get the isomor-
phisms

p∗OY ∼= p∗(ρ∗OX)G ∼= (p∗ρ∗OX)G ∼= (π∗OX)G ∼= OZ . □
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8.6 Quotient singularities

In general, X/G is not smooth at ρ (x) , if x is a regular point of X . Such singularities (including the
regular one) are called quotient singularities. By the foregoing, they are completely determined by the
normal invariant algebra

A = RGn ,

where Rn = C ⟨x1, . . . , xn ⟩ denotes the convergent power series ring, and G is a finite subgroup of
Aut Rn acting by substitution:

Rn ×Aut Rn ∋ (f, γ) 7−→ f ◦ γ−1 ∈ Rn .

We also write fγ or γ (f) instead of f ◦ γ−1 .
Our first goal is to show that the action of G can be linearized by introducing new holomorphic

coordinates on Cn near the origin. Each element γ ∈ G is automatically local such that it induces a
map

γ′ : mn/m
2
n −→ mn/m

2
n ,

where mn = maximal ideal of Rn . We can think of γ′ as being an automorphism of Rn which is
linear in the sense that it is a substitution by the degree one part of γ−1 . We represent γ′ by an
n× n–matrix, called also γ′ , satisfying

fγ
′
(x) = γ′(f) (x1, . . . , xn) = f (γ′

−1
(x1, . . . , xn)) = f ((x1, . . . , xn)γ

′) .

Then we have

(γ1 ∗ γ2)′ = (γ2 ◦ γ1)′ = γ′2 ◦ γ′1 = γ′1 · γ′2 (matrix multiplication) ,

id′ = En (unit n× n−matrix) ,

so that ′ defines a group representation

G −→ GL (n, C) .

Since h ≡ h′ mod m2
n for all group elements h ∈ G , it is clear that for the n–tuple y = (y1, . . . , yn)

with

yj =
1

b

∑
h∈G

(h′ ◦ h−1) (xj) =
1

b

∑
h∈G

h−1(h′(xj)) , b = ord G ,

the Jacobi determinant

det
∂y

∂x

∣∣∣∣
x=0

= 1 .

Therefore, (y1, . . . , yn) is a new holomorphic coordinate system near 0 , and for each γ ∈ G we have
with

γ′(xj) =

n∑
k=1

akjxk

the identity

γ (yj) =
1

b

∑
h∈G

γ ((h′ ◦ h−1) (xj)) =
1

b

∑
h∈G

(h−1 ◦ γ) ((γ−1 ◦ h)′γ′(xj))

=

n∑
k=1

akj

( 1

b

∑
h∈G

(γ−1 ◦ h)−1(γ−1 ◦ h)′(xk)
)

=

n∑
k=1

akjyk ,

i.e.: G acts linearly in the coordinate system (y1, . . . , yn) . - We thus have proven:

Theorem 8.10 Each quotient singularity is isomorphic to a quotient Cn/G , where G is a finite
subgroup of GL (n, C) .
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This result can be applied to show that quotient singularities are algebraic in all dimensions though
they need not be isolated for n ≥ 3 . In fact, assuming without loss of generality that G acts linearly,
it acts canonically on the polynomial ring Sn = C [x1, . . . , xn ] , and by Hilbert’s Basis Theorem, the
invariant ring SGn is a finitely generated algebra: there exist finitely many polynomials P1, . . . , Pe ∈ SGn
such that the image of the substitution homomorphism{

Se = C [ y1 . . . , ye ] −→ Sn

yε 7−→ Pε

equals SGn . The proof of Theorem 7 shows that the polynomials P1, . . . , Pe generate the analytic algebra
RGn analytically , i.e. that the substitution homomorphism{

Re = C ⟨ y1, . . . , ye ⟩ −→ Rn

yε 7−→ Pε

is an epimorphism onto RGn . Moreover, if a denotes the kernel of Se → Sn , then

ker (Re → Rn) = aRe ,

such that RGn = Re/ aRe , and Cn/G may be realized by the vanishing of any finite set of polynomials
generating a , i.e. it may be realized as an affine algebraic variety . Finally, if P1, . . . , Pe is a minimal
set of generating polynomials, then e is the embedding dimension of the algebra RGn .

8.7 Hilbert’s Syzygy Theorem

In Chapter 7 we found some examples of cyclic quotients which were nonsingular. In these cases, the
groups were generated by reflections. In the next Section, we want to make a further step towards the
classification of quotient singularities by proving that this is a general property of reflection groups
(which, moreover, characterizes them as we will see in Section 9).

The result just mentioned can easily be deduced from an algebraic statement about the invariant
algebra SG which is due to Chevalley (see Theorem 17). For the sake of completeness, we give here
another proof that uses the basic characterization of regular local noetherian rings by Serre as those
rings which satisfy Hilbert’s Syzygy Theorem. Let us briefly gather the material we need in the following.

For a finitely generated module M over a local noetherian ring R , a j–th syzygy module for M is
by definition equal to im φj for an exact sequence of type

(∗) Fj
φj−→ Fj−1

φj−1−→ · · · φ1−→ F0
φ0−→ M −→ 0

with finitely generated free R–modules Fk . In particular, M is the only 0–th syzygy module of itself.
A syzygy module is called minimal , if the defining sequence (∗) is minimal in the sense that none of the
free modules Fk can be replaced by one with fewer generators, i.e. if the rank of Fk coincides with the
minimal number of generators of im φk for all k , which is equivalent to the condition ker φk ⊂ mFk
for all k , m the maximal ideal of R . It is not difficult to see that minimal syzygy modules exist for all
j and are uniquely determined (up to isomorphisms). Moreover, each j–th syzygy module decomposes
into a direct sum of the minimal one - which we call syzjM - and a free module. In particular, if
syzjM is free itself, we can modify (∗) to a finite exact sequence

(∗∗) 0 −→ im φj −→ Fj−1
φj−1−→ · · · φ1−→ F0

φ0−→ M −→ 0

which we call for obvious reasons a finite free resolution of M (of length j ). Under the same assumption,
there also exist minimal free resolutions for M having all the same length

sylRM := min { k : syzk+1M = 0 } .

We call sylRM the syzygy length or the homological dimension of M .
The Syzygy Theorem can now be stated as follows (Hilbert’s classical theorem is the analogous result

for the nonlocal ring Sn ) - a proof can be found in Chapter 11.5:
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Theorem 8.11 If R is a regular local noetherian ring of dimension n , then sylRM ≤ n for any
finitely generated R–module M .

For us, it is at the moment more important to have the converse to Theorem 11 which is due to
Serre.

*Theorem 8.12 If, for a local noetherian ring R , the inequality sylRM ≤ dim R holds for all finitely
generated R–modules M , then R is regular.

The way, we want to use this characterization, is the following: We start with a subring S of a
regular ring R and would like to relate free resolutions of modules over S to such resolutions over R ,
which in general is impossible since tensoring is only right–exact. Therefore, we assume that R is a
flat S–module. (Recall that an S–module N is flat if the functor · ⊗S N is exact). Then each exact
sequence

Fj
φj−→ · · · φ1−→ F0

φ0−→ M −→ 0

with finitely generated free S–modules Fk gives rise to an exact sequence

Fj ⊗S R
φj⊗id−→ · · · φ1⊗id−→ F0 ⊗S R

φ0⊗id−→ M ⊗S R −→ 0

with finitely generated free S–modules Gk = Fk ⊗S R . If, moreover, S is local and R is finitely
generated over S , then R is even faithfully flat over S ; that is, if

M1 −→ M2 −→ M3

is a sequence of S –modules such that

M1 ⊗S R −→ M2 ⊗S R −→ M3 ⊗S R

is exact, then the original sequence was already exact. From this property it is easily deduced that, for a
finitely generated S–module M , the j–th syzygy module is free if syzjR(M ⊗S R) is a free R–module.
Hence,

sylSM ≤ sylR(M ⊗S R) ≤ dim R = dim S ,

and S must be regular by Theorem 12.
In the next Section, we apply this fact to S = RGn , R = Rn , G a finite group generated by

reflections.

8.8 Quotients by reflection groups

An element γ ∈ Aut M , M a connected complex manifold, is called a reflection (or, perhaps more
precisely, a pseudoreflection) if it is of finite order and if the (analytic) fixpoint set

Fix (γ) = {x ∈M : γ (x) = x }

is of pure codimension 1 in M . A finite group G ⊂ Aut M is called a reflection group if it is generated
by the reflections contained in G . Of course, an element γ of finite order in GL (n, C) is a reflection if
and only if it leaves a hyperplane in Cn pointwise fixed; this is equivalent to g having the eigenvalues
1 (of multiplicity n − 1 ) and ζk , k ≥ 2 , a k–th root of unity.

We will prove that quotients M/G , G a reflection group, are manifolds. This, of course, is equivalent
to the following claim.

Theorem 8.13 The invariant algebra RGn is isomorphic to the convergent power series ring Rn if
G ⊂ GL (n, C) is a (finite) reflection group.

In the previous Section, we have already reduced the problem to the following:
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Lemma 8.14 For a (finite) reflection group G ⊂ GL (n, C) , Rn is a flat RGn –module.

Proof . In order to get rid of convergence questions, we remark that G acts not only on the polynomial
ring Sn , but also on the m–adic completion R̂n of Rn , i.e. on the ring

R̂n = C {{x1, . . . , xn }}

of formal power series. Since G acts linearly, the invariant ring R̂Gn is the completion of RGn with
respect to the maximal ideal m(RGn ) = m∩RGn and also of the localization of SGn with respect to the
maximal ideal m(RGn ) ∩ Sn = m ∩ SGn . Since flatness is preserved under localization and completion,
we may also prove

Lemma 8.15 For a finite reflection group G ⊂ GL (n, C) , the polynomial ring Sn is a flat SGn –
module.

Using Bourbaki’s criterion for flatness, we are finally reduced to show under the above condition:

Lemma 8.16 If

ℓ∑
λ=1

pλqλ = 0 for elements pλ ∈ SGn , qλ ∈ Sn , then there exist elements pµλ ∈

SGn , q̃µ ∈ Sn , µ = 1, . . . ,m , λ = 1, . . . , ℓ , such that

ℓ∑
λ=1

pλpµλ = 0 , µ = 1, . . . ,m , qλ =

m∑
µ=1

q̃µpµλ , λ = 1, . . . , ℓ .

Remark . Bourbaki’s criterion for flatness is a necessary and sufficient condition for certain rings A to
be flat over a subring B ⊂ A in terms of linear relations of elements in A as a module over B : If∑ℓ
λ=1 bλaλ = 0 for elements aλ ∈ A , bλ ∈ B , then after a certain transformation

aλ =

m∑
µ=1

ãµbµλ , ãµ ∈ A , bµλ ∈ B ,

the original relation

m∑
µ=1

( ℓ∑
λ=1

bλ bµλ

)
ãµ =

ℓ∑
λ=1

bλ

( m∑
µ=1

bµλãµ

)
=

ℓ∑
λ=1

bλaλ = 0

is already determined by the relations
ℓ∑

λ=1

bλ bµλ = 0

in B . - Or in other words: Each solution in A of a homogeneous linear equation with coefficients in
B is an A–linear combination of solutions in B .

The proof of Lemma 16 is carried out by induction on

s := max
λ=1,...,ℓ

(deg qλ) .

If s = 0 , then all qλ ∈ C ⊂ SGn such that we may put m := 1 , p1λ := qλ , q̃1 := 1 . Suppose now

(1)

ℓ∑
λ=1

pλqλ = 0 ,
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pλ ∈ SGn , qλ ∈ Sn , max
λ=1,...,ℓ

(deg qλ) = t ≥ 1 , and assume that the claim of the Lemma is proven for

all s < t . We may further assume that (m = ms depending on s ):

1 = m0 ≤ m1 ≤ · · · ≤ mt−1 .

For any reflection γ ∈ G , its fixpoint set Fix (γ) can be described by a linear form Lγ ̸= 0 :
Fix (γ) = {x ∈ Cn : Lγ(x) = 0 } . Since, for a polynomial p , the function γ (p) − p vanishes on
Fix (γ) , the polynomial γ (p) − p must be divisible by Lγ : for all p ∈ Sn there exists a polynomial
rγ(p) with deg rγ(p) < deg p , such that

γ (p) − p = rγ(p) · Lγ .

Applying γ to (1) and subtraction of (1) yields

Lγ ·
ℓ∑

λ=1

pλrγ(qλ) =

ℓ∑
λ=1

pλ(γ (qλ) − qλ) = 0

and hence
ℓ∑

λ=1

pλrγ(qλ) = 0 , max
λ=1,...,ℓ

(deg rγ(qλ)) ≤ t − 1 .

By induction hypothesis, there exist elements

p
(γ)
µλ ∈ SGn

q̂
(γ)
µ ∈ Sn

 µ = 1, . . . ,mt−1 , λ = 1, . . . , ℓ ,

such that

(2)

ℓ∑
λ=1

p
(γ)
µλ pλ = 0 , µ = 1, . . . ,mt−1 ,

(3) rγ(qλ) =

mt−1∑
µ=1

q̂(γ)µ p
(γ)
µλ , λ = 1, . . . , ℓ .

Equation (3) implies with q̃
(γ)
µ := Lγ · q̂(γ)µ :

γ (qλ) = qλ +

mt−1∑
µ=1

q̃(γ)µ p
(γ)
µλ , λ = 1, . . . , ℓ .

G is generated by finitely many reflections, say γ1, . . . , γr . Then, putting

p
(ρ)
µλ := p

(γρ)
µλ , ρ = 1, . . . , r ,

it is clear that for all γ ∈ G there exist elements q̃
(γ)
µλ ∈ Sn such that

(4) g (qλ) = qλ +

r∑
ρ=1

mt−1∑
µ=1

q̃(γ)µρ p
(ρ)
µλ , λ = 1, . . . , ℓ .

Denote again the mean value of a polynomial p by µ (p) . If we define

q̃µρ := − 1

ordG

∑
γ∈G

q̃(γ)µρ ,

equation (4) implies
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(5) µ (qλ) = qλ −
∑
ρ,µ

q̃µρp
(ρ)
µλ .

We now put mt = rmt−1 + 1 ; using any bijection { 1, . . . , r } × { 1, . . . ,mt−1 }
∼→ { 1, . . . , r ·mt−1 } ,

we define
pσλ = p

(ρ)
µλ , σ = 1, . . . ,mt − 1 , λ = 1, . . . , ℓ ,

pmtλ = µ (qλ) , λ = 1, . . . , ℓ ,

q̃σ = q̃µρ , σ = 1, . . . ,mt − 1 ,

q̃mt
= 1 ,

such that pσλ ∈ SGn , σ = 1, . . . ,mt , λ = 1, . . . , ℓ , and

ℓ∑
λ=1

pσλpλ =

ℓ∑
λ=1

p
(ρ)
µλpλ = 0 , σ = 1, . . . ,mt − 1 ,

ℓ∑
λ=1

pmtλpλ =

ℓ∑
λ=1

µ (qλ)pλ = µ(

ℓ∑
λ=1

pλqλ) = µ (0) = 0 , σ = mt .

Finally,

qλ =
∑
ρ,µ

q̃µρp
(ρ)
µλ + 1 · µ (qλ) =

mt∑
σ=1

q̃σpσλ , λ = 1, . . . , ℓ . □

Applying the previous results to the invariant algebra SGn , one can easily derive the before mentioned
theorem of Chevalley:

Theorem 8.17 If G ⊂ GL (n, C) is a finite reflection group, then SGn is generated by n algebraically
independent homogeneous polynomials.

The degrees dj of the generating polynomials are uniquely determined by the reflection group G
up to order. They are sometimes called the degrees of G and linked to other invariants of G by

*Theorem 8.18 Let d1, . . . , dn denote the degrees of a finite reflection group G ⊂ GL (n, C) . Then

(i)

n∏
j=1

dj is the order of G ,

(ii)

n∑
j=1

(dj − 1) equals the number of reflections contained in G .

8.9 Classification of quotient singularities by conjugacy classes
of small groups

Theorem 13 enables us to restrict our attention to the considerably narrower class of small subgroups
G ⊂ GL (n, C) which, by definition, do not contain any pseudoreflections. The classification of n–
dimensional quotient singularities is now provided by the following two theorems.

Theorem 8.19 Every quotient singularity is isomorphic to a quotient by a small group G ⊂ GL (n, C) .

It is trivial that the quotients Cn/G1 and Cn/G2 are biholomorphically equivalent, if G1 is
conjugate to G2 in GL (n, C) . Theorem 20 gives the converse for small groups.
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Theorem 8.20 If G1 and G2 are small subgroups of GL (n, C) such that Cn/G1
∼= Cn/G2 , then

G1 and G2 are conjugate in GL (n, C) .

Proof of Theorem 19. Let X be equal to Cn/G , G ⊂ GL (n, C) , and let H ⊂ G be the subgroup of
G generated by the reflections contained in G . For a reflection h and a general element γ in G one
checks immediately that

Fix (γhγ−1) = γ (Fix (h)) .

This implies that H is in fact a normal subgroup of G , and therefore, that the quotient group G =
G/H operates on Cn/H ∼= Cn . But Cn/G ∼= (Cn/H)/ (G/H) ∼= Cn/G ; hence, it suffices to show
that G - which operates linearly in a suitable coordinate system - is a small group.

Thus, take an element γ = γH ∈ G , γ ̸∈ H . Then, for all h ∈ H , we have γh ̸∈ H such that the
codimension of the fixpoint set Fix (γh) is ≥ 2 . If we denote by τ the finite, open holomorphic map
Cn → Cn/H , the fixpoint set of γ equals⋃

h∈H

τ (Fix (γh)) .

Since H is finite and τ preserves dimension, the codimension of the fixpoint set of γ is at least 2 . □

Proof of Theorem 20. Denote the quotient maps Cn → Cn/Gi by ρi , i = 1, 2 . We want to construct
a holomorphic map ψ : Cn → Cn making the diagram

Cn/G1 Cn/G2φ

Cn Cn-ψ

?

ρ1

?

ρ2

-∼

commutative. In fact, we will replace all spaces by their germs at the distinguished points such that we
have a local diagram

U1 U2φ

ρ−1
1 (U1) = V1 V2 = ρ−1

2 (U2)

?

ρ1

?

ρ2

-∼

where, without loss of generality, V1 may be assumed connected and simply connected.

We denote by Hi the union of all fixpoint sets Fix (γ) , γ ∈ Gi \{ id } , i = 1, 2 which, by assumption,
is an analytic subset of Vi of codimension ≥ 2 . Now, φ is biholomorphic and ρ1 and ρ2 are open
and finite; thus, the set

H̃1 = H1 ∪ ρ−1
1 (φ−1(ρ2(H2)))

is of codimension at least 2 such that
V −
1 := V1 \ H̃1

is still connected and simply connected. Since V −
1 is locally biholomorphic to U1 \ (ρ1(H1) ∪

φ−1(ρ2(H2))) and V −
2 = V2 \ H2 is locally biholomorphic to U2 \ ρ2(H2) , we can locally construct

maps
ψ : V −

1 −→ V −
2 ⊂ Cn

with the desired property (by ψ = ρ−1
2 ◦φ ◦ ρ1 ). But, by the topological properties of V −

1 , these local
maps - if suitably chosen - patch together to a globally defined locally biholomorphic map ψ : V −

1 →
V −
2 ⊂ Cn , which by Riemann’s second Extension Theorem may be extended to a holomorphic map

ψ : V1 −→ V2
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satisfying ρ2 ◦ ψ = φ ◦ ρ1 . Since ψ|V1 \ H̃1 is locally biholomorphic, the Jacobi determinant Jψ(x)

does not vanish for x ∈ V1 \ H̃1 . But the zero set of the holomorphic function Jψ being purely 1–
codimensional or empty, we may conclude that Jψ(x) ̸= 0 for all x ∈ V , especially for x = 0 . Hence,
ψ is an isomorphism (after shrinking U1 and U2 , if necessary).

Now, for γ ∈ G1 , we have

ρ2 ◦ (ψ ◦ γ ◦ ψ−1) = φ ◦ ρ1 ◦ γ ◦ ψ−1 = φ ◦ ρ1 ◦ ψ−1 = ρ2

such that ψ ◦ γ ◦ψ−1 ∈ G2 . This implies that, by sending γ to ψ ◦ γ ◦ψ−1 , we obtain an isomorphism
G1 → G2 . If we finally take into consideration that γ and ψ ◦ γ ◦ ψ−1 are linear automorphisms, we
get the same isomorphism by the assignment

γ 7−→ ψ′ ◦ γ ◦ ψ′−1
,

where ψ′ denotes the linear part of ψ at 0 . □

As a Corollary, Theorem 20 yields the converse to Theorem 13:

Theorem 8.21 If RGn
∼= Rn for a finite group G , then G is a reflection group.

Proof . Theorem 20 amounts to saying that, for a small group G , the isomorphism RGn
∼= Rn implies

G = { id } . But, taking the reflection group H ⊂ G as in the proof of Theorem 19, we have for the
small group G = G/H :

Rn ∼= RGn
∼= (RHn )G = RGn . □

8.10 The local fundamental group of a normal singularity

The rest of the present Chapter will be devoted to Prill’s characterization of quotient surface singu-
larities by the finiteness of their (local) fundamental group. The two main ingredients of this result
are Mumford’s smoothness criterion to be proven in Chapter 15 and an existence theorem for complex
analytic structures on certain branched coverings due to Grauert and Remmert whose proof shall be
outlined in the next Section.

Following Prill we call a neighborhood U of a point x in a topological space X good with respect to
the subspace Y ⊂ X if there exists a neighborhood basis {Uα } of x such that Uα \Y is a deformation
retract of U \ Y for all α . (W ⊂ Z is a deformation retract of Z if there exists a continuous map
Φ : Z × [ 0, 1] → Z satisfying Φ (z, 0) = z for all z ∈ Z , Φ (w, t) = w for all w ∈ W , t ∈ [ 0, 1 ]
and {Φ (z, 1) : z ∈ Z } = W ).

It is easily shown that for two good neighborhoods U , V with associated families {Uα } , {Vβ }
as in the definition, all Uα and Vβ are good neighborhoods of x with respect to Y and U \ Y and
V \ Y have the same homotopy type. In particular, the homotopy type of U \ Y is an invariant of the
triple (X, Y, x) .

Thus, if any good neighborhood U with connected complement U \Y exists, the system of all good
neighborhoods with this property is cofinal, and we can define

π1(X, Y, x) := lim←−
Ugood
U∋x

π1(U \ Y ) ,

the local fundamental group of X at x with respect to Y . Of course, π1(X, Y, x) ∼= π1(U \ Y ) for
any good neighborhood U such that U \ Y is connected.

If V is a simplicial complex with underlying space X = |V | , and if W is a subcomplex of V
with |W | = Y and x a vertex of W , then the open star of x is a good neighborhood with respect
to Y .



246 Chapter 8 Quotient singularities: general theory

Figure 8.1

By a theorem due to Lojasiewicz and Giesecke, every real analytic space (with countable topology)
may be triangulated, having any prescribed locally finite collection of real analytic subvarieties as
support of a subcomplex. Moreover, by Zariski’s Connectedness Theorem, if X is a normal complex
space, U ⊂ X is connected and Y ⊂ X is of codimension at least 2 , the complement U \ Y is still
connected. Consequently, we may formulate:

Theorem 8.22 For any normal complex analytic space X and any complex analytic subspace Y of
codimension ≥ 2 , the local fundamental group π1(X, Y, x) exists.

In the special case, where X is normal complex analytic and Y is the singular variety sing X , we
define

π1(X, x) := π1(X, sing X, x)

to be the local fundamental group of X at x .
If x is an isolated normal singularity of X , in particular, when X is two–dimensional, the proof of

the existence of π1(X, x) is much simpler, since in this case X is by Milnor’s Theorem (see Chapter 15)
topologically a cone with vertex x .

Of course, π1(X, x) measures to some extent, whether x is a smooth point of X , since obviously
x smooth implies that π1 is trivial. The converse is true for normal surfaces by Mumford’s criterion
which will also be proved in Chapter 15.

A necessary condition for an isolated normal singularity to be a quotient is given by the finiteness
of the local fundamental group π1(X, x) because of the following

Lemma 8.23 Let f : (Y, y) → (X, x) be a finite branched covering of isolated normal singularities.
Then

ord π1(X, x) ≤ ordy f · ord π1(Y, y) .
Here, ordy f denotes the number of sheets of the covering f near y .

Proof . Since f is finite, we may assume that f−1(x) = { y } and that we have good neighborhoods
U1 and U2 of x and V1 of y , resp. such that

f (V1) ⊂ U1 , U2 ⊂ U1 , f
−1(U2) ⊂ V1 .

We put V2 := f−1(U2) , U
−
i = Ui \ {x } , V −

i = Vi \ { y } and denote by Ũ1 → U−
1 and Ṽ1 → V −

1

the corresponding universal coverings (which again are locally biholomorphic). The fiber products

Ṽ2 := V −
2 ×V −

1
Ṽ1 = Ṽ1|V −

2
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Ũ2 := U−
2 ×U−

1
Ũ1 = Ũ1|U−

2

and

V̂i = Ṽi ×U−
i
Ũi

are complex analytic manifolds. Since Ũ1 → U−
1 is an unbranched covering, the canonical projection

p1 : V̂1 −→ Ṽ1

is also locally biholomorphic, and since Ṽ1 is simply connected, there exists a holomorphic section
s1 to p1 , i.e. a holomorphic map s1 : Ṽ1 → V̂1 with p1 ◦ s1 = id . Such a section s2 exists also
for p2 : V̂2 → Ṽ2 . Composing s2 with the projection V̂2 → Ũ2 yields a commutative diagram of
holomorphic maps

V −
2 U−

2
-

Ṽ2 Ũ2
-

? ?

Since U−
2 is connected, the same property must hold for the restriction Ũ2 of Ũ1 to U−

2 . The holo-

morphic map Ṽ2 → Ũ2 being finite, its image has the same dimension as Ũ2 and coincides therefore
with a connected component, i.e. with Ũ2 itself. Hence, this map is surjective.

Since ord π1(X, x) , ord π1(Y, y) and ordy f are the branch numbers of the coverings Ũ2 →
U−
2 , Ṽ2 → V −

2 and V −
2 → U−

2 , resp., we are done. □

In order to establish the opposite direction, we shall make use of a deep result of Grauert and
Remmert that characterizes complex analytic spaces as certain topological covering spaces of complex
analytic manifolds. In the next Section, we give a simple proof in the two–dimensional case.

8.11 The Grauert - Remmert Theorem for normal surfaces

We introduced complex analytic spaces via the Oka–Cartan–Serre approach as ringed spaces that are
locally isomorphic to analytic subsets in Cn (with an appropriate structure sheaf). By the Noether
Normalization Theorem, these spaces can (locally) be realized as branched coverings of manifolds.
Historically, however, singular spaces came at the beginning into the play as such coverings and the
abstract theory was thus based on the corresponding local models. The theorem of Grauert and Remmert
says that both theories agree (in the normal case).

Let us call the triple (Y, ρ, M) an analytic covering of the complex analytic manifold M , if Y
is a topological space (which is always - by assumption - locally compact, Hausdorff, with countable
topology), if ρ : Y → M is a finite surjective map, and if there exists a nowhere dense analytic subset
A ⊂M such that ρ−1(A) does not disconnect Y locally and ρ maps Y \ρ−1(A) locally topologically
onto an open set in M . An analytic covering is called connected, if Y is connected.

It is easy to see that for an analytic covering (Y, ρ, M) the restriction ρ|Y \ρ−1(A) is an open
map from Y \ ρ−1(A) onto M \ A , and that Y \ ρ−1(A) → M \ A is an unbranched topological
covering. Moreover, each point in Y has a countable neighborhood basis {Vα } such that the triples
(Vα, ρ|Vα

, ρ (Vα)) are analytic coverings.

Next, one has to introduce the concept of holomorphic functions in the obvious fashion: A complex–
valued continuous function f in an open set V ⊂ Y is called holomorphic, if f is holomorphic on
V \ρ−1(A) with respect to the natural complex analytic manifold structure on Y \ρ−1(A) which makes
ρ into a locally biholomorphic map.
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We denote by Hρ the sheaf of germs of holomorphic functions on Y with respect to ρ : Y → M .
Clearly, Hρ makes Y into a locally ringed space whose stalks Hρ,y are integral domains such that

(ρ∗Hρ)x =
⊕

y∈ρ−1(x)

Hρ,y .

Moreover, using elementary symmetric functions and Riemann’s Extension Theorem (for bounded func-
tions on M ), it is easy to prove that Hρ,y is the algebraic closure of OM,x , x = ρ (y) , in CY,y under
the natural inclusion homomorphism CM,x ↪→ CY,y . More precisely, each element f ∈ Hρ,y satisfies
an integral equation

f b + a1f
b−1 + · · ·+ ab = 0 , aβ ∈ OM,x ,

where the number b is independent of f (viz. the local number of sheets of the covering Y \ρ−1(A) →
M \A near y ). - We can now formulate the theorem of Grauert and Remmert:

*Theorem 8.24 Under the conditions as above, the locally ringed space (Y, Hρ) is a normal complex
analytic space, and ρ : Y → M is a (finite) holomorphic map.

We prove only normality in that general situation (assuming that (Y, Hρ) is a complex analytic
space and ρ is holomorphic). Necessarily, Y is a reduced space, holomorphic functions being continuous

by construction. Since Y is locally irreducible, the normalization map ν : Ŷ → Y is a homeomorphism
of the underlying topological spaces. In particular, elements hy in the normalization OŶ ,y = Ĥρ,y
may be regarded as continuous functions on Y . Since Hρ,y = OY,y is finite over OM,x , it follows that
each such element hy satisfies an integral equation over OM,x . By the preceding remarks, hy ∈ OY,y .
□

Obviously, Theorem 24 implies:

Theorem 8.25 Under the conditions as above, ρ∗Hρ is a coherent analytic sheaf on M . (Hence, Y
is isomorphic to the analytic spectrum of ρ∗Hρ ).

Remark . Conversely, Theorem 24 may also be deduced from Theorem 25: Just recall that the existence
proof for analytic spectra (see Chapter 19.15) is valid in the category of arbitrary locally ringed spaces
lying finitely branched over (M, OM ) . Therefore, assuming A = ρ∗Hρ to be a coherent OM–algebra
and forming the analytic spectrum (Z, OZ) with respect to A , it follows that (Y, Hρ) ∼= (Z, OZ)
over M as ringed spaces. Consequently, Y is a complex analytic space, and ρ is holomorphic.

Henceforth, it is sufficient for our purposes to show Theorem 24 in the surface case. This is done
by modifying the analytic set A ⊂ M by means of Theorem 5.3: Take a monoidal transformation
σ : N → M such that B = σ−1(A) has only normal crossings in N . Then let Z be the closure of
the fiber product

(Y \ ρ−1(A))×(M\A) (N \B) in Y ×M N ,

and denote by π the canonical projection Z → N . In the resulting commutative diagram

N M

Z Y-τ

?

π

?

ρ

-σ

the map τ is proper and surjective, and (Z, π, N) is an analytic covering. - We claim:

It is sufficient to prove Theorem 24 and Theorem 25 for analytic coverings with a normal crossing
divisor A .

Indeed: If Hπ denotes the structure sheaf of Z , then we have, by construction of Z , the identity
τ∗Hπ ∼= Hρ . Thus,

ρ∗Hρ ∼= ρ∗(τ∗Hπ) ∼= σ∗(π∗Hπ) .
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To finish the proof of Theorem 24 in the normal crossing case, we notice that we have a local
problem with respect to M . Moreover, we encountered above the fact that the ringed space (Y, Hρ)
is weakly normal in the sense that each (germ of a) continuous function on Y which is holomorphic
on Y \ ρ−1(A) is automatically a section of Hρ . In the classification of normal Jung singularities as
the quotients Xnq (Chapter 7.7), it is precisely that property of normal singularities which makes the
proof go through. So, we conclude that, in the given situation, the ringed space (Y, Hρ) over (M, OM )
is locally isomorphic to a normal Jung singularity with a canonical projection ρ . □

For the rest of the Section, assume that X is a connected normal surface with precisely one singular
point x , and let p′ : Y ′ → X ′ = X \{x } be a finite connected topological covering (with its canonical

complex analytic manifold structure) such that p′
−1

(U) is connected for all sufficiently small connected
neighborhoods U of x in X . By an easy exercise, one checks immediately that Y := Y ′∪{ y } , suitably
topologized, forms under p : Y → X , p|X′ = p′ , p (y) = x , a finite covering of X (branched only
at x ). We call Y the topological completion with respect to X .

Theorem 8.26 Under the assumptions as above, the topological completion Y with respect to X
carries a natural normal complex analytic structure extending the manifold structure on Y ′ such that
p : Y → X is a finite holomorphic map.

Proof . Composing p locally with a Noether normalization ν : X → M , we obtain an analytic
covering ρ : Y → M with { y } = ρ−1(ρ (y)) which is branched exactly over the branch locus A of
ν . ρ−1(A) \ { y } being one–dimensional in Y ′ , we have for all open sets V in Y :

(∗) H0(V \ { y }, OY ′) ∩H0(V, CY ) = H0(V, Hρ) .

Therefore, OY = Hρ is the desired structure sheaf. Clearly, OY is uniquely determined by (∗). □

8.12 A topological characterization of quotient surface singu-
larities

We are now able to prove

Theorem 8.27 Let X be a normal surface singularity. Then the following conditions are equivalent :

(i) X is a quotient singularity ;

(ii) π1(X, x) is finite ;

(iii) X has a smooth finite branched covering.

Proof . By definition, (i) =⇒ (iii) is clear, and (iii) =⇒ (ii) is trivial because of Lemma 23. It remains
to show that X is a quotient singularity under the assumption (ii).

Suppose without loss of generality that X is a good neighborhood of x . Then X ′ = X \ {x } is
connected. Take the universal covering space p′ : Y ′ → X ′ and form the topological completion
Y (which is obviously possible). Since Y carries by Theorem 26 a natural normal complex analytic
structure and

π1(Y, y) = π1(Y \ { y }) = π1(Y
′) = 1 ,

we infer from Mumford’s criterion (Chapter 15.6) that y is a smooth point of Y .

The finite group G := π1(X, x) acts holomorphically on Y by deck–transformations, and this opera-
tion extends to Y (leaving y fixed). The spaces Y/G and X are homeomorphic and biholomorphic
outside x = p (y) . Since Y/G and X are normal spaces, they are in fact biholomorphically equivalent,
and X ∼= Y/G is a quotient of a smooth space. □

The following is evident from Theorem 27:

Corollary 8.28 Let ρ : X → Y be a finite branched covering of normal surface singularities. If X
is a quotient singularity, then so is Y .
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8.A Appendix A: The classification of quotient surface singu-
larities

In anticipation of later results, we classify in this Appendix the quotient surface singularities by their
resolutions and by the defining small groups. Still undefined notions like “minimal resolution”, “dual
resolution graph”, “plumbing”, “tautness” etc. will be explained in Chapter 9. As we know all details
in the cyclic case, we can restrict our investigation to noncyclic groups.

By a straightforward group theoretical argument, it is even possible to go back to the binary poly-
hedral groups G ⊂ SL (2, C) which will be studied carefully in Chapter 11. Noticing that we have a
surjective group homomorphism

ψ : ZGL2 × SL (2, C) −→ GL (2, C)

(ZGL2 denoting the center of GL (2, C) consisting of all multiples aE , a ̸= 0 , of the unit matrix)
defined by multiplication, it is not difficult to convince oneself that the following is true:

Lemma 8.29 Each noncyclic finite subgroup G of GL (2, C) may be obtained from a quadruple
(G1, N1; G2, N2) , where

(a) G1 ⊂ ZGL2 and G2 ⊂ SL (2, C) are finite subgroups, G2 not cyclic,

(b) N1 ⊂ G1 and N2 ⊂ G2 are normal subgroups such that there exists an isomorphism

φ : G2/N2
∼−→ G1/N1 ,

by the following fiber product construction :

G := ψ (G1 ×φ G2) , G1 ×φ G2 = { (g1, g2) ∈ G1 ×G2 : g1 = φ (g2) } ;

here, gi denotes the residue class of gi in Gi/Ni , i = 1, 2 .

The conjugacy class of G in GL (2, C) does not depend on the specific isomorphism φ . Therefore,
we use the symbol

(G1, N1; G2, N2)

also as a name for the class containing the groups ψ (G1 ×φ G2) .
In Chapter 11, we will determine the finite noncyclic subgroups of SL (2, C) (up to conjugacy).

These binary polyhedral groups are in one–to–one correspondence with the Platonian triples, i.e. the
triples (n1, n2, n3) ∈ N3 satisfying the inequality

1

n1
+

1

n2
+

1

n3
> 1 , 2 ≤ n1 ≤ n2 ≤ n3 .

We denote them by Dk+2 , T , O and I , when the triples are (2, 2, k) , (2, 3, 3) , (2, 3, 4) and
(2, 3, 5) , respectively. One can in fact classify the conjugacy classes of small subgroups in GL (2, C) by
Lemma 29 in combination with some rudimentary knowledge of these groups. In the approach presented
here we mix group theory and the resolution theory of surface singularities developed thus far.

In Chapter 11.13 we will find the resolution of a Klein singularity C2/G2 , G2 ⊂ SL (2, C) , by
blowing up the origin 0 in Y = C2 and forming the canonical quotient Ỹ /G2 which is a modification
of Y/G2 . The action of G2 on σ−1(0) = P1 has three special orbits at whose points the stabilizer
groups act in local coordinates cyclically by

u0 7−→ ζni
u0 , v0 7−→ ζ−1

2ni
v0 , i = 1, 2, 3 ,

where u0 is a local coordinate on P1 and v0 is a fiber coordinate of the bundle Ỹ → P1 . Hence, Ỹ /G2

contains the curve P1/G2
∼= P1 on which we find exactly three cyclic singularities of Ỹ /G2 (of order

n1 , n2 and n3 only since we have to divide out the action of the reflection u0 7→ u0 , v0 7→ −v0 ).
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Now, for a general group G , we must also investigate how the group G1 ⊂ ZGL2 acts on Ỹ .
Clearly, G1 is a cyclic group generated by an element ψ of the form ζℓE which (in global coordinates

of Ỹ ) has to act by u0 7→ u0 , v0 7→ ζℓv0 and u1 7→ u1 , v1 7→ ζ−1
ℓ v1 . In particular, ψ leaves P1

pointwise fixed such that G has the same three special orbits on P1 as G2 has.
Consequently, Ỹ /G contains at most three singularities on P1/G ∼= P1 which are quotients by

groups whose elements are products of powers of(
ζni

0

0 ζ−1
ni

)
and

(
1 0

0 ζ2ℓ

)
.

Eliminating the action of the normal subgroup generated by the reflections, we obtain an action of type
(ni, qi) , 0 ≤ qi < ni (but gcd (ni, qi) not necessarily equal to 1). In any case, we can state:

Theorem 8.30 The minimal resolution of a noncyclic quotient singularity is determined by a system
of numbers

(b; n1, q1, n2, q2, n3, q3)

with

(i) b ≥ 2 ,

(ii) n1 ≤ n2 ≤ n3 a Platonian triple,

(iii) 1 ≤ qi < ni , gcd (ni, qi) = 1 , i = 1, 2, 3 ,

by forming the plumbed manifold with smooth rational components of the exceptional set associated to
the star

−2
•

• . . . • • • . . . •
−b2r2 −b21 −b −b31 −b3r3

where
ni
qi

= bi1 − 1 bi2 − · · · − 1 biri , i = 2, 3 .

(Of course, the pair n1 = 2 , q1 = 1 belongs to the upper (short) arm).

The various parts of Theorem 30 can be elaborated by different techniques as we will see in sub-
sequent Chapters. In particular, each surface singularity admitting a good C∗–action is resolved by
a plumbed manifold with dual graph a star, all curves being rational with the possible exception of
the central curve (Chapter 10). That the central curve for quotient singularities is rational follows e.g.
from the fact that they also belong to the wider class of rational singularities (Chapter 12). The same
result can be deduced (together with the precise form of the stars given in Theorem 30) from the
characterization of quotients by the finiteness of their fundamental groups (see Chapter [??]).

Furthermore, the last argument implies that the graphs in Theorem 30 indeed give rise to finite
fundamental groups, and finally, the plumbed manifolds attached to these graphs are analytically de-
termined by the given data. Putting everything together, we get

Theorem 8.31 The (isomorphism classes of) noncyclic quotient surface singularities are in one–to–
one correspondence to the systems (b; n1, q1, n2, q2, n3, q3) as in Theorem 30. The associated dual
resolution graphs are taut.
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Carrying out the program sketched above carefully, one is led to explicit abstract presentations of the
fundamental groups, thereby arriving at the conclusion that different graphs yield abstractly different
groups (which, a priori, is not clear at all). Thus, in order to find a complete set of conjugacy classes of
finite small subgroups of GL (2, C) , one just has to write down a list of such groups with the correct
presentation. The result is encoded in the following table (Zℓ denotes the group ⟨ ζℓ ⟩ ):

G = (G1, N1; G2, N2) (b; n1, q1, n2, q2, n3, q3)

(Z2m,Z2m;Dn,Dn)
(Z4m,Z2m;Dn, C2n)

(b; 2, 1, 2, 1, n, q) m = (b − 1)n − q =

{
odd
even

(Z2m,Z2m;T,T)
(Z2m,Z2m;T,T)
(Z6m,Z2m;T,D2)

(b; 2, 1, 3, 2, 3, 2)
(b; 2, 1, 3, 1, 3, 1)
(b; 2, 1, 3, 1, 3, 2)

m = 6 (b − 2) +

 1
5
3

(Z2m,Z2m;O,O)
(Z2m,Z2m;O,O)
(Z2m,Z2m;O,O)
(Z2m,Z2m;O,O)

(b; 2, 1, 3, 2, 4, 3)
(b; 2, 1, 3, 1, 4, 3)
(b; 2, 1, 3, 2, 4, 1)
(b; 2, 1, 3, 1, 4, 1)

m = 12 (b − 2) +


1
5
7

11
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)

(b; 2, 1, 3, 2, 5, 4)
(b; 2, 1, 3, 2, 5, 3)
(b; 2, 1, 3, 1, 5, 4)
(b; 2, 1, 3, 2, 5, 2)
(b; 2, 1, 3, 1, 5, 3)
(b; 2, 1, 3, 2, 5, 1)
(b; 2, 1, 3, 1, 5, 2)
(b; 2, 1, 3, 1, 5, 1)

m = 30 (b − 2) +



1
7

11
13
17
19
23
29

Without relying on the fundamental groups, one can alternatively prove Theorem 31 and the cor-
rectness of the table by computing for all given groups the stabilizer subgroups with respect to the
action of G on the blow up Ỹ of Y = C2 (see the remarks before Theorem 30) and the self–
intersection number of the central curve. The first task is easy: Take for instance the last sequence of
groups (Z2m, Z2m; I, I) , and look for a point on P1 ⊂ Ỹ , where the binary icosahedral group I acts
locally via the matrix

A =

(
ζ5 0

0 ζ−1
5

)
.

Z2m operates there, as we have seen above, through the reflection(
1 0

0 ζm

)
.

In local coordinates u, v , invariants with respect to Z2m are

u = u , w = vm ,

and on these coordinates A operates as

u 7−→ ζ5u , w 7−→ ζ5
−mw ,

i.e. by the matrix (
ζ5 0

0 ζq5

)
,

where q + m ≡ 0 mod 5 . This consideration determines the entry n3 , q3 : we obtain

(n3, q3) =


(5, 1)
(5, 2)
(5, 3)
(5, 4)

for m ≡


4
3
2
1

mod 5 .
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Similarly, one can compute n1 , q1 and n2 , q2 .
The reason for the numbers m being prime to 30 in that sublist is also evident: If gcd (m, 30) ̸= 1 ,

then at least one of the stabilizer subgroups contains reflections after reduction modulo Z2m , and we
are in fact considering a case already listed before (or even a cyclic quotient).

The self–intersection number b of the central curve is computable with the help of Corollary 10.20.
Perhaps surprisingly, one finds a formula that covers all cases:

*Theorem 8.32 Let h denote the order of the image of the group G = (G1, N1; G2, N2) in
PGL (2, C) . Then, for all m in the table above,

b =
q1
n1

+
q2
n2

+
q3
n3

+
2m

h
.

We sketch a third method in the vein of Sections 10, 11 and 12 in Chapter 11 for proving Theorem 31.
Notice that the group N2 is just the intersection

G ∩ SL (2, C) ,

when G = (G1, N1; G2, N2) as in Lemma 29. Hence, N2 is a normal subgroup of G , and there

exists an obvious isomorphism G
∼→ G1/N2 . Clearly, if x1 , x2 , x3 are homogeneous generators

for C ⟨u, v ⟩N2 (see Chapter 11, where it is shown that always three generators suffice) and if G1 is
generated by ζℓE , then the corresponding generator of G/N2 acts by

xi 7−→ ζdeg xi

ℓ xi , i = 1, 2, 3 .

In view of the results in Chapter 10, that amounts to saying the following:

Theorem 8.33 Let G ⊂ GL (2, C) be a finite small subgroup, and let X0 be the Klein singularity
C2/G ∩ SL (2, C) equipped with its (natural) good C∗–action. Then there exists a finite (necessarily
cyclic) subgroup H ⊂ C∗ such that

X = C2/G ∼= X0/H .

Now, the resolution X̃0 → X0 to be constructed in Chapter 10 is C∗–equivariant. So, we can form
the commutative diagram

X0 X0/H ∼= X-

X̃0 X̃0/H
-

? ?

in which the right vertical arrow represents a modification. Since the C∗–action on X̃0 respects the
plumbing construction, it is completely determined by its action on the normal bundle of one of the
components of the exceptional set. Moreover, if there exists a central curve E0 , E0 itself is pointwise
fixed by C∗ such that there is exactly one such action on X̃0 . In any case, H ⊂ C∗ can have nontrivial
stabilizer subgroups only at intersection points Ej ∩ Ek . Hence, X̃0/H has only cyclic quotient sin-
gularities which are easily computable and resolvable. However, the resulting resolution of X may not
be minimal, since self–intersection numbers can decrease (in absolute value) during this process. Take,
for instance, a line bundle O (−b) on P1 with homogeneous coordinates u0 , u1 , and let H = ⟨ ζℓ ⟩
act by

u0 7−→ ζℓu0 , v0 7−→ v0 .

Then, necessarily,
u1 7−→ ζ−1

ℓ u1 , v1 7−→ ζbℓv1 .
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Consequently, in order to have a trivial action on the fibers of O (−b) , we assume b ≡ 0 mod ℓ , and in
this case it follows from a trivial calculation that O (−b)/H is isomorphic to the line bundle O (−b/ℓ)
over P1/H ∼= P1 (with homogeneous coordinates w0 = uℓ0 , w1 = uℓ1 ). The opposite effect can simply
be achieved, as we saw at former instances, by the action u0 7→ u0 , v0 7→ ζℓv0 . - The details are left
to the reader.

8.B Appendix B: The m–adic topology on analytic algebras
and modules

If R is a ring and a is an ideal in R one can define a basis of neighbourhoods of 0 ∈ R by the powers
ak of a . Translating these neighbourhoods additively to other elements r ∈ R one comes up with a
topology on R that makes R into a topological ring . It is called the a–adic topology on R . If M is a
module over R , one can similarly start with the basis akM of neighbourhoods of 0 ∈M . This defines
the a–adic topology on M which provides it with the structure of a topological module over R with
its a–adic topology. Since all these topologies satisfy the first axiom of countability , one can test most
of the topological properties by testing the behaviour of convergent series. Remark also that if b is
another ideal in R such that a certain power of b is contained in a then the b–adic topology and the
a–adic topology on M coincide.

A well known result (and simple exercise) says that the a–adic topology on M is a Hausdorff or a
separated topology if and only if ⋂

k

akM = 0 .

This is, in particular, satisfied for any proper ideal a ⊂ m in an analytic algebra A and any noetherian
module M over A .

We are particularly interested in the main corpus of this Chapter in analytic algebras A and their
mA–adic topology. In this topology, however, analytic algebras are not complete. Of course, for a regular
analytic algebra Rn of convergent power series, the completion of Rn with respect to the mn–adic
topology of Rn is the ring of formal power series. Since analytic homomorphisms φ : A −→ B are local
they are continuous in the resp. m–adic topologies. Moreover, if φ is surjective, then φ (mA) = mB
such that φ is an open homomorphism.

Remark . There are other topologies on analytic algebras over locally compact fields K and modules
over such algebras which reflect much better the analytic aspect of convergent power series. Since we
do not need them in this text, we omit more details and refer to [01 - 02].

8.C Appendix C: A local openness criterion for finite holomor-
phic maps

We still need to prove the local openness criterion which we applied to show that that the map p is
surjective at y = ρ (x) .

Definition and Remark . Let (X, OX) and (Z, OZ) be complex analytic spaces and (π, π̂) a holomor-
phic map between X and Z (for details see the Supplement). We call π open at a point x ∈ X , if π
maps a basis of neighbourhoods of x onto such a basis of the image z = π (x) , that is to say that the
germ of the image π (X) at z coincides with the whole germ Zz .

Warning . Openness at a point is in general not an “open condition”.

Remark . The situation, however, is easier to handle when x lies discrete in its fiber π−1(π (x)) , i.e.
when locally near x the mapping π is finite. In this case, the germ (π (X))z is an analytic subgerm
of Zz defined by the coherent Annulator ideal of the direct image sheaf π∗(OX) . Hence, π is open at
x if and only if

(N (AnnOZ
π∗OX))z = Zz = (N (0))z ,



Chapter 8 Notes and References 255

which by Rückerts Nullstellensatz is equivalent to

(AnnOZ
π∗OX)z ⊂ nZ,z

or, in other words, all elements in (AnnOZ
π∗OX)z are nilpotent . But in our situation (π∗OX)z ∼=

OX,x , and the annulator ideal in question is nothing else but the kernel of the analytic morphism
π̂x : OZ,z −→ OX,x . - So, we have proved the following result.

Theorem 8.34 A finite holomorphic mapping (π, π̂) : (X, OX) → (Z, OZ) of complex spaces is open
at x ∈ X , if and only if each element in the kernel of π̂x : OZ,z −→ OX,x is nilpotent. In particular,
if Z is a reduced space, this condition is equivalent to the injectivity of π̂x .
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