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Gignit autem artificiosam lusorum gentem
Cella Silvestris.
Zu deutsch: Waldzell aber bringt das kunst-
reiche Völkchen der Glasperlenspieler hervor.

(Hermann Hesse, Das Glasperlenspiel)

Und jedem Anfang wohnt ein Zauber inne,
der uns beschützt und der uns hilft zu leben.

(Hermann Hesse, Stufen)
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Chapter 7

Jung singularities and resolutions of
normal surface singularities

Jung singularities can be realized as coverings of C2 that are branched at most along the coordinate
axes. We shall prove that (normal) Jung singularities have C2 as a covering space with a cyclic group of
deck transformations. Normalizing the action of the cyclic group, we are able to construct a resolution
in finitely many steps.

In this Chapter, we use freely some general results from the local theory of complex spaces and the
theory of quotients which will be developed in more detail in later Chapters.

7.1 Jung singularities

To fix the ideas, we always work in the following situation: X is a (closed) analytic subset of the unit
polydisk D = Dm−2 ×D2 ⊂ Cm about the origin, such that the following holds true:

(a) The projection ρ : X → D2 = { (x, y) ∈ C2 : |x | < 1 , | y | < 1 } is a finite map (i.e. ρ is
closed and has finite fibers) with ρ−1(0) = { 0 } ;

(b) let Σ = { (x, y) ∈ D2 : xy = 0 } denote the union of the coordinate axes in D2 , let D−2 be
D2 \ Σ and set X− = ρ−1(D−2 ) . Then X− is connected and dense in X , and the restriction

ρ : X− −→ D−2

is a (finite) unbranched covering (i.e. X− is a complex manifold, and ρ is surjective and locally
biholomorphic).

Under these assumptions, we call the germ of X at 0 a Jung singularity . For Example, the functions

jnq(x, y, z) = zn − xn−qy , 1 ≤ q < n , gcd (n, q) = 1 ,

define Jung singularities which we denote by Jnq .
Since the map ρ : X → D2 is finite, the preimage ρ−1(Σ) = X \X− is a nowhere dense analytic

subset of X which contains the singular set sing X of X . For the Jnq , we have

sing Jnq =

{
ρ−1(0) , q = n − 1 ,

ρ−1({x = 0 }) , q < n − 1 .

7.2 The classification of unbranched coverings of D−
2

Let us first collect a few facts about (unbranched) coverings of topological manifolds. A continuous
map ρ : M1 → M between connected topological manifolds M1 and M is called an unbranched (and
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unbounded) covering map (or a covering of M , for short) if for each point x(0) ∈ M there exists an
open neighborhood U such that ρ−1(U) is a disjoint union ∪Vj of open subsets Vj ⊂ M1 that are
homeomorphic to U under ρ . In particular, ρ is necessarily surjective and locally a topological map.
These conditions are also sufficient for ρ to be a covering, if ρ is a finite map.

Given a covering ρ : M1 → M of a complex analytic manifold M , there is a unique complex
structure on M1 making ρ into a locally biholomorphic map.

Since manifolds are locally pathwise connected, M (and M1 ) are also globally pathwise connected
such that the notion of the fundamental group

π1(M)

(up to noncanonical isomorphism) makes sense.
A covering ρ0 : M0 → M is called a universal covering of M , if it factors through every other

covering ρ1 : M1 → M :

M0 M1
-σ

M

ρ0

@
@

@
@
@R

ρ1

�
�

�
�

�	

Such universal coverings exist and are uniquely determined by M up to canonical isomorphisms of cov-
erings; a covering M0 → M is universal, if and only if M0 is simply connected , i. e. if the fundamental
group of M0 is trivial:

π1(M0) = 1 .

For a covering ρ : M1 → M , a homeomorphism τ : M1 → M1 is called a deck–transformation, if
it preserves the fibers of ρ , i. e. if

M1 M1
-τ

M

ρ

@
@

@
@
@R

ρ

�
�

�
�

�	

is a commutative diagram. We denote by Deck (M1/M) the group of all deck–transformations; it acts
in a natural way on M1 (see also the next Section). The covering ρ : M1 → M is called a Galois
covering , if Deck (M1/M) acts transitively on the fibers of ρ , i. e. if to every pair y(1), y(2) ∈ M1

with ρ (y(1)) = ρ (y(2)) there exists a deck–transformation τ with y(2) = τ (y(1)) .
The Main Theorem of the theory of coverings can then be stated as follows:

*Theorem 7.1 Let ρ0 : M0 → M be the universal, ρ1 : M1 → M an arbitrary covering of M ,
and denote by σ : M0 → M1 a map making the defining diagram commutative. Then σ : M0 → M1

is a Galois covering of M1 . The group G = Deck (M0/M1) is a subgroup of G0 = Deck (M0/M) .
Moreover, G ∼= π1(M1) and the fibers of ρ1 have the same cardinality as the space G0/G of (left)
cosets; in other terms:

card ρ−11 (x(0)) = [G : G0 ] ,

where the last symbol denotes the index of G in G0 .

Especially, taking the trivial covering id : M → M implies that the universal covering M0 → M
is Galois with group Deck (M0/M) ∼= π1(M) , and, in the situation of the Theorem, π1(M1) can be
identified with those (homotopy classes of) loops in M which lift to (closed) loops in M1 .
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Returning to the classification of Jung singularities, we are obviously led by Theorem 1 to the
determination of the fundamental group of D−2 and its subgroups of finite index (up to conjugacy).
The first point can easily be worked out:

D−2 = {x ∈ C : 0 < |x | < 1 } × { y ∈ C : 0 < | y | < 1 }

can be retracted onto S1
ε × S1

ε , 0 < ε < 1 , where

S1
ε = {x ∈ C : |x | = ε } .

Thus, D−2 is homotopy equivalent to S1 × S1 , S1 := S1
1 , and therefore

π1(D
−
2 )
∼= π1(S

1 × S1) = π1(S
1)⊕ π1(S1) ∼= Z⊕ Z .

Of course, a class [α ] ∈ π1(D−2 ) of a loop α : S1 → D−2 is represented by a pair (a, b) ∈ Z ⊕ Z , if
the winding number of α with respect to the y–axis and the x–axis equals a and b , respectively.

All we need with respect to the second point is the following

Lemma 7.2 To each subgroup G ⊂ Z ⊕ Z of finite index there exists a diagonal subgroup G1 ⊂ G
such that G/G1 is cyclic of finite order.

Proof . Denote by e1, e2 the canonical basis of Z ⊕ Z . A simple exercise supplies us with numbers
a, b, d ∈ N such that

G = Z (ae2) + Z (be1 + de2) :

6Z

-
Z

× × × ×

× × × × ×

⊗ ⊗ ⊗ ⊗

× × × ×

× × × × ×

⊗ ⊗ ⊗ ⊗

× × × ×

× × × × ×

⊗ ⊗ ⊗ ⊗

G = {×, ⊗} , G1 = {⊗}

Figure 7.1

For d = 0 , we may take G = G1 . If d ̸= 0 , we put α = gcd (a, d) and

G1 = Z (ae2) + Z ((ab/α) e1) .

G1 is contained in G because of the identity

ab

α
e1 =

a

α
(be1 + de2) −

d

α
(ae2) .

The factor group G/G1 is generated by the single element

x = (be1 + de2) mod G1 ,

and nx = 0 for n = a/α .
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7.3 Group actions and topological quotients

The aim of the following Section is to show that (isolated) Jung singularities have the topological
structure of a quotient of an open set in C2 by a linear action of the cyclic group G/G1 constructed in
Section 2. The purpose of the present Section is to fix our notions with respect to group actions (which
we met already several times in this text) and to state some results for the topological category.

By a group action of a group G on a set X we always understand a map

(∗)

{
X × G −→ X

(x , g) 7−→ xg

with the properties {
xgh = (xg)h for all g, h ∈ G , x ∈ X ,

xe = x for the identity e ∈ G and all x ∈ X .

This is usually called more accurately an action of G on X from the right . There is a similar notion
of a left action which we would like to avoid in the sequel. We also say that G operates via (∗) .

Given a group action (∗) , there exists a canonical map from G to the group Aut X of all bijective
maps of X onto itself, viz.

G ∋ g 7−→ αg ∈ Aut X ,

defined by αg(x) = xg . Obviously, there are the following relations{
αgh = αh ◦ αg ,

αe = id .

These imply that αg is indeed bijective for all g ∈ G and that the map{
G −→ Aut X

g 7−→ αg

is a group homomorphism, if the group structure on Aut X is defined by the map{
Aut X ×Aut X −→ Aut X

(α, β) 7−→ β ◦ α ,

where ◦ denotes the usual composition. This is the reason why we sometimes prefer to write

α ∗ β instead of β ◦ α .

It is clear that Aut X operates on X from the right by{
X × Aut X −→ X

(x , α) 7−→ xα = α (x) ,

and so does every subgroup of Aut X . In fact, all effective operations can be described this way, as we
will see below.

Such operations abound throughout mathematics. For Example, each group G acts on itself by right
multiplication {

G×G −→ G ,

(γ, g) 7−→ γg ,

and also by conjugation {
G×G −→ G ,

(γ, g) 7−→ g−1γg .
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From the beginning of this manuscript we used the action of GL (n, C) on Cn . In Chapter 1.7 we

emphasized the importance of the action of Aut O(n)
0 on O(n)

0 . In this Chapter, we are mainly concerned
with actions of subgroups G ⊂ Deck (M1/M) for a covering M1 → M and related questions.

Two elements x(1), x(2) ∈ X are called equivalent with respect to a given G–action on the set X :

x(1) ∼ x(2) ⇐⇒ there exists an element g ∈ G with αg(x
(2)) = x(1) .

This is clearly an equivalence relation; the equivalence class

[x ] = {x(1) ∈ X : x(1) ∼ x }

is usually called the orbit of x under the action of G or a G–orbit for short. For the action of a
subgroup H ⊂ G on G by right multiplication, these equivalence classes are the left cosets γ H ; for
the action of G on itself by conjugation, these are the conjugacy classes { g−1γ g : g ∈ G } .

We always denote by X/G the set of all G–orbits in X ; we call X/G the quotient of X by (the
action of) G . The natural map X → X/G sending x to its G–orbit [x ] is usually denoted by ρ .

If X carries more structure, we are often compelled to equip the quotient X/G with a comparable
structure. So, for instance, if G is a group acted on via right multiplication by a subgroup H ⊂ G , we
would like to give the quotient G/H a group structure making the quotient map

ρ : G −→ G/H

to a group homomorphism. This task can be accomplished only by putting

[ g1 ] · [ g2 ] = [ g1 · g2 ] , g1, g2 ∈ G ,

which, however, makes no sense in general. The product is well–defined in G/H , if and only if H is a
normal subgroup of G , i.e. if γ ∈ H , g ∈ G implies g−1γ g ∈ H .

Let us return to the homomorphism G → Aut X associated to a G–action on X . Obviously, the
kernel H of this map consists of all h ∈ G with

xh = x for all x ∈ X ;

we call the action effective, if H is the trivial subgroup ⟨ e ⟩ of G . In general, the quotient group
G = G/H acts on X because of

xγh = (xγ)h = xγ , γ ∈ G , h ∈ H , x ∈ X ,

and this action is effective, since the homomorphism G → Aut X factorizes over the monomorphism
G/H ↪→ Aut X . Thus, we conclude that the effective actions on a set X are classified by the subgroups
of Aut X .

We now concentrate on quotients of topological spaces X . Since analytic sets inherit a locally com-
pact Hausdorff structure with countable basis from ambient space, we shall assume that all topological
spaces in the present text have these properties, at least locally. However, while patching local models
together, we also want to avoid the creation of new pathologies. Therefore, we always assume X to be
globally Hausdorff and to have a countable basis; in particular, all topological spaces in this book are
paracompact (and even metrizable).

We consider only groups G acting topologically on the space X ; by this we mean that the group
homomorphism G → Aut X factorizes over the subgroup of all homeomorphisms of X , which - by
abuse of notation - we denote again by Aut X . (As a general rule, Aut X refers to the automorphisms
of an object X in a category which will sometimes not be mentioned explicitly, if in the given context
there is no ambiguity). Thus, each map αg : X → X , g ∈ G , is a homeomorphism such that the
group action G on X induces also an action on the set of all continuous maps from X to a fixed
topological space Z by (φ, g) 7→ φ ◦ α−1g .

Since Deck (M1/M) ⊂ Aut M1 for all coverings ρ1 : M1 → M , each subgroup G ⊂ Deck (M1/M)
acts topologically on M1 in a canonical manner. Moreover, by construction, there is a set–theoretical
factorization
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ρ1
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M1/G
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@
@R

M1

M
?

The covering ρ1 is Galois, if the canonical map M1/ Deck (M1/M) → M is bijective. Theorem 1 says
that each covering space M1 of M is (set–theoretically) the quotient of the universal covering M0 of
M by the action of a subgroup G of the fundamental group π1(M) , where π1(M) acts on M0 by
“lifting loops”.

To make the quotient map ρ : X → X/G =: Y continuous for an arbitrary topological G–action
on X , we have to affix to Y the quotient topology : V ⊂ Y is open, if and only if ρ−1(V ) is open
in X . (Notice that for a covering ρ1 : M1 → M the topological space M carries automatically the
quotient topology). Then a map φ : Y → Z is continuous, if and only if φ◦ρ : X → Z is continuous.
Clearly, φ ◦ ρ is invariant under the G–action mentioned above:

φ ◦ ρ ◦ α−1g = φ ◦ ρ for all g ∈ G .

On the other hand, each continuous map φ : X → Z that is invariant under G gives rise to a
continuous map φ : Y → Z with φ ◦ ρ = φ .

For an open set U ⊂ X , the image αg(U) is open for all g ∈ G . Hence,

ρ−1(ρ (U)) =
⋃
g∈G

αg(U)

is an open set, i.e. ρ (U) is open in Y . In other words: ρ : X → Y is an open map. In particular, if
ρ is (locally) bijective, it is (locally) a homeomorphism.

Nevertheless, the quotient Y need not be a Hausdorff space. Take, for instance, X = C and the
multiplicative group G = C∗ acting on C by multiplication. Then we have the closed orbit { 0 } and
the dense orbit C∗ , and the quotient Y = C/C∗ consists of two points and is not Hausdorff.

For a finite group G , this unpleasant behaviour of the quotient X/G can be excluded: For two
G–invariant points x(1), x(2) ∈ X choose open neighborhoods U1 of x(1) and Ug

2 of (x(2))g , g ∈ G ,
with U1 ∩ Ug

2 = ∅ , and put

U2 =
⋂
g∈G

α−1g (Ug
2 ) .

U2 is an open neighborhood of x(1) which does not intersect U1 . In order to show that X/G is a
Hausdorff space, we have to make sure that the images ρ (U1) and ρ (U2) are distinct: otherwise, there
would exist elements z(1) ∈ U1 , z

(2) ∈ U2 and a group element h such that z(1) = (z(2))h , implying

z(1) ∈ αh(U2) = αh

( ⋂
g∈G

α−1g (Ug
2 )
)
⊂
⋂
g∈G

αh ◦ α−1g (Ug
2 ) ⊂ Uh

2

which contradicts our assumption U1 ∩ Ug
2 = ∅ for all g ∈ G .

Let us close this Section by proving that in this situation the quotient map ρ : X → Y is a finite
map in the sense of Section 1. Only the closedness of ρ needs verification. So, assume that A ⊂ X is
a closed subset. By the finiteness of G , the set

ρ−1ρ (A) =
⋃
g∈G

αg(A)
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is closed in X , too, and the claim follows from the identity

Y \ ρ (A) = ρ (X \ ρ−1(ρ (A))) .

Moreover, if the action of G on X is free at a point x , i.e. if x = xg implies g = e , then ρ is
locally a homeomorphism near x . To show this, it is enough to find a neighborhood U of x with
x(1), x(2) ∈ U , x(1) ∼ x(2) =⇒ x(1) = x(2) . If such a neighborhood would not exist, we could

construct sequences x
(1)
j and x

(2)
j converging to x with

x
(1)
j = (x

(2)
j )gj for gj ∈ G , gj ̸= e .

Since G is finite, we may assume that gj = g for all j . But then

x = lim
j
x
(1)
j = lim

j
αg(x

(2)
j ) = αg(lim

j
x
(2)
j ) = αg(x) = xg .

7.4 The topological structure of isolated Jung singularities

We call X as in Section 1 an isolated Jung singularity, if all the points of ∆− = (X \ X−) \ { 0 }
are smooth points of the analytic set X . Hence, the singular set sing X of X is either empty or it
consists of the point 0 only. Let G ⊂ Z⊕Z = π1(D

−) be the abelian group belonging to the covering
ρ : X− → D− , and denote by G1 = Z (nbe1) + Z (ae2) the subgroup of G with G/G1 cyclic of
order n (see Lemma 2). The group G1 can easily be realized as the group belonging to the covering

τ :

{
D−2 −→ D−2 ,

(u, v) 7−→ (unb, va) .

Since X− is the quotient of the universal covering of D−2 by the larger group G , we have a commutative
diagram

ρ
�

�
�

�	

X− ,

σ
@

@
@
@R

D−2

D−2

?

τ

where σ is given by the canonical action of the quotient G/G1 on D−2 . σ is a holomorphic map, since
τ and ρ are locally biholomorphic; therefore, the composition

D−2
σ−→ X− ↪−→ D = Dm−2 ×D2 ↪−→ Cm

is holomorphic. Thus, writing σ = (σ1, . . . , σm) , the functions σj are holomorphic on D−2 and bounded
in absolute value by 1 , and we are in a position to apply the Riemann Extension Theorem which we
would like to state in the following more general form:

*Theorem 7.3 Let M be a complex analytic manifold and A ⊂M be a nowhere dense analytic subset.
Then each function

f ∈ H0(U \A, OM ) , U ⊂M open ,

which is bounded locally at each point x(0) ∈ U ∩A , can uniquely be extended to a holomorphic function
on U .
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So, there is a holomorphic extension σ : D2 → Cm of the map above which factorizes over X
because of the closedness of X in D and the Maximum Principle for holomorphic functions. Since
τ has a holomorphic extension to D2 - given simply by τ (u, v) = (unb, va) - we get an extended
diagram

ρ

�
�

�
�

�	

X

σ

@
@
@

@
@R

D2

D2

?

τ

which is commutative, since σ, ρ, τ are continuous and D−2 is dense in D2 .
The main result of the present Section is

Theorem 7.4 X is canonically homeomorphic to the quotient of D2 by the action of the cyclic group
G = G/G1 . (D2\{ 0 })/G carries a natural structure of a complex analytic manifold, and the restricted
map X \ { 0 } → (D2 \ { 0 })/G is biholomorphic.

Before we present the proof , we compute explicitly the action of the group G on D2 . Of course, τ is
the quotient map with respect to the Galois group

(Z⊕ Z)/G1

whose two canonical generators act by

(u, v) 7−→ (ζnbu, v) ,

respectively by
(u, v) 7−→ (u, ζav) .

(From now on, ζℓ denotes always a primitive ℓ–th root of unity). Thus, the generator x = (be1 +
de2) mod G1 acts linearly by

(u, v) 7−→ (ζbnbu, ζ
d
av) = (ζnu, ζ

q
nv) ,

where q = d/α is relatively prime to n = a/α . (See the proof of Lemma 2). Since this action is
completely determined by the natural numbers n, q , we replace the symbol G by Cnq (where C
stands for “cyclic”) and denote the quotient by Xnq .

It is evident from the explicit form of the action of x that the origin 0 ∈ C2 is the only fixed point
and that the action of Cnq on C2 \ { 0 } is free. Thus, the map

D2 \ { 0 }
σ−→ Xnq \ σ (0)

is an unbranched covering. The action of Cnq being linear, it can also be considered as a holomorphic
action such that the system of charts

(U, σ|U , σ (U)) , U ⊂ D2 \ { 0 } open , σ|U : U −→ σ (U) a homeomorphism ,

gives Xnq \σ (0) the natural structure of a complex analytic manifold, making σ into a locally biholo-
morphic map, i.e. into an unbranched holomorphic covering. Clearly, a function f : Xnq \ σ (0) → C
is holomorphic, if and only if f ◦ σ ∈ H0(D2 \ { 0 }, OC2) .

Since the fibers of τ are invariant under Cnq , the map σ factorizes over σ : τ = ρ ◦ σ , and by
the finiteness of τ and σ , it is easily derived that ρ is finite, too, with ρ−1(0) = σ (0) . We denote by
X−nq the preimage of D−2 under ρ ; by construction, there exists a homeomorphism φ : X−nq → X−

making the diagram
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D−2

σ
�

�
�

�	

σ
@

@
@
@R

X−nq X−-φ

D−2

ρ
@

@
@
@R

ρ
�

�
�

�	

commutative. σ being on D2 \ { 0 } a holomorphic covering, it is plain that φ is indeed a holomorphic
map, and invoking the Riemann Extension Theorem again gives us a holomorphic extension

φ : Xnq \ ρ−1(0) −→ X \ { 0 } .

In order to apply the same reasoning to the inverse ψ = φ−1 : X− → X−nq , we need a repre-
sentation of this map by bounded holomorphic functions. In other words: we must be able to embed
Xnq \ ρ−1(0) into (an open subset of) a bounded polydisk in some number space Ce . In fact, the
entire space Xnq can be realized as an analytic subset of such a polydisk (with ρ−1(0) = 0 ∈ Ce) .
This follows from the general theory of complex analytic quotients which we begin to study in the next
Section. Accepting this result for the moment, we find a holomorphic extension

ψ : X \ { 0 } −→ Xnq \ { 0 }

which inverts φ since ψ ◦ φ = id and φ ◦ ψ = id by continuity.

All that remains to complete the proof of Theorem 4 is to prove the existence of continuous extensions

Xnq ←→ X ,

or, in other terms, to ascertain the implications

lim
j→∞

x′j = 0 = ρ−1(0) , x′j ∈ Xnq \ { 0 } ⇐⇒ lim
j→∞

xj = 0 , xj = φ (x′j) .

Since our argument applies to both directions, we restrict to one of them. So, assume that limx′j = 0 .
Then lim ρ (x′j) = 0 , and we can use the following purely topological fact, whose proof is left to the
reader:

Lemma 7.5 Let ρ : Y → Z be a finite continuous map between topological spaces Y and Z , let
z(0) ∈ Z be a point and ρ−1(z(0)) = { y(1), . . . , y(ℓ) } . Then to each pair of neighborhoods U0 of
ρ−1(z(0)) and V0 of z(0) there exists a neighborhood V of z(0) such that:

(i) V ⊂ V0 ,

(ii) U := ρ−1(V ) ⊂ U0 ,

(iii) U =
ℓ⋃

λ=1

Uλ , yλ ∈ Uλ open , Uλ ∩ Uµ = ∅ , λ ̸= µ ,

(iv) ρλ := ρ|Uλ
: Uλ → V is a finite map for all λ .

7.5 The analytic structure of cyclic quotients and invariant the-
ory

We claimed in the preceding Section that the quotient Xnq = D2/Cnq (together with its complex
analytic manifold structure outside the possibly singular point ρ−1(0)) can be realized as an analytic
subset of a polydisk De ⊂ Ce about the origin. Let us first try to figure out the meaning of this
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statement by assuming that Xnq ⊂ De is already known to be analytic. Then, for instance, choosing
any coordinate functions x1, . . . , xe in Ce , the restrictions gj = xj |Xnq

are continuous on Xnq

and holomorphic outside 0 = ρ−1(0) . As we remarked earlier, the lifted functions gj = gj ◦ σ are
holomorphic on D2 \ { 0 } and continuous at 0 , hence holomorphic on D2 by Riemann’s Extension
Theorem. It is also clear that these functions are invariant under the action of the group Cnq , in
symbols:

gj ∈ H0(D2, OC2)Cnq .

They are bounded and satisfy g (z) = (g1(z), . . . , ge(z)) = 0 ∈ Ce if and only if z = 0 . Moreover, g
separates all Cnq–orbits:

g (z) = g (z′) =⇒ z ∼ z′ with respect to Cnq ,

and induces a holomorphic embedding of (D2 \ { 0 })/Cnq into some punctured polydisk.
So, loosely speaking, we need a lot of invariant holomorphic functions on D2 . That these really

exist, is a consequence of the fact that, for any finite group G acting linearly on C2 , the invariant
algebra

SG , where S = C [u, v ] ,

is sufficiently large (see Chapter 8 for more details). To be more precise: S is finitely generated over SG

(as an SG–module), and SG is finitely generated as an algebra, i.e. there exists an algebra epimorphism

ε : C [x1, . . . , xe ] −→ SG ,

such that each element in SG is a complex polynomial in the images gj of the xj . Of course, the gj
can be chosen as homogeneous polynomials in S of positive degree. Then, restricting g = (g1, . . . , ge)
to any G–invariant bounded open neighborhood U of 0 ∈ C2 , gives a commutative diagram

U De ⊂⊂ Ce

U/G

ρ
@
@

@
@R

g

�
�
�
��

-g

De a bounded polydisk in Ce , where g is a (closed) topological embedding (i.e. g is injective and
defines a homeomorphism between U/G and the (closed) image g (U/G) equipped with the relative
topology coming from De) . Further, if f1, . . . , fr denotes a basis of the ideal ker ε , then

g (U/G) = {x ∈ Ce : f1(x) = · · · = fr(x) = 0 } ∩De ,

and g : U → g (U/G) is a locally biholomorphic map of complex analytic manifolds at points in U ,
where G acts freely, so that g is biholomorphic if restricted to the image under ρ of this set of points.

By a classical result of E. Noether, it is possible, at least in principle, to determine a finite set of
generators for the invariant algebra SG with respect to a finite group G ⊂ GL (2, C) . First of all, there
exists a canonical projection

µ : S −→ SG

by taking the average

µ (P ) =
1

ord G

∑
γ∈G

P ◦ γ−1

for any polynomial P ∈ S . Since µ is obviously an SG–module homomorphism, the algebra SG is
generated as a C–algebra by the elements

µ (ujvk) , j + k ≥ 1 .

Actually, it suffices to take the elements with j + k ≤ ord G .
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It is an easy étude to perform these calculations for the cyclic groups Cnq , acting via the generator
γ := diag (ζn, ζ

q
n) by

(ujvk) ◦ γ = ζj+qk
n ujvk .

Therefore,

µ (ujvk) =
1

n

n−1∑
ℓ=0

ζ(j+qk)ℓ
n ujvk ,

which is equal to
1

n
· 1 − ζ

(j+qk)n
n

1 − ζ
(j+qk)
n

ujvk = 0 , if ζj+qk
n ̸= 1 , i.e. j + qk ̸≡ 0 modn

1

n
· nujvk = ujvk , if ζj+qk

n = 1 , i.e. j + qk ≡ 0 modn ,

such that SCnq is generated by the elements

(∗) ujvk , 1 ≤ j + k ≤ n , j + qk ≡ 0 mod n .

So, for Example, taking q = 1 , yields n + 1 generators

un, un−1v, . . . , uvn−1, vn ,

which are, in fact, independent. For q = n − 1 ≥ 2 however, we find the set of generators

un, vn, uv, (uv)2, . . . , (uv)ℓ , 2ℓ ≤ n ,

which obviously contains redundant elements.
For general n and q with gcd (n, q) = 1 , 1 ≤ q < n , the Hirzebruch–Jung algorithm allows

us to select a minimal set of generators from (∗) . Let us explain this method geometrically before we
convert it into an arithmetical device in the following Section.

Regard the (additive) semigroup

Γnq = { (j, k) ∈ N2 : j + qk ≡ 0 mod n } ⊂ Z⊕ Z

as a subset of R2
+ , where R+ = { r ∈ R : r ≥ 0 } , and form the sets

Lnq =
⋃

(j, k)∈Γ∗
nq

((j, k) + R2
+) , Γ∗nq = Γnq \ { (0, 0) } ,

convLnq = convex hull of Lnq ,

B∞nq = boundary of conv Lnq :

6

-

J
J
J
J
J
JJ
@
@

@
@@

HHH
HH

·········
·

·········
·

·········
·

·········
·

·········
·

·········
·

(0, n)

(n, 0) j

k

Bnq

convLnq

Figure 7.2
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B∞nq contains two unbounded parts

{ (r, 0) : r > n } and { (0, r) : r > n }

which we remove from B∞nq to get the essential boundary (or the Newton boundary) Bnq of the semi-
group Γnq .

To find a minimal set of generators for the algebra SCnq is evidently the same as to find a minimal
set of generators for the semigroup Γnq . We claim:

Theorem 7.6 A minimal set of generators for the semigroup Γnq is given by Bnq ∩ Γnq .

Proof . It is plain due to convexity that the system Bn,q∩Γn,q cannot be shortened. Thus, it is sufficient
to show that it generates the semigroup Γn,q . Ordering the elements γε of Bn,q ∩ Γn,q from right to
left, starting with γ1 = (n, 0) , γ2 = (n − q, 1) , we get with γε = (jε, kε) the finite sequences
(jε, kε) satisfying

n = j1 > j2 > · · · > je = 0,

0 = k1 < k2 < · · · < ke = n .

We will show below that these sequences are easily computable by the numbers n and q and determine
a concrete minimal set of generators of C ⟨u, v ⟩Cn,q .

Let now γε and γε+1 be two neighboring elements. We claim:

γε and γε+1 form a Z–basis for Γn,q .

Suppose to the contrary that there is an element ρ ∈ Γn,q which is no Z–linear combination of γε and
γε+1 . Since the closed parallelogram Π with edges 0, γε, γε+1 and γε + γε+1 covers together with its
translates under the group Z γε ⊕ Z γε+1 the whole plane R2 we can assume that ρ ∈ Π . Because of
the choice of γε and γε+1 , ρ does not lie on the diagonal of Π from γε to γε+1 . It cannot lie below
the diagonal either since γε and γε+1 are elements of the convex hull of Γn,q \{ 0 } . If it lies above the
diagonal, γε + γε+1 − ρ is below the diagonal and must be zero for the same reason. Contradiction !

Next, denote by Sε the sector between the lines in R+ × R+ generated by γε and γε+1 , ε =
1, . . . , e − 1 . From the preceding claim we conclude that

Γn,q ∩ Sε = {αγε + β γε+1 : α, β ∈ N } .

Since R+ × R+ is covered by these sectors, the Theorem follows. □

Example. We illustrate the situation in the preceding Theorem by the case (n, q) = (7, 4) . Here, we
have n/ (n − q) = 7/ 3 = 3 − 1 2 − 1 2 .

Figure 7.3
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7.6 The Hirzebruch - Jung algorithm and equations for cyclic
quotients

As promised in the previous Section, we are now going to develop a numerical algorithm for computing
the numbers jε and kε .

Clearly, for each triple (ε − 1, ε, ε + 1) , ε = 2, . . . , e − 1 , we have γε−1 + γε+1 ∈ Sε−1 ∪Sε . Let
us assume that

γε−1 + γε+1 ∈ Sε−1 and γε−1 + γε+1 = αγε−1 + β γε with α > 0 , β ≥ 0 .

Then, γε+1 = (α − 1) γε−1 + β γε ∈ Sε−1 which is nonsense. Similarly, the assumption γε−1 + γε+1 =
αγε + β γε+1 , α ≥ 0 , β > 0 , leads to a contradiction. Henceforth, we get

(+) γε−1 + γε+1 = aε γε (with aε ≥ 2 due to convexity) .

The sequence aε is easily computed from the numbers n and q . Since the sequence jε is strictly
decreasing and nonnegative by assumption, we immediately see that the numbers jε and aε ≥ 2 are
uniquely determined by the following modification of Euclid’s algorithm (recall that j1 = n , j2 =
n − q ): 

j1 = n

j2 = n − q

j3 = a2j2 − j1 , 0 < j3 < j2

j4 = a3j3 − j2 , 0 < j4 < j3

...
...

je = ae−1je−1 − je−2 , 0 = je < je−1 .

This is the Hirzebruch–Jung algorithm alluded to in the headline of this Section.

This algorithm leads immediately to a continued fraction expansion of n/ (n − q) :

n

n − q
=

j1
j2

= a2 −
j3
j2

= a2 −
1(
j2
j3

) = a2 −
1

a3 −
(
j3
j4

)
= a2 −

1

a3 −
1

·
·
·
ae−2 −

1

ae−1

which we also write in the simpler form

(∗) a2 − 1 a3 − · · · − 1 ae−1 .

On the other hand, developing n/ (n − q) into an expansion (∗) with aε ≥ 2 gives us the numbers
jε back via the equations

(∗∗) j1 = n , j2 = n − q , jε+1 = aεjε − jε−1 , ε = 2, . . . , e − 1 .

The numbers kε are then easily found as well by

(∗ ∗ ∗) k1 = 0 , k2 = 1 , kε+1 = aεkε − kε−1 , ε = 2, . . . , e − 1 .
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Moreover, putting

ℓ1 = 1 , ℓ2 = 1 , ℓε+1 = aε ℓε − ℓε−1 , ε = 2, . . . , e − 1 ,

we check by induction that

jε + qkε = nℓε , ε = 1, . . . , e

kε+1jε − kεjε+1= n

ℓε+1jε − ℓεjε+1 = q

kε+1ℓε − kεℓε+1= 1

 ε = 1, . . . , e − 1 .

In particular, gcd (kε, ℓε) = 1 for ε = 1, . . . , e . Since je = 0 , ke = n it follows automatically that
ℓe = q . Remark also that

ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓe−1 ≤ ℓe .

In the theory of continued fractions it is shown (which the reader can easily check by himself) that
kε+1 is equal to the uniquely determined reduced numerator of a2 − 1 a3 − · · · − 1 aε .

In conclusion, we have proven:

Theorem 7.7 Let n, q be natural numbers satisfying 1 ≤ q < n , gcd (n, q) = 1 , and denote by

a2 − 1 a3 − · · · − 1 ae−1 , aε ≥ 2 ,

the Hirzebruch–Jung continued fraction expansion for n/ (n − q) . Then the invariant algebra SCnq is
minimally generated by the monomials

ujεvkε , ε = 1, . . . , e ,

where the sequences jε and kε are given by (∗∗) and (∗ ∗ ∗) , respectively.

Because of the completely analogous laws for the formation of the jε and kε , we can write down
at once a bunch of algebraic relations for the functions

xε = gε(u, v) = ujεvkε , ε = 1, . . . , e ,

namely
xε−1xε+1 = xaε

ε , ε = 2, . . . , e − 1 .

There are still other obvious relations: Remark that

jδ = aδ+1jδ+1 − jδ+2

= (aδ+1 − 1)jδ+1 + (aδ+2 − 1)jδ+2 − jδ+3 , etc.

and similarly for the numbers kδ , and therefore

xδxε = x
aδ+1−1
δ+1 x

aδ+2−2
δ+2 · . . . · xaε−2−2

ε−2 x
aε−1−1
ε−1 , 2 ≤ δ + 1 < ε − 1 ≤ e − 1 .

Due to the general theory of analytic quotients sketched in the previous Section, it follows that Xnq

is contained in the analytic set

{x = (x1, . . . , xe) ∈ De ⊂ Ce : fδε(x) = 0 , 2 ≤ δ + 1 < ε − 1 ≤ e − 1 } ,

where

fδε(x) =


xδxε − x

aδ+1

δ+1 , δ + 1 = ε − 1

xδxε − x
aδ+1−1
δ+1 · . . . · xaε−1−1

ε−1 , 2 ≤ δ + 1 < ε − 1 ≤ e − 1 .
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It is in fact not difficult to show that the kernel of the algebra homomorphism{
C [x1, . . . , xe ] −→ C [u, v ]Cnq

xε 7−→ gε

is minimally generated by the (e − 1)(e − 2)/ 2 polynomials fδε . In particular, the minimal number
of equations does only depend on the minimal number of generators for the invariant algebra. This is
no coincidence; the natural explanation for this phenomenon shall be gained from the general theory
of rational singularities in Chapter 12. For this reason, we resist the temptation to handle the case of
cyclic quotients here with more elementary tools.

Let us, however, propose a form of these equations that seems to be the easiest to memorize and
has, indeed, some conceptual advantage. We look at generalized 2 × n matrices (with entries in an
arbitrary ring R ) of type

M =

 x1 x2 x3 · · · xn
c12 c23 · · · cn−1,n

y1 y2 y3 · · · yn


and form all possible generalized maximal minors

fij = xi yj − yi ci,i+1 · . . . · cj−1,j xj , 1 ≤ i < j ≤ n .

We then call the ideal generated by these elements an ideal of quasi–determinantal type in R . If R is
a polynomial ring over a field k in m variables, we call the algebraic set

{x ∈ km : fij(x) = 0 , 1 ≤ i < j ≤ n }

the variety of quasi–determinantal type associated to the matrix M . The case c12 = · · · = cn−1,n = 1
is referred to as the determinantal type. For an ideal (or a variety) to be (quasi-) determinantal (and
not merely to be of this type), it has to satisfy an extra purely algebraic condition (see Chapter 11).

Using this notion, we can summarize the result on the equations for the cyclic quotients Xnq by
stating that they form an ideal of quasi–determinantal type associated to the matrix

Mnq =

 x1 x2 x3 · · · xe−1
xa2−2
2 xa3−2

3 · · · x
ae−1−2
e−1

x2 x3 x4 · · · xe


Observe that it is of determinantal type, if a2 = · · · = ae−1 = 2 , that is if

q = n − 1

(which implies e = n + 1 ). But these equations are already known to us: they define the cone over the
rational normal curve of degree n in Pn . Hence, the singularity at the vertex of this cone is realizable
(at least topologically) as the singular point of the quotient C2/Cn,n−1 .

Of course, we should remark here that for e = 3, 4 the equations can always be presented in
determinantal form looking at the matrices(

x1 xa2−1
2

x2 x3

)
and

(
x1 x2 xa3−1

3

xa2−1
2 x3 x4

)
.

More generally, such a representation is possible, if a3 = · · · = ae−2 = 2 , and these cases exhaust
indeed the list of all determinantal cyclic quotients.
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7.7 The classification of normal Jung singularities

In the following, we would like to emphasize the importance of the notion of normality for singular
points of complex analytic sets by showing that

(a) the cyclic quotients Xnq are normal

and

(b) each normal Jung singularity is not only homeomorphically, but also complex analytically equiva-
lent to such a quotient .

Moreover, we will establish the first example of a normalization by studying the special Jung singularities
Jnq .

Deviating slightly from our previous notations, we write Xnq for the global quotient C2/Cnq and
have a closer look to the diagram

C2 Ce-g

Xnq

ρ

@
@
@

@
@R

g

�
�
�

�
��

where g = (g1, . . . , ge) is composed by the generating polynomials gε(u, v) of the invariant algebra
SCnq . Of course, we would prefer to view the maps ρ and g as being holomorphic rather than being
continuous only. Now, for a continuous map φ : M1 → M2 between abstract complex manifolds M1

and M2 , it is almost immediate from the definition that φ is holomorphic, if and only if f ◦ φ ∈
H0(φ−1(V ), OM1

) for all f ∈ H0(V, OM2
) , V ⊂ M2 open. Thus, there is only one way to define

holomorphy on the abstract quotient Xnq :
A function f : V −→ C , V open in Xnq , is called holomorphic, if f ◦ ρ ∈ H0(ρ−1(V ), OC2) .
Similarly, we call a map f = (f1, . . . , fm) : V → Cm holomorphic, if all coordinate functions fµ

are holomorphic.
As in the case of continuous functions, we see at once that f ◦ ρ is invariant under the action of

the group Cnq on H0(ρ−1(V ), OC2) . On the other hand, each invariant holomorphic function f ∈
H0(ρ−1(V ), OC2)Cnq is the lifting of a function f on V . Hence, denoting by H0(V, OXnq ) as usual
the algebra of holomorphic functions on V ⊂ Xnq , there exists a canonical algebra–isomorphism

H0(V, OXnq )
∼−→ H0(ρ−1(V ), OC2)Cnq .

Since we have already introduced a complex analytic manifold structure on Xnq \ { 0 } , 0 = ρ (0) ,
we have to convince ourselves that our definition is correct for open sets V not containing 0 . But this
is clear, since the holomorphic coordinate charts of Xnq \ { 0 } are built up by localizing ρ .

So, we have a priori some sort of analytic structure on the quotient Xnq making ρ and g into
holomorphic maps, where topologically ρ is a finite map and g is (as we already claimed in Section 5)
a closed immersion such that Xnq can be topologically identified with a closed subset (in fact, an
algebraic subset) of Ce . The main point to be proven later is the fact that each invariant holomorphic
function on C2 can be approximated by invariant polynomials. Therefore, the holomorphic functions
on Xnq are precisely the restrictions of holomorphic functions on Ce .

Having the notion of holomorphic functions on Xnq at our disposal, we can also introduce the
concept of analytic subsets as in the case of manifolds. If

A = {x ∈ V ⊂ Xnq : f1(x) = · · · = fr(x) = 0 } ,

then ρ−1(A) is the set of points in ρ−1(V ) , where the functions fρ = fρ ◦ ρ vanish simultaneously.
In particular, if A is analytic and nowhere dense then so is ρ−1(A) , ρ being finite. This implies the
following:
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If A ⊂ V is a nowhere dense closed analytic subset of the open set V ⊂ Xnq , then each everywhere
in V locally bounded function f ∈ H0(V \A, OXnq ) can uniquely be extended to a holomorphic function
on V .

Indeed: f ◦ ρ = f is holomorphic on ρ−1(V ) \ ρ−1(A) and holomorphically extendable to ρ−1(V )
by Riemann’s Extension Theorem. Since f is invariant under Cnq , the same holds for the extension
(just by continuity).

For short, we say that Riemann’s Extension Theorem holds for Xnq . In general, for spaces X
with a suitable notion of holomorphic functions, we call a point x(0) ∈ X a normal point, if Riemann’s
Extension Theorem is true in an open neighborhood U of x(0) in X . Of course, all points of a complex
manifold are normal.

It is quite obvious that the normality of the quotients Xnq is of great significance for the problem
to classify all Jung singularities. Notice first that we constructed a continuous map

φ : Xnq −→ X

for each Jung singularity X ⊂ Cm , the pair (n, q) of course depending on X (and Xnq suitably
localized near 0 ). Writing φ = (φ1, . . . , φm) , the functions φµ are holomorphic on Xnq \ { 0 } and
continuous at the origin. Thus, φ can be viewed as a holomorphic map φ : Xnq → Cm that factorizes
over X , and hence as a holomorphic map φ : Xnq → X , if we endow X with holomorphic functions
by restricting holomorphic functions on Cm to X .

This procedure works also in the opposite direction. We extended the inverse ψ : X− → X−nq
holomorphically to X \ { 0 } → Xnq \ { 0 } by assuming that X \ { 0 } was a manifold. Now, we see
that it is sufficient to assume all points of X \ { 0 } to be normal . Finally, if the origin 0 ∈ X is a
normal point, then the extension ψ : X → Xnq is holomorphic in the same sense as above.

So, let us call a Jung singularity X ⊂ Dm ⊂ Cm normal , if all points x(0) ∈ X are normal (with
respect to restrictions of holomorphic functions in Cm to X ). Then we have:

Theorem 7.8 Let X ⊂ D ⊂ Cm be a normal Jung singularity. Then there exist numbers n, q such
that the quotient Xnq is biholomorphically equivalent to X near 0 . More precisely: if a neighborhood
of 0 ∈ Xnq is represented by an analytic subset of a polydisk De ⊂ Ce , then there exist holomorphic
maps

De

Φ
−→
←−
Ψ

D

inducing the homeomorphism φ : Xnq → X and its inverse ψ , respectively.

In particular, it follows that X is smooth outside the origin, i.e. X represents automatically an
isolated Jung singularity. To some extent, this is no surprise, since normal surface singularities are
always isolated (see Chapter 5). But since Theorem 8 is obviously correct for any polydisk D (no
matter how large), it suggests the following

Corollary 7.9 If the branch locus of a normal Jung singularity X is contained in a line, then X is
a manifold.

Indeed: In this case, we have the fundamental group

π1(C∗ × C) ∼= π1(C∗)⊕ π1(C) ∼= Z⊕ (0)

whose subgroups of finite index are necessarily of type H = bZ ⊕ (0) , b ∈ N∗ . In order to connect
this degenerate situation with the one studied previously, we must restrict coverings over C∗ × C to
C∗ × C∗ , that is we must take the preimage G of the group H under the natural homomorphism

Z⊕ Z = π1(C∗ × C∗) −→ Z⊕ (0)

induced by the inclusion C∗ × C∗ → C∗ × C , which, of course, is just the quotient by the second
summand. Consequently,

G = bZ⊕ 1Z ,

and Corollary 9 is a special case of
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Corollary 7.10 If for a normal Jung singularity X the group G ⊂ Z ⊕ Z describing the covering
X− → D−2 is diagonal, then X is smooth.

In fact, under this condition we may take n = 1 and q = 1 , and the group Cnq is trivial such
that D2/Cnq = D2 . Moreover, the finite (branched) covering X = D2 → D2 is explicitly given by
a map of type (u, v) 7→ (ub, va) . This statement reflects the well–known one–dimensional result that
each (normal, branched or unbranched) covering of a smooth curve is free of singularities and locally
given by u 7→ ua , a ∈ N∗ . □

Although we introduced the concept of Jung singularities via embeddings and projections, we only
want to classify them up to abstract biholomorphic equivalence in the sense explained in Theorem 8. This
is a very strong relation; for instance, all smooth Jung singularities are isomorphic, but in general such
a biholomorphic map between isomorphic Jung singularities cannot be factored to give a commutative
diagram

D1 D2
-

X1 X2
-

?

ρ1

?

ρ2

E.g., the abstract quotients Xnq can be realized by different branched coverings ρ : Xnq → C2 ,
depending on the numbers b and α (see Section 4). However, there is always a minimal realization with
b = 1 = α , since the quotient map σ : C2 → Xnq factorizes over the map τmin(u, v) = (un, vn) .
Thus, the (global or local) diagram in Section 4 can be factored into

C2 Xnq

C2C2 C2

-

??
- -

@
@
@

@@R

PPPPP �����1

σ

τmin

ρminid ρ

τ̃

τ

where τ̃ (x, y) = (xb, yα) . It is easily checked that, if Xnq is identified with the algebraic subset
in Ce given by the equations fδε(x1, . . . , xe) = 0 of Section 6, the projection ρmin is induced by
x = x1 , y = xe . In the following, we assume that ρ = ρmin .

Excluding the uninteresting smooth case n = 1 , we may assume - as we already did before - that
n ≥ 2 . The following is then (together with Theorem 8) the final answer to the classification problem
for normal Jung singularities.

Theorem 7.11 Assume that n ≥ 2 , 1 ≤ q < n , gcd (n, q) = 1 . Then Xnq is a non–smooth normal
Jung singularity which normalizes Jnq . Two such quotients Xnq and Xn′q′ are biholomorphically
equivalent, if and only if

n = n′ and q = q′

or

n = n′ and qq′ ≡ 1 mod n .

Proof . Xnq is already known to be a normal Jung singularity. Further, it is easily seen that there exists
a commutative diagram
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ρ′

�
�

�
�

�
�	

J−nq = { (x, y, z) ∈ (C∗)3 : zn = xn−qy }

σ′

@
@
@
@
@
@R

C∗ × C∗

C∗ × C∗
?

τ

where σ′(u, v) = (un, vn, un−qv) , ρ′(x, y, z) = (x, y) and τ (u, v) = (un, vn) . Moreover, σ′ is
surjective and

σ′(u, v) = σ′(u′, v′) ⇐⇒ u′ = ζβnu , v
′ = ζγnv , ζ

β(n−q)+γ
n = 1

⇐⇒ u′ = ζβnu , v
′ = ζγnv , γ ≡ β q mod n

⇐⇒ u′ = ζβnu , v
′ = (ζqn)

βv .

Therefore, J−nq is the quotient of C∗×C∗ by Cnq (in particular, it is connected), and by the normality
of Xnq , we can extend this isomorphism to get a commutative diagram

Xnq Jnq-ν

C2

ρ

@
@

@
@
@R

ρ′
�

�
�

�
�	

where ν is automatically surjective and finite. But over

Σ = { (x, y) ∈ C2 : xy = 0 } ,

both maps ρ and ρ′ in this diagram are obviously one–to–one, such that ν is bijective and consequently
a homeomorphism. Using the explicit realization of Xnq in Ce , it is clear that ν is the map induced
by {

Ce −→ C3

(x1, . . . , xe) 7−→ (x1, xe, x2) .

For q = n − 1 , this map is the identity (up to permutation of the coordinates), such that ν−1 is
holomorphic, too. But, if q ̸= n− 1 , the inverse ν−1 cannot be holomorphic, since Jnq has nonisolated
singularities (and, therefore, Jnq is not normal). So, in some definite sense, Xnq is a normal complex–
analytic structure (via ν ) on the topological space Jnq . This is what we mean by a normalization of
Jnq (see also the remarks below).

That Xnq is not smooth at the origin for n ≥ 2 can be proved in many different ways. The first one
is of topological nature: it is easy to see that the fundamental group of the manifold Xnq \{ 0 } is cyclic
of order n , hence not trivial. In fact, this is true for a fundamental set of punctured neighborhoods
of the origin, such that Xnq is even not a topological manifold near 0 . The second way is to use the
equations for Xnq ⊂ Ce and to prove that Xnq cannot abstractly be realized as an analytic subset of
some Cm with m < e (locally near 0 ). This follows from the fact that all the germs of the functions
fδε at the origin lie in m2

e (see also the next Chapter). The third way shall be explained in Chapter 8: A
quotient C2/G , G a finite subgroup of GL (2, C) , is smooth at the origin, if and only if G is generated
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by reflections (which leave, by definition, a line through 0 pointwise fixed). But, for the groups Cnq ,
only the identity has this property.

The last assertion is also a consequence of the general theory of quotients (see Theorem 8.15): Xnq

and Xn′q′ are biholomorphically equivalent, if and only if the groups Cnq and Cn′q′ are conjugate in
GL (2, C) . This, of course, implies that necessarily n = n′ , and from(

a b

c d

)
·

(
ζn 0

0 ζqn

)
=

(
ζn 0

0 ζq
′

n

)r

·

(
a b

c d

)

it is easily deduced that q = q′ (for r = 1 ) or r = q , q q′ ≡ 1 mod n (for r ̸= 1 ). □
We would like to add here a few remarks in connection with Theorem 11. First of all, the proof

shows that the complex analytic singularities of Jnq outside the origin (which exist in case q ̸= n − 1 )
are invisible from the abstract topological point of view! For two–dimensional normal singularities this
situation is not possible (see Chapter 15). (Observe also that locally near such a point, Jnq is a product
of a smooth curve and a locally irreducible curve, and it is a classical fact that all (germs of) irreducible
curves are homeomorphic to each other). That ν : Xnq → Jnq is not holomorphically invertible in
general is reflected by the induced algebra homomorphism

OC3,0/ jnq,0OC3,0 =: OJnq,0 −→ OXnq,0

which is always injective, but not surjective for q ̸= n− 1 . However, one can prove directly (or conclude
later from the general theory), that the integral domains OJnq,0 and OXnq,0 have the same field of
fractions, say Q , and that OXnq,0 is the integral closure of OJnq,0 in Q , i.e. OXnq,0 consists of all
elements in Q that are algebraic over OJnq,0 .

The reader may also amuse himself by computing the continued fraction

n

n − q′
= a′2 − 1 a′3 − · · · − 1 a′e′−1

for q q′ ≡ 1 mod n . He will find that e = e′ , a′ε = ae+1−ε , ε = 2, . . . , e − 1 , if

n

n − q
= a2 − 1 a3 − · · · − 1 ae−1

denotes the corresponding continued fraction for the pair (n, q) .
We want to close this Section with the following complementary result to Theorem 8:

Theorem 7.12 If C is any finite cyclic subgroup of GL (2, C) , then the quotient C2/C is biholo-
morphic to a quotient of type Xnq .

Remark . In Chapter 8, we will prove that the action of any finite group G acting holomorphically on
C2 can be linearized near the origin by introducing new local holomorphic coordinates on C2 at 0 .
As a consequence of Theorem 12, we thus can state that any quotient of C2 by a finite cyclic group of
(local) biholomorphic maps is (locally) biholomorphically equivalent to one of the singularities Xnq (or
smooth).

Proof of Theorem 12. Take a generator ψ of C and bring it into Jordan normal form. Since matrices
of type (

a 1

0 a

)
, a ̸= 0 ,

are not of finite order, ψ must be diagonalizable. So, if n denotes the order of C , we may assume that

ψ =

(
ζan 0

0 ζbn

)
, gcd (a, b) = 1 .
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If gcd (a, n) = 1 , it is possible to solve the congruence b ≡ aq mod n . Hence, ψ = γa , where, as
above,

γ =

(
ζn 0

0 ζqn

)
and C = ⟨ψ ⟩ = ⟨ γ ⟩ . If gcd (q, n) = 1 , we have C = Cnq . Otherwise, C has a generator ψ of the
form

ψ =

(
ζrm 0

0 ζsm

)
with 1 ≤ m < n = rm , such that

ψm =

(
ζr 0

0 1

)
.

If, on the other hand, gcd (a, n) ̸= 1 , then there exists a number m dividing n with

ψm =

(
1 0

0 ζβn

)

where β ̸≡ 0 mod n .
Hence, in both cases (interchanging coordinates in the second one) we find a generator ψ of our

cyclic group C of order n such that for some m dividing n we have

ψ =

(
ζβm 0

0 1

)
, β ̸≡ 0 mod m .

By Corollary 9, the quotient C2/C1 of C2 by the subgroup C1 = ⟨ψ ⟩ ⊂ C is isomorphic to C2 ,
where the biholomorphic map λ : C2/C1 → C2 is induced by the dotted arrow

C2 C2-a

C2/C1

?

b λ

�
�

�
�

�	

given by (x, y) = (uℓ, v) , where βℓ ≡ 0 mod m .
It is obvious that the quotient group C = C/C1 acts on C2/C1 by the generator ψ = ψ mod C1 .

If we transfer this action to C2 via the isomorphism λ , we immediately see that ψ acts linearly on
C2 (with the coordinates (x, y) ) by a matrix of type(

ζαν 0

0 ζβν

)

where ν is a proper divisor of n .
So, we can keep on playing this game until we reach the trivial group or a group of type Cnq

generated by an element of the correct form (with new n and q ). □

The reader may have noticed that the subgroup C1 ⊂ C is generated by a reflection. So, the proof
illustrates in a special case the general principle concerning reflection groups we already mentioned in
the course of the proof for Theorem 11. Moreover, it suggests as a general method to divide out first
the subgroup H generated by all reflections in a given finite subgroup G ⊂ GL (2, C) and to study
the action of the factor group G/H on the manifold C2/H . (In fact, as it will turn out, H is always
a normal subgroup of G ).
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7.8 The toroidal group structure of X−
nq

As in the previous Section, we write Xnq = C2/Cnq and Jnq = { (x, y, z) ∈ C3 : zn = xn−qy } ,
respectively, and we identify X−nq = (C∗)2/Cnq with J−nq = { (x, y, z) ∈ (C∗)3 : zn = xn−qy } by
means of the map (u, v) 7→ (un, vn, un−qv) . Our goal in the present Section consists in providing X−nq
with a natural group structure of an algebraic torus T2 which acts canonically on Xnq by extending the
action of T2 on itself (via multiplication from the right). Since T2 is isomorphic, as a complex–analytic
manifold, to C∗×C∗ , we may and will replace the open and dense part X−nq of Xnq by C∗×C∗ . The
resolution of Xnq is then achieved in the following Section by a partial compactification of C∗ × C∗ .

Let us start with a simple remark on commuting actions of two groups G and H on a set X , i.e.
(right) actions satisfying (xg)h = (xh)g for all g ∈ G , h ∈ H . We claim that, under this hypothesis,
the group H acts canonically on the quotient X/G . This, of course, amounts to showing that the map
αh : X → X belonging to an element h ∈ H maps G–orbits [x ]G onto orbits of the same kind. In
other words, we must show that

x ∼G x1 ⇐⇒ xh ∼G xh1 for all h ∈ H .

One of these implications is trivial; the other one follows from the sequence of implications

x ∼G x1 =⇒ it exists g ∈ G with xg = x1

=⇒ it exists g ∈ G with (xh)g = (xg)h = xh1 for all h ∈ H

=⇒ xh ∼G xh1 for all h ∈ H .

Returning to the group Cnq ⊂ GL (2, C) , we try to exhibit a (maximal) subgroup in GL (2, C)
commuting with Cnq . Such a group is evidently the maximal torus

T2 =

{(
s 0
0 t

)
: s, t ∈ C∗

}
of GL (2, C) . By acting in the canonical way on C2 , T2 produces the four orbits

(1, 1) · T2 = C∗ × C∗ ,

(1, 0) · T2 = C∗ × { 0 } ,

(0, 1) · T2 = { 0 } × C∗ ,

(0, 0) · T2 = { (0, 0) } .

Due to the first identity, which in fact establishes a bijection between T2 and C∗ ×C∗ , we sometimes
identify T2 with C∗ × C∗ . By the remarks made before, there exists a canonical action of T2 on the
quotient

Xnq = (C× C)/Cnq ,

and the T2–orbit of the image (1, 1) in Xnq is equal to (C∗ × C∗)/Cnq = X−nq . However, it is clear
that T2 does not act effectively on Xnq , whereas the quotient T2/Cnq does. Again, we identify the
group T2/Cnq with its orbit X−nq . Obviously, the map{

C∗ × C∗ −→ C∗ × C∗

(u, v) 7−→ (un, u−qv)

is a surjective group homomorphism with kernel isomorphic to Cnq such that

X−nq
∼= T2/Cnq

∼= C∗ × C∗

is a torus acting canonically on Xnq . Identifying X−nq with J−nq , the bijection C∗ × C∗ → J−nq is
induced by

(s, t) 7−→ (s, sqtn, st) .
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In other words: associated to the cyclic quotient Xnq there is an action of T2 on C3 , namely (multi-
plicatively written):

(x, y, z) · (s, t) 7−→ (xs, ysqtn, zst) ,

that induces an action on Jnq ⊂ C3 and a bijection T2
∼→ J−nq = X−nq by taking the T2–orbit of the

point (1, 1, 1) .
Now recall that the normalization map from Xnq ⊂ Ce onto Jnq was explicitly presented in the

form of a projection x = x1 , y = xe , z = x2 . Thus, if we want to extend the action of T2 on Xnq

to Ce , we have to do it by the rules x1 7→ x1s , x2 7→ x2st , xe 7→ xes
qtn . But on X−nq , the relations

x1x3 = xa2
2 , x2x4 = xa3

3 , . . . can be solved successively for x3, x4 and so on, such that there is only
one possible extension, viz.

(x1, . . . , xe) · (s, t) 7−→ (. . . , xεs
ℓεtkε , . . .)ε=1,...,e ,

where the numbers (kε, ℓε) are determined by the Hirzebruch–Jung algorithm for n/ (n − q) . Notice
that this leads to the correct action on xe , since ℓe = q , ke = n , and that the action on Ce

constructed this way is compatible with all equations fδε , that is: if the functions fδε vanish at a point
x ∈ Ce , then they vanish at all points of the T2–orbit of x . To be more precise, there is the following
identity

fδε((x1, . . . , xe) · (s, t)) = sℓδ+ℓεtkδ+kεfδε(x1, . . . , xe)

for all s, t ∈ C∗ , (x1, . . . , xe) ∈ Ce , 2 ≤ δ + 1 ≤ ε − 1 ≤ e − 1 . So, accepting all yet unproven
details, we can summarize our considerations in the following form:

Theorem 7.13 Let n and q be given with 1 ≤ q < n , gcd (n, q) = 1 and denote by kε , ε =
1, . . . , e , the numbers associated to the Hirzebruch–Jung continued fraction expansion for n/ (n − q) .
Then, embedding the torus T2 = C∗ × C∗ into (C∗)e via

(s, t) 7−→ (sℓεtkε)ε=1,...,e

and projecting down to the (x1, xe)–plane gives a concrete realization of the unbranched covering of
C∗×C∗ with group Cnq such that the topological closure of the image of T2 in Ce is biholomorphically
equivalent to the analytic quotient Xnq = C2/Cnq .

The main point here is the (implicit) assertion that the closure of the immersed torus has the
structure of a normal variety; all other statements are direct or indirect implications of earlier results.
We will come back to the question of normality in Appendix B to this Chapter that presents an outline
of the general theory of such torus embeddings.

7.9 Resolution of Jnq by partial compactifications of C∗ × C∗

According to the previous Section, we have found an open dense part T2 ∼= C∗ × C∗ in Jnq and in
Xnq such that the restrictions of the canonical projections ρ : Jnq → C2 and Xnq → C2 to T2 are
of the form

(∗) (s, t) 7−→ (s, sqtn) .

Hence, for any resolution π : X̃nq → Xnq of the Jung singularity Xnq , T2 ∼= π−1(T2) is an open

and dense subset of X̃nq having the property that the functions s and sqtn (existing on T2 ) can

be holomorphically extended to X̃nq such that the map X̃nq → C2 defined by these extensions is
proper (as the composition of the resolution π with the finite branched covering ρ ) and, in particular,
surjective.

We are therefore led to the idea to closing up C∗ × C∗ in some manifold in such a way that (∗)
extends to a surjective holomorphic map onto C2 . It is clear that just taking C × C as a closure is
not the ultimate choice, since the image of the preimage of the origin under the extension is the t–axis
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and, therefore, not a compact subset of C×C . Consequently, it seems to be reasonable to close up the
t–axis to a projective line and the whole set C∗ ×C∗ to a holomorphic line bundle over P1 (since this
works at least for the cones over the rational normal curves). To be more precise, we regard the line
bundle OP1

(−b) on P1 given by the patching rules

u0 =
1

u1
, v0 = ub1v1 ,

and identify C∗×C∗ with an open dense part of the total space of this line bundle via s = v0 , t = u0 .
Then the functions g̃1 = s , g̃e = sqtn (the number e will be identified later with the number that
already appeared in Section 6) extend to the functions

g̃1 = v0 = ub1v1 , g̃e = un0 v
q
0 = ubq−n1 vq1 ,

which are holomorphic everywhere, if and only if b ≥ 0 and bq − n ≥ 0 .
For the cones mentioned above, i.e. for arbitrary n ≥ 2 and q = 1 , we can take b = n and see

that we get the missing axis in C2 by the image of the fiber of O(−n) over ∞ . In fact, as we already
know, the singularity Xn1 can be resolved by the total space of the line bundle O(−n) . In all other
cases, bq − n will always be different from zero, such that the new fiber is still mapped to the origin
(if bq − n > 0 ). But, taking b1 > 0 minimally with b1q − n > 0 , it is trivial that

0 < b1q − n =: q2 < n2 := q =: q1 < n1 := n ,

and g̃e = uq21 v
n2
2 behaves better in the new variables with respect to the variable u1 compared to the

original behaviour with respect to v0 .
The moral to be drawn from these considerations is easy: Starting with n1 = n and q1 = q = n2

as above, define numbers bi ≥ 2 , ni and qi inductively by

ni = biqi − qi+1 , 0 ≤ qi+1 < qi , ni+1 = qi ,

and stop when qr+1 = 0 . In other words, determine the numbers b1 ≥ 2, . . . , br ≥ 2 for the
Hirzebruch–Jung continued fraction of n/ q instead of n/ (n − q) (see Section 6):

n

q
= b1 − 1 b2 − · · · − 1 br .

Then the resolution of Xnq should consist of a manifold which can be constructed by patching the total
spaces of the line bundles OP1

(−b1), . . . ,OP1
(−br) together in a specific manner.

To fill in all the details, let us begin with the r copies O(−b1), . . . ,O(−br) given in coordinates by

O (−b1) : u0 =
1

u1
, v0 = ub11 v1

O (−b2) : ṽ1 =
1

v2
, ũ1 = vb22 u2

...
...

O (−br) :


ũr−1 =

1

ur
, ṽr−1 = ubrr vr , if r is odd,

ṽr−1 =
1

vr
, ũr−1 = vbrr ur , if r is even.

It is easily shown by induction on r that by successively identifying

O(−bi−1) ⊃ C× C ∋ (ui−1, vi−1) ∼= (ũi−1, ṽi−1) ∈ C× C ⊂ O(−bi) , i = 2, . . . , r ,

we get a topological Hausdorff space which we will denote by

X̃nq resp. by X̃(b1, . . . , br) .
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Due to the construction, X̃nq is a complex–analytic manifold covered by the r + 1 open dense sets

Ui
∼= C× C = { (u1, vi) : ui, vi ∈ C } , i = 1, . . . , r ,

where Ui−1 and Ui always form a covering of O(−bi) . Therefore, X̃nq contains the union

E = { v0 = v1 = 0 } ∪ {u1 = u2 = 0 } ∪ . . .

of r copies Ei of the rational curve P1 which intersect each other schematically in the following
manner:

Figure 7.4

It is an immediate consequence of the construction of the manifolds X̃nq that all monomials

uj0v
k
0 , j, k ≥ 0 , extend to meromorphic functions on all of X̃nq . The first step in determining all

holomorphic functions on X̃nq (along E ) is provided by

Theorem 7.14 The functions g̃1 = v0 , g̃2 = u0v0 and g̃e = un0 v
q
0 extend holomorphically to X̃nq .

Proof . We write g̃ε = ukε
0 v

ℓε
0 , ε = 1, 2, e , and define the integers k

(i)
ε , ℓ

(i)
ε , i = 0, . . . , r inductively

by  k
(0)
ε = kε , k

(i)
ε = ℓ

(i−1)
ε , i = 1, . . . , r

ℓ
(0)
ε = ℓε , ℓ

(i)
ε = biℓ

(i−1)
ε − k

(i−1)
ε , i = 1, . . . , r .

This choice is obviously made for having the expansions

g̃ε = ukε
0 v

ℓε
0 = u

k(0)
ε

0 v
ℓ(0)ε
0 = v

k(1)
ε

1 u
ℓ(1)ε
1 = u

k(2)
ε

2 v
ℓ(2)ε
2 = · · · ,

and our claim is equivalent to saying that

ℓ(i)ε ≥ 0 for ε = 1, 2, e and i = 0, . . . , r .

But, putting ℓ
(−1)
ε = k

(0)
ε = kε , the three series ℓ

(i)
ε , i = −1, . . . , r , are generated by

ℓ
(i)
1 : 0, 1 ,

ℓ
(i)
2 : 1, 1 ,

ℓ
(i)
e : n, q .

ℓ(i+1)
ε = bi+1ℓ

(i)
ε − ℓ(i−1)ε , ε = 1, 2, e .
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Hence, replacing q by n − q in Section 6, we get

0 = ℓ
(−1)
1 < ℓ

(0)
1 < · · · < ℓ

(r)
1 = n ,

1 = ℓ
(−1)
2 ≤ ℓ

(0)
2 ≤ · · · ≤ ℓ

(r)
2 = n − q ,

n = ℓ
(−1)
e > ℓ

(0)
e > · · · > ℓ

(r)
e = 0 .

Following the proof of Theorem 14, we have in the last coordinate system

g̃1(ur, vr) =

 v
k
(r)
1

r unr , r odd ,

u
k
(r)
1

r vnr , r even

with a positive number k
(r)
1 - in fact, it is clear that k

(r)
1 = ℓ

(r−1)
1 is the uniquely determined k

satisfying 0 < k < n and k(n − q) ≡ −1 mod n - whereas the last function g̃e is simply given by

g̃e(ur, vr) =

{
vr , r odd ,

ur , r even .

Therefore, the holomorphic map γ : X̃nq → C2 defined by (g̃1, g̃e) is surjective, as we wanted.
Moreover, the set

{ x̃ ∈ X̃nq : max (| g̃1(x) | , | g̃e(x) |) ≤ 1 }

is easily seen to be a compact neighborhood of E which can also be described by

{ (u0, v0) : | v0 | ≤ 1 } ∪ { (ur, vr) : | vr | ≤ 1 } .

(From now on, we always assume r to be odd. For the case r even, one must replace in all arguments

vr by ur and vice versa). Thus, γ is a proper map. Since g̃2 is holomorphic on X̃nq and satisfies

the relation g̃n2 = g̃n−q1 g̃e on U0 , this identity must hold on all of X̃nq due to the Identity Theorem.
Consequently, γ factorizes over ρ : Jnq → C2 :

X̃nq Jnq-γ̃

C2 ,

γ

@
@

@
@
@R

ρ

�
�

�
�

�	

γ̃ (x̃) = (g̃1(x̃), g̃e(x̃)) , Jnq = { (x1, x2, xe) ∈ C3 : xn2 = xn−q1 xe } .
Since ρ is a finite map, γ̃ is automatically proper (which also could be checked directly). Of course

(X̃nq)
− := γ−1((C2)−) ∼= { (u0, v0) ∈ C2 : u0v0 ̸= 0 } = C∗ × C∗ ,

and, γ being the correct covering of (C2)− , γ̃ is a biholomorphic map when restricted to (X̃nq)
− :

γ̃− : (X̃nq)
− ∼−→ J−nq .

Now, recall that sing Jnq equals { 0 } for q = n − 1 and the set {x1 = 0 } otherwise. In both
cases, one easily checks that

γ̃−1(Jnq \ sing Jnq) =

{
{ (u0, v0) ∈ C2 : v0 ̸= 0 } , q < n − 1

{ (u0, v0) : v0 ̸= 0 } ∪ { (ur, vr) : vr ̸= 0 } , q = n− 1 ,
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and that
γ̃ : γ̃−1(Jnq \ sing Jnq) −→ Jnq \ sing Jnq

is bijective. But since, in the first case, the composition

C× C∗ ∼= γ̃−1(Jnq \ sing Jnq) −→ Jnq \ sing Jnq ↪−→ C3

is defined by (x1, x2, xe) = (v0, u0v0, u
n
0 v

q
0) which has maximal Jacobi rank, the restriction is biholo-

morphic. In the second case, one has to compute the restriction of γ̃ to the part Ur , too. But since
q = n − 1 , all bi = 2 and r = n − 1 , and thus

g̃1(ur, vr) = vn−1r unr , g̃3(ur, vr) = vr ,

such that
g̃2(ur, vr) = vrur ,

and we are in the same situation as before.
Summarizing the results obtained so far in this Section, we state

Theorem 7.15 The proper holomorphic map γ̃ = (g̃1, g̃2, g̃e) : X̃nq → Jnq has the following prop-
erties :

(i) γ̃ is surjective, and γ̃−1(sing Jnq) is nowhere dense in X̃nq ;

(ii) the restriction of γ̃ to X̃nq \ γ̃−1(sing Jnq) maps this open dense part of X̃nq biholomorphically
onto the regular part of Jnq .

7.10 The resolution of normal Jung singularities

It is a general fact that any resolution X̃ → Y of a (reduced) complex–analytic singularity Y factorizes
uniquely over the normalization X of Y :

X̃ X-

Y

@
@

@
@
@R

�
�

�
�

�	

and induces a resolution of X (see Chapter 5). So, in our special case, we must be able to construct a
holomorphic map π making the following diagram commutative:

X̃nq Xnq
-π

Jnq ,

γ̃

@
@

@
@
@R

ν

�
�

�
�

�	

It is the purpose of the present Section to construct π explicitly, anticipating some of the general
arguments. But we will refrain from carrying out all steps needed for showing that π actually resolves
the singularity Xnq .

Recall that Xnq can be embedded into Ce via the map g induced by g : C2 → Ce , where
g = (g1, . . . , ge) , gε(u, v) = ujεvkε . In the following, we will identify the variable xε of Ce (or more
precisely, its restriction as a function to Xnq ) with the corresponding function gε . Recall moreover,
that the normalization map ν : Xnq → Jnq is induced by the projection (x1, . . . , xe) 7→ (x1, xe, x2) .
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Since ν is a biholomorphic map outside the discriminant set, the functions xε = gε can be thought
of being holomorphic functions on Jnq . Of course, x1, x2 and xe extend to holomorphic functions on
Jnq . But, due to the non–normality of Xnq for q < n − 1 (i.e. for e > 3 ), it is impossible to extend
all the functions xε holomorphically to Jnq . However, the fact that Xnq normalizes Jnq implies
that all functions xε are at least meromorphic on Jnq , that is quotients of holomorphic functions
whose numerators vanish on nowhere dense analytic subsets only. In our concrete example, such a
representation is easily derived: Using the relations

(∗) x1x3 = xa2
2 , x2x4 = xa3

3 , . . .

on Xnq , it follows immediately that each xε is a rational function in x1 and x2 and lifts therefore

under γ̃ to a meromorphic function g̃ε on X̃nq . So, our problem is reduced to showing that these
functions are indeed holomorphic.

Before we give the general argument for the last step, let us calculate the functions g̃ε in the case
of the singularities Xnq . By the construction of X̃nq , it is obvious that g̃1, g̃2 and g̃e coincide with
the functions which were defined in Section 9 and denoted by the same symbols. In particular, they are
of the form

g̃ε(u0, v0) = ujε0 v
kε
0 , ε = 1, 2, e

in the first coordinate system U0 of X̃nq . Invoking the relations (∗) once more and the definition of
the series jε , kε , ε = 1, 2, . . . , e , in Section 6 immediately yields

g̃ε(u0, v0) = ujε0 v
kε
0 for all ε = 1, . . . , e .

Thus, we could prove our claim directly by showing as in the previous Section that these monomials
extend holomorphically to X̃nq . But this can also be achieved by applying the structure of the local
ring A = OXnq,0 over the ring B = OJnq,0 as the algebraic closure of B in its field Q of fractions.
In fact, what we only need to know is that the elements xε ∈ Q are algebraic over B which follows
easily by showing inductively the relations

xjεε+1 = xjε+1
ε xe , ε = 1, . . . , e − 2 .

Hence, the a priori meromorphic functions g̃ε satisfy on X̃nq the same relations

g̃jεε+1 = g̃jε+1
ε g̃e .

Since X̃nq is a manifold, its local rings OX̃nq,x̃
are factorial and hence algebraically closed in their

resp. fields of fractions. Consequently, all functions g̃ε are holomorphic on X̃nq .
Summarizing the content of the previous paragraphs, we have the following concrete description of

the resolution X̃nq → Xnq :

Theorem 7.16 The functions g̃ε(u0, v0) = ujε0 v
kε
0 , ε = 1, . . . , e , extend holomorphically to the man-

ifold X̃nq . The resolution π : X̃nq → Xnq can explicitly be given by π (x̃) = (g̃1(x̃), . . . , g̃e(x̃)) , x̃ ∈
X̃nq .

It may be amusing that the embedding dimension e can also be calculated from the numbers
b1, . . . , br : It exists always a diagram of the form

× × × ×
×
×
× ×
× (etc.)

Figure 7.5
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such that, if the numbers of crosses in the rows are equal to the bi − 1 , then the numbers in the columns
are the aε − 1 ; for instance, in the Example above,

(bi) = (5, 2, 2, 3, 2) ,

(aε) = (2, 2, 2, 5, 3) ,

and in fact,
5 − 1 2 − 1 2 − 1 3 − 1 2 = 47/ 11 ,

2 − 1 2 − 1 2 − 1 5 − 1 3 = 47/ 36 .

Moreover, one has the obvious relations

r∑
i=1

(bi − 1) =

e−1∑
ε=2

(aε − 1)

and

e − 2 = 1 +

r∑
i=1

(bi − 2) .

Thus,

e = 3 +

r∑
i=1

(bi − 2) .

The last formula should be considered as a special case of a more general result applying to the much
wider class of rational singularities which includes all quotient surface singularities (see Chapters 8 and
12).

7.11 The description of the resolution by an invariant - theo-
retical approach

Inside the manifold X̃nq = X̃ (b1, . . . , br) , the open part U1 ∪ . . .∪Ur resolves the singularity Xn2q2 ,
where the coprime pair (n2, q2) is determined by the continued fraction

n2
q2

= b2 − 1 b3 − · · · − 1 br

(if r ≥ 2 ). Therefore, we can modify X̃nq in replacing a neighborhood of the union E2 ∪ . . . ∪ Er

by the singularity Xn2q2 (i.e. by blowing down the configuration E2 ∪ . . . ∪ Er ; the general theory
of this process shall be developed in Chapter 9). The new space - which automatically lies properly
and holomorphically over Xnq - contains a compact curve (which is rational) and a somewhat simpler
singularity and can be considered to be a partial resolution of the singularity Xnq . So, it appears to
be more natural, instead of partially compactifying C∗ × C∗ to the line bundle OP1(−b1) , a regular
object, to rather insert a singularity at infinity. In what follows, we will outline an invariant theoretical
description of these partial resolutions that has the advantage to explain why the singularity Xn2q2

comes into the play.
We first have to treat the case of cones separately, thus trying to find another reason for the

appearance of the bundles OP1(−b) . We start with Y , a copy of C2 , and let Cn be the group
generated by the element

g =

(
ζn 0

0 ζn

)
,

acting on Y as usual. Denote by Ỹ the σ–modification of Y at the origin with the standard covering
Ỹ = U0 ∪ U1 so that the projection σ : Ỹ → Y will be described by

(u, v) = (v0, u0v0) = (u1v1, v1) .



202 Chapter 7 Jung singularities and resolutions of normal surface singularities

Obviously, there exists a unique Cn–action on Ỹ making σ into a Cn–equivariant holomorphic map;
namely {

(u0, v0)
g = (u0, ζnv0)

(u1, v1)
g = (u1, ζnv1) .

The quotient Ỹ / Cn lies over Xn1 = Y/Cn :

Ỹ Ỹ / Cn

Xn1 = Y/Cn ,Y

-

?
-

?

πσ

and π is easily seen to be a proper holomorphic map inducing a biholomorphic isomorphism outside the
(nowhere dense) preimage of the singular point of Xn1 . (Such maps are special cases of modifications;

see the next Chapter). In fact, π is already a resolution of Xn1 , since Cn acts on the manifold Ỹ as

a reflection group forcing the quotient Ỹ / Cn to be smooth. Of course, the quotient can explicitly be
calculated: clearly, {

U0/Cn
∼= C2 with variables u0, w0 = vn0 ,

U1/Cn
∼= C2 with variables u1, w1 = vn1 ,

and these open subsets of Y/Cn are patched together according to the rule

u0 =
1

u1
, w0 = vn0 = (u1v1)

n = un1w1 ,

i.e. the quotient is isomorphic to the total space of the bundle OP1
(−n) .

In the general case 0 < q < n , gcd (n, q) = 1 , we return to our standard notation Cnq for the
cyclic group generated by

g =

(
ζn 0

0 ζqn

)

acting on C2 (with variables ξ, η ). Let Y be another copy of C2 (with coordinates u, v ) on which
the reflection group Gq generated by

h =

(
1 0

0 ζq

)

acts. We shall identify Y/Gq and C2 via the map

(u, v) 7−→ (ξ, η) = (u, vq) .

The action of Cnq on C2 may be lifted to Y such that this map is Cnq–equivariant by setting

(u, v)g = (ζnu, ζnv) .

Therefore, we are back to the situation described at the beginning of the present Section. Using
moreover that the actions of g and h on C2 commute, we get the following commutative diagram
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Ỹ Ỹ /Cn = X̃n1

Y/Cn = Xn1Y

X̃n1/Gq

Xnq

XnqC2Y -

-

-

-

-

-

?

? ?

?

?

/Cnq

/Cnq

/Gq

/Gq

/Gq /Cnq

id id

in which we would like to understand the upper right square. In order to do so, we must compute the
action of the generator h ∈ Gq on the line bundle X̃n1 = OP1(−n) which is a simple exercise: It is

evident that h acts on Ỹ via {
(u0, v0)

h = (ζqu0, v0)

(u1, v1)
h = (ζ−1q u1, ζqv1)

such that the induced action on X̃n1 - having the local coordinates (u0, w0 = vn0 ) and (u1, w1 = un1 )
- is of the form {

(u0, w0)
h = (ζqu0, w0)

(u1, w1)
h = (ζ−1q u1, ζ

n
q w1) .

In particular, h acts on the zero section of X̃n1 , when identified with the Riemann sphere S2 ∼=
P1
∼= C , by a rotation around the axis through 0 and ∞ with an angle of 2π/ q . Hence, Xn1/Gq

contains the compact analytic subset P1/Gq which again is a Riemann sphere P1 (with homogeneous
coordinates uq1 and vq1 ). Moreover, h acts as a reflection on the first coordinate system. Therefore,

there can only be a singularity in X̃n1/Gq at the image of ∞ ∈ P1 ⊂ X̃n1 ; it must be a cyclic quotient
singularity whose type remains to be computed. Of course, we may replace h by its inverse, thus finding
a cyclic action of the form

(u1, w1) 7−→ (ζqu1, ζ
−n
q w1) = (ζn2

u1, ζ
q2
n2
w1)

with n2 = q and 0 ≤ q2 < q the uniquely determined natural number satisfying −n ≡ q2 mod q .
So, we meet the same pair of numbers (n2, q2) as in the preceding Section.

Setting X
(0)
nq = Xnq , X

(1)
nq = X̃n1/Gq , we find the beginning of a tower of modifications

X(r)
nq

πr−→ X(r−1)
nq −→ · · · −→ X(1)

nq
π1−→ X(0)

nq ,

where X
(r)
nq is smooth, r the length of the Hirzebruch–Jung continued fraction of n/ q , and π =

πr ◦ · · · ◦ π1 is a resolution of the singularity Xnq . In order to show that X
(r)
nq coincides with the

manifold X̃nq we may assume that q > 1 , hence r > 1 . Then, in the tower above, we consider the
part

X(2)
nq

π2−→ X(1)
nq

π1−→ X(0)
nq .

Denote by E′i the preimage under πi of the only singular point in X
(i−1)
nq , i = 1, 2 , and by E1 the

strict transform of E′1 in X
(2)
nq . The proof can be finished by induction if the following is true:

a) X
(2)
nq is smooth near E1

∼= P1 and (near E1 ) isomorphic to the total space of the line bundle
OP1

(−b1) ;

b) E′2 intersects E1 as a fiber of OP1
(−b1) .
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Here, of course, the number b1 is determined by n = b1q − q2 .

Let us first have a closer look to X
(1)
nq : It is easy to check that E′1 is described by {w0 = 0 } in the

first (smooth) resp. by the image of {w1 = 0 } in the second (non smooth) open part which together

constitute X
(1)
nq . Let us further check what happens to (the image of) the curve { v = 0 } in Xnq

under π1 . The strict transform of this curve in Ỹ being described by the equation {u0 = 0 } in the
first coordinate patch, its strict transform under π1 is the set given by the equation zz0 := uq0 = 0 in

X
(1)
nq .

Hence, by performing the same process once more, the curve E′2
∼= P1 coming from Xn2q2 must

intersect the strict transform E1 of E′1 transversely. Thus, X
(1)
nq is smooth near E1 and E′2 intersects

E1 transversely, and it remains to show that between z′0, w0 and z0 the correct identity holds. To

this end we first run again through all the coordinate systems in the construction of X
(1)
nq . For the

composite map

Ỹ −→ Y −→ C2 ,

we have in the first coordinate system

(ξ, η) = (u, vq) = (v0, (u0v0)
q) .

Hence, the preimage of the meromorphic function η/ ξq on C2 can be extended on Ỹ to the mero-
morphic function uq0 :

η

ξq
= uq0 .

If we apply this formula to X
(1)
n2q2 , we have to take into consideration that

ξ′ = u1 , η′ = w1 , q′ = q2 = b1q − n ,

such that we finally get

z′0 = u′q20 =
w1

uq21
=

un0w0

uq21
= (uq0)

b1w0 = zb10 w0 . □

7.12 Resolutions of normal surface singularities

We are now in the position to prove the existence of resolutions of normal two–dimensional singularities
in the spirit of H. W. E. Jung. Another approach due to Zariski shall be discussed in Chapter 17.

Theorem 7.17 Any normal surface singularity X admits a resolution π : X̃ → X .

Proof . We consider a (small) representative ρ : X → S , S a disk in C2 with center the origin,
of a Noether normalization R2 = OC2,0 ↪→ OX,x such that the branch locus B ⊂ S has only one
singularity at 0 , if any. In fact, if 0 is a smooth point of B , we have seen above that X is smooth at
the origin such that nothing has to be done. In any case, due to the existence of embedded resolutions
for plane curve singularities, we can perform a finite iteration of blowing ups of S , say σ : Ŝ → S ,
such that the preimage σ−1(B) =: B̂ has only normal crossings. We denote by X̂ the normalized

reduction of the fiber product1 X ×S Ŝ which fits into a commutative diagram

Ŝ S-
σ

X̂ X-π̂

?

ρ̂

?

ρ

1More precisely: of the component of the fiber product that maps onto Ŝ .
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It is clear that π̂ is a proper modification, and ρ̂ is a finite covering of Ŝ branched along B̂ . Hence,
X̂ has only finitely many normal Jung singularities which can be resolved separately thus yielding a
resolution π : X̃ −→ X factorizing over X̂ . The composition of X̃ −→ X̂ with ρ̂ will sometimes be
denoted by ρ̃ . □

Remark . To find the concrete resolution data for a given singularity is not as easy as it may sound by
the formulation of Theorem 17. First of all, it is not immediately clear how to effectively normalize the
Jung singularities that appear during the process. Even in the case of hypersurfaces they will in general
not show up in the standard form zn = xn−qy . We will demonstrate in the remaining part of this
Section how this can be achieved constructively. Second, the exceptional curves - whose genera may take
on arbitrary values - are realized as finite branched coverings of the rational curve such that we need
a device for computing the genera from the branching data. This is the Riemann–Hurwitz formula we
present in the following Section. How to compute the self–intersection numbers will be clarified in the
last Section of the present Chapter in which we compute the resolution of some specific examples. (See
also Appendix A). They show among others that Jung’s method does not in general yield the minimal
resolution. (What this actually means and how to handle the problem will be discussed in Chapter 9).

To be precise we assume for the rest of this Section that the Jung singularity is locally given in the
concrete form

zN = xa yb .

We have to find the normalization of the corresponding Jung singularity. Clearly, it may happen that
the numbers N, a, b have a common (maximal) divisor d . Then, due to the identity

P d − Qd =
∏

δ=0,...,d−1

(P − ζδd Q)

the normalization is isomorphic to the disjoint union of normalizations of exactly d isomorphic such
singularities for which the corresponding parameters N, a, b have no common divisor .

So, suppose that we are in this special situation. Then put da,b := gcd (a, b) , da :=
gcd (a, N) , db := gcd (b, N) and

a0 :=
a

da,bda
, b0 :=

b

da,bdb
, n :=

N

dadb
.

It is not difficult to prove with our former considerations in this Chapter the following

Lemma 7.18 The normalization of the Jung singularity zN = xayb is in the case gcd (a, b, N) = 1
isomorphic to the singularity An,q where q is the unique nonnegative integer solution of the congruence
a0 + b0 q ≡ 0 mod n with q < n .

Proof . The (finite) map C2 → C3 defined by

(s, t) 7−→ (sndb , tnda , sa0da,btb0da,b) = (sN/da , tN/db , sa/datb/db)

factorizes obviously over YN ;a,b := { zN = xayb } ⊂ C3 . Moreover, it is Cn,q–equivariant, the cyclic
group Cn,q acting in the usual way on C2 and trivially on C3 because of a0 da,b + q b0 da,b =
da,b (a0 + b0 q) ≡ 0 mod n , and thus it induces a finite mapping Xn,q → Y that factorizes over

the normalization Ŷ of Y . By Riemann’s first removable singularities theorem, we conclude that
Xn,q → Ŷ is biholomorphic. □

Remarks. 1. In the case a0 ≡ 0 mod n - which is equivalent to q = 0 - the normalization is smooth,
hence isomorphic to the “regular singularity” A0 .

2. In case gcd (n, q) = 1 and N = n , a = n − q , b = 1 , we have a0 = n − q , b0 = 1 such that
Lemma 18 implies the well–known fact that

Xn,q = Ŷn;n−q,1 .
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For later use we need an explicit description of the composition

X̃n,q −→ Xn,q −→ YN ;a,b

in terms of x, y, z as functions on X̃n,q . For this, it is sufficient to specify their power series expansion

in the standard first coordinate system (u0, v0) of X̃n,q . As an extra new constant we introduce c0
that is defined via a0 + b0 q = c0 n .

Lemma 7.19 In the standard first coordinate system (u0, v0) of X̃n,q the functions x, y, z are given
by the polynomials

x = vdb
0 , y = (un0 v

q
0)

da , z = (ub00 v
c0
0 )da,b .

Proof . This is immediate for x and y since we have on Xn,q the relations

x = sndb = xdb
1 and y = tnda = xda

e .

Using Theorem 18, we find the first two results. For the last one we have to show that

(ub00 v
c0
0 )Nda,b = vadb

0 (un0 v
q
0)

bda ,

that is

Nda,b b0 = n b da , Nda,b c0 = a db + q b da ,

and these relations follow immediately from the definitions. □

Remark . If the normalization of YN ;a,b is smooth then one has to replace the resolution X̃n,q by the
affine plane C2 with coordinates u0 and v0 .

Finally, it will be necessary to have a concrete description of the branched coverings of the x–axis
and the y–axis, resp., in C2 by their preimages in Xn,q under the composition

Xn,q −→ YN ;a,b −→ C2 .

By the proof of Lemma 18, we know that the canonical mapping C2 −→ Xn,q −→ C2 is of the form

(s, t) 7−→ (sndb , tnda) ,

hence the preimage of the x–axis in C2 is the s–axis {(s, t) ∈ C2 : t = 0} on which the group Cn,q

acts via (s, 0) 7−→ (ζns, 0) such that the covering curve we are looking for is smooth with a local
parameter ς = sn , and the covering mapping is just of the form x = ςdb . Needless to say that over
the y–axis the corresponding covering is y = τda .

7.13 Genera of Riemann surfaces and the Riemann–Hurwitz
formula

Each (connected) compact Riemann surface C carries a nontrivial meromorphic function and can thus
be realized as a finite branched covering ρ : C → P1 of the Riemann sphere. From the concrete
“branching data” one can calculate the genus g (C) . Even more is true: We start with a finite branched
covering

ρ : C −→ C0

of arbitrary connected compact Riemann surfaces of genus g, g0 resp. Then for each y(0) ∈ C0 the
number card ρ−1(y(0)) is finite, and so is the set of branch points

B0 := { y(0) ∈ C0 : card ρ−1(y(0)) < n := max
y∈C0

card ρ−1(y)} .
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At each point x(0) ∈ C , the mapping ρ has in suitable holomorphic coordinates the concrete form
x 7→ xn0 , n0 = nx ≥ 1 , such that outside x(0) the mapping ρ is locally near x(0) a n0–sheeted
covering (unbranched outside x(0) ). Therefore, for all y(0) ∈ C0 ,∑

x(0)∈ρ−1(y(0))

n0 = n ,

and the restriction
ρ : C \B −→ C0 \B0 , B := ρ−1(B0) ,

is a connected unbranched covering of Riemann surfaces having n sheets. Finally, we call

b := b (ρ) :=
∑

x(0)∈C

(n0 − 1) =
∑

y(0)∈B0

∑
x(0)∈ρ−1(y(0))

(n0 − 1)

the total branching order of ρ . According to the preceding formulae it follows that

b = n card B0 − card B .

Theorem 7.20 (Riemann - Hurwitz formula) Under the above assumptions,

g =
b

2
+ n (g0 − 1) + 1 =

n card B0 − card B

2
+ n (g0 − 1) + 1 .

Remarks. 1. If g0 = 0 and the covering is unbranched, then necessarily n = 1 , g = 0 , and the
covering ρ : C −→ C0 is an isomorphism. Conversely, if g = g0 = 0 and n ≥ 2 , the covering ρ is
branched with b/2 = n − 1 .

2. In the special case of a two-sheeted branched covering, i. e. n = 2 , the total branching order b
coincides with the number of branch points card B0 = card B , and the Riemann–Hurwitz formula
specializes to

g =
b

2
+ 2 g0 − 1 .

The Theorem of Riemann and Roch (Theorem 9.16) together with Serre duality immediately leads
for the canonical bundle KC to the identity

g − 1 = dim H0(C, O (KC)) − dim H0(C, O (K∗C ⊗KC)) = 1 − g + d (KC) ,

such that the degree of KC is equal to

d (KC) = 2g − 2 .

The Riemann - Hurwitz formula is therefore equivalent to the following much more natural identity.

Theorem 7.21 (Riemann - Hurwitz formula, second formulation) Under the above assump-
tions,

d (KC) = b + nd (KC0) .

By Theorem [??], the degree of a holomorphic line bundle L may be computed by the degree of
a nontrivial meromorphic section in L . Therefore, the degree of KC coincides with the degree of any
nontrivial meromorphic 1–form on C .

Examples. 1. On the Riemann sphere P1 , we have the nontrivial meromorphic function u1 = 1/u0
and thus a nontrivial meromorphic 1–form

du1 = −1u−20 du0 .
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So, d (KP1
) = −2 and g (P1) = 0 . In fact, the Riemann sphere is the unique Riemann surface of

genus 0 as follows directly from Remark 1.

2. dz is a holomorphic 1–form over C which is invariant under translations such that it defines a
non vanishing holomorphic 1–form on each torus C/Ω . Hence, d (KC/Ω) = 0 and g (C/Ω) = 1 . The
uniformization theorem implies that each compact Riemann surface of genus 1 is biholomorphically
equivalent to a torus C/Ω .

3. Compact Riemann surface of genus 1 are - as algebraic objects - also called elliptic curves. In
generalization, 2–sheeted branched coverings C → P1 are termed as hyperelliptic curves. Their branch
locus B0 have even cardinality b , and g (C) = b/2 − 1 .

4. The meromorphic Weierstraß ℘–function ℘Ω associated to a lattice Ω = Zω1 + Zω2 is invariant
under the action of Ω on C by translations and thus defines a holomorphic mapping ℘ : C/Ω→ P1 .
Since ℘ has a pole of order 2 at the lattice points, it takes each value on with multiplicity 2 , i. e.:
℘ is a 2–sheeted branched covering of P1 . Since the derivative of ℘ vanishes exactly at the points
ω1/2, ω2/2 and (ω1 + ω2)/2 , the branch points of ℘ are exactly the points e1, e2, e3, ∞ ∈ P1 where.

e1 = ℘ (ω1/2) , e2 = ℘ (ω2/2) , e3 = ℘ ((ω1 + ω2)/2) .

Hence, again, g (C/Ω) = 1 .

Proof of Theorem 21. Let ω0 be a non trivial meromorphic 1–form on C0 . Locally near a point
y(0) ∈ C0 , ω0 is essentially of the form ω0 = yk0 dy , k0 ∈ Z , such that

d (KC0) = deg ω0 =
∑

y(0)∈C0

k0 .

Since the covering ρ is near x(0) ∈ ρ−1(y(0)) of the form y = xn0 , we deduce for the lifting ω := ρ∗ω0

the local repesentation
ω = xn0k0d (xn0) = n0 x

n0k0+n0−1 dx ,

such that

deg ω =
∑

x(0)∈C

(n0 k0 + n0 − 1) = b +
∑

y(0)∈C0

k0
∑

x(0)∈ρ−1(y(0))

n0 = b + n deg ω0 . □

Remark . It is clear that the Riemann–Hurwitz formula is an exclusively topological statement and should
thus also have a purely topological proof. This can be achieved via the Euler–Poincar’e characteristic
or Euler number

χ (C) := dim H0(C, C) − dim H1(C, C) + dim H2(C, C)

of an oriented compact surface C which is related to the genus by the formula

χ (C) := 2 − 2 g .

Given any triangulation of C , the Euler number has a combinatorial interpretation as

χ (C) := v − e + f ,

where v denotes the number of vertices, e the number of edges and f the number of triangles.
(For more details, see Chapter [??].[??]). The Riemann–Hurwitz formula follows from the lifting of a
sufficiently fine triangulation of C whose set of vertices is contained in the branch locus B .

Example. The sphere S2 inherits a triangulation from the regular tetrahedron with

v = 4 , e = 6 , f = 4 .

Hence, χ (S2) = 2 and g (S2) = 0 .
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For the rest of this Section we study the following situation which will show up for some concrete
branched coverings of a smooth surface M in connection with Jung’s resolution method applied to the
hypersurface singularities zN = x2 + y3 , N = 2, 3, . . . , 6 . We assume that C ∼= P1 is a rational
curve embedded in M , and that the given covering ρN : MN −→ M for fixed N is branched exactly
at three different points in C , say 0, 1, ∞ , and has there in conveniently chosen local coordinates the
following representations:

zN = x y6 , zN = x2 y6 , zN = x3 y6 .

Our results in Section 12 enable us to calculate the genera of the preimages CN = ρ̂−1N (C) , where ρ̂N
denotes the composition of ρN with the normalization M̂N −→ MN .

N = 2. Because of gcd (2, 6) = 2 we have a twofold cover that is branched over B0 consisting of the
two points 0, ∞ . Hence, card B0 = card B = 2 and g (C2) = 0 .

N = 3. Because of gcd (3, 6) = 3 we have a threefold cover that is branched over B0 consisting of
the two points 0, 1 . Hence, card B0 = card B = 2 and g (C3) = 0 .

N = 4. Because of gcd (4, 6) = 2 we have exactly the same situation as in the case N = 2 . Conse-
quently, g (C4) = 0 .

N = 5. Because of gcd (5, 6) = 1 we have the special situation of an unbranched cover. I. e., C5 −→ C
is an isomorphism, and therefore, g (C5) = 0 .

N = 6. This is the first really interesting case. Because of gcd (6, 6) = 6 we have a sixfold cover that
is branched over B0 consisting of the three points 0, 1, ∞ . Over 0 , C6 is “fully” branched, over 1 ,
there are 2 branch points of order 3 − 1 , and over ∞ , we have 3 branch points of order 2 − 1 .
Hence, card B0 = 3, card B = 6 and g (C6) = 1 , i. e., C6 is in fact an elliptic curve.

7.14 Some examples illuminating Jung’s method

We investigate the resolutions of the hypersurface singularities given by

zN = x2 + y3

for the exponents N = 2, 3, 4, 5, 6 . Perhaps surprisingly, even in the simplest case N = 2 which
evidently defines a A2–singularity, the resolution obtained by Jung’s method is not the standard one
we found in Section 10. There are extra rational (−1)–curves that can be removed by blowing down
according to Castelnuovo’s criterion (see Chapter 9). In other words: His method does not yield in
general the minimal resolution of a given singularity (loc. cit.). The same phenomenon occurs also in
the other cases. We will find the minimal resolutions directly by other methods for N = 4, 5 , i. e. the
Klein singularities of type E6, E8 , in Chapter 11.

The exceptional curves in such a resolution are always realized as branched coverings of the rational
curve P1 . Counting carefully the local branching orders enables one to determine the genus of the given
exceptional curve (Riemann–Hurwitz formula). For N = 6 we find the first example of an elliptic
exceptional curve. The corresponding (simple elliptic) singularity can more naturally be obtained by
blowing down the zero section in a line bundle of degree −1 on an elliptic curve (Chapter 10.5 [??]).

The calculation of the self–intersection numbers will be achieved by a method which we shall fully
justify in Chapter 9.

In the first Appendix we present another example showing that the resolution of a surface singularity
may also contain cycles of exceptional curves.
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7.14.1 Preparing the branching locus

We first have to blow up the branching locus B := {x2 + y3 = 0} so many times until its total trans-
form has only normal crossings. Recall that its proper transform is already smooth after one σ–process.
Repeating the calculation in Chapter 5.6 using the σ–process described by (x, y) = (ζξ, ζ) = (ζ ′, ζ ′ξ′)
(with different notations of the coordinates compared to loc. cit.) we get as usual the “exceptional”
component

B1 = { ζ = 0 , ζ ′ = 0 } ∼= P1

in the total preimage, and the strict transform of B (which we denote by B0 ) will be described in the
first coordinate system by the equation

ξ2 + ζ = 0 .

Hence, it touches the exceptional curve to first order (and there are no other singular points in the
total transform). In the following pictures, the compact exceptional curves are successively denoted by
B1, B2, · · · and drawn in black, and the strict transforms B0 of B has a blue color.

B0

B1

(ξ, ζ) = (0, 0)

Figure 7.6

Thus, we need a second blow–up at the origin (ξ, ζ) = (0, 0) . Put (ξ, ζ) = (στ, τ) = (τ ′, σ′τ ′) .
Then, B2 is given by τ = τ ′ = 0 , and (locally near the origin in the first coordinate system) the
(strict transforms of) B1 resp. B0 have the equations σ = 0 resp. σ + τ = 0 (see Figure 7.8 on the
next page). Consequently, we have finally to blow up once more the origin in the (σ, τ)–plane. This
will be done by setting

(σ, τ) = (st, t) = (t′, s′t′) .

B0 B1

B2

Figure 7.7

Clearly, after this third step, B3 is defined via t = t′ = 0 , and near this curve, we have B1 = {s =
0}, B2 = {s′ = 0} and B0 = {s = −1}, .
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B0 B1 B2

B3
−1 0 ∞

Figure 7.8

In the terminology of Section 12, the union B0∪B1∪B2∪B3 = σ−1(B) =: B̂ ⊂ Ŝ coincides with the

branching locus of ρ̂ : X̂ −→ Ŝ where ρ̂ is the normalization of the covering X ×S Ŝ −→ Ŝ which
locally has the equations

zN = s2 (s + 1) t6 near s = 0 and s = −1 ,

resp.

zN = s′
3
(s′ + 1) t′

6
near s = ∞ , i.e. s′ = 0 .

In particular, the lifting of our given covering to B3
∼= P1 is branched at three different points exactly

as we have discussed at the end of Section 13.

7.14.2 Determination of the Jung singularities

In all cases in the preceding subsection we determined the branched coverings locally at the three
interesting places in the concrete form

zN = xa yb .

Thus, we can apply the results of the second part of Section 12. Notice that in all cases a0 = 1 such
that necessarily b0 q + 1 ≡ 0 mod n .

s = −1, i.e. zN = xy6

N d N/d a b a0 b0 n q c0 sing.

2 1 2 1 6 1 3 1 0 1 A0

3 1 3 1 6 1 2 1 0 1 A0

4 1 4 1 6 1 3 2 1 2 A1

5 1 5 1 6 1 6 5 4 5 A4

6 1 6 1 6 1 1 1 0 1 A0

s = 0, i.e. zN = x2y6

N d N/d a b a0 b0 n q c0 sing.

2 2 1 1 3 1 3 1 0 1 2A0

3 1 3 2 6 1 1 1 0 1 A0

4 2 2 1 3 1 3 2 1 2 2A1

5 1 5 2 6 1 3 5 3 2 A5,3

6 2 3 1 3 1 1 1 0 1 2A0
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s = ∞, i.e. zN = x3y6

N d N/d a b a0 b0 n q c0 sing.

2 1 2 3 6 1 1 1 0 1 A0

3 3 1 3 6 1 2 1 0 1 3A0

4 1 4 3 6 1 1 2 1 1 A1

5 1 5 3 6 1 2 5 2 1 A5,2

6 3 2 3 6 1 1 1 0 1 3A0

7.14.3 Local determination of the divisor of the function z

In preparation for evaluating the so called selfintersection numbers of the exceptional components in
the resolution X̃ −→ X̂ in our examples, it is necessary to find the divisor of a global holomorphic or
meromorphic function on the resolution. Such a global function is the coordinate function z or, more
precisely, its lifting to X̃ .

We start with the local situation in which the divisor of z on the resolution has been already
described in Lemma 19. We write as in Section 9

n

q
= b1 − 1 b2 − · · · − 1 br

and construct the resolution X̃n,q by patching r + 1 copies of C2 via

u0 = 1/u1 , v0 = ub11 v1 etc. .

Let E1, . . . , Er denote the exceptional curves v0 = v1 = 0 , u1 = u2 = 0 , etc., and let E0 the line
through 0 ∈ P1 ∼= E1 and perpendicular to E1 , i. e. E0 = {u0 = 0 } , and Er+1 the corresponding
line through ∞ ∈ P1 ∼= Er , i. e. Er+1 = {ur = 0 } or Er+1 = { vr = 0 } depending on whether r
is odd or even.

E0

E1

E2

Er

Er−1

Er+1

Figure 7.9

E0

E1

E2

Er−1

Er

Er+1

Figure 7.10
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Then, one can easily determine by our standard algorithms the vanishing order of z on E2, . . . , Er+1 .
Moreover, one should have the following observation in ones mind.

Lemma 7.22 The strict transform of the x–axis y = 0 in X̃n,q is the curve E0 , and correspondingly
Er+1 for the y–axis.

Finally, in the case that the normalization of YN ;a,b is smooth (and irreducible), one has obviously

to replace X̃n,q by C2 with coordinates u0, v0 (such that E0 is the u0–axis and E1 the v0–axis),
and z is given directly by the formula in Lemma 19. So, after a few trivial manipulations, we can state:

Lemma 7.23 The normalization of YN ;a,b is smooth if and only if it is smooth at at least one irre-
ducible component. Under this condition one has on each component

z = u
b/db

0 v
a/(dan)
0 .

Coming back to our examples, we compute for each N separately the divisor of z over small
neighborhoods of the points −1, 0, ∞ ∈ P1

∼= B3 .

N = 2 Here, as in the cases N = 3, 6 , we are at all places and for each irreducible component just
dealing with the situation in Lemma 23. One easily computes for z :

u30v0 (over − 1) , u30v0 (2 times over 0) , u30v
3
0 (over∞) .

N = 3 u20v
1
0 (over − 1) , u20v

2
0 (over 0) , u20v

1
0 (3 times over∞) .

N = 6 u10v
1
0 (over − 1) , u10v

1
0 (2 times over 0) , u10v

1
0 (3 times over∞) .

N = 4 Over −1 we find z = u30v
2
0 = u11v

2
1 . Over 0 , we have two times the singularity A1 , and

since z = u30v
2
0 , we find z = u11v

2
1 in the other coordinate system. Similarly, we get over ∞ the

representations z = u30v
3
0 = u31v

3
1 .

N = 5 Over −1 , we easily calculate z = u60v
5
0 = u41v

5
1 = u42v

3
2 = u23v

3
3 = u24v

1
4 . Over 0 , we have

z = u60v
4
0 , and since

5

3
= 2 − 1 3 , this yields z = u60v

4
0 = u21v

4
1 = u22v

2
2 . Finally, over ∞ , we

have
5

2
= 3 − 1 2 and therefore z = u60v

3
0 = u31v

3
1 = u32v

3
2 .

7.14.4 Determination of the divisor of the function z on X̃

Since zN = x2 + y3 the function z vanishes on X̃ exactly on the preimage of B̂ under the composition
ρ̃ : X̃ −→ X̂ −→ Ŝ . We decompose ρ̃−1(B̂) into irreducible components where the compact ones are
called Ej or Ejk when lying over Bj . They are all rational curves when j ̸= 3 . Clearly, the union

E of all compact components is the exceptional set of the resolution π : X̃ −→ X , i.e. the preimage
of the singular point in X under π . Finally, the noncompact part ρ̃−1(B0) will be denoted by C .

N = 2 In this case, we have already X̃ = X̂ , and we find the following situation:

C E11 E12 E2

E3
−1 0 ∞

Figure 7.11
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From our calculations, we can easily look up the vanishing orders of z along these curves:

1 1 1 3

3

Figure 7.12

We condensate this information into a short formula for the divisor of the function z (c.f. Chapter 5.11):

div z = 1C + 1E11 + 1E12 + 3E2 + 3E3 .

N = 3 Again, X̂ is smooth, and we find the following configuration:

C E1 E21

E22

E23

E3

Figure 7.13

Our calculations yield as vanishing orders for the function z :

1 2 1

1

1

2

Figure 7.14

Thus, div z = 1C + 2E1 + 1E21 + 1E22 + 1E23 + 2E3 .

N = 4 This is the first case in our series in which we have really to resolve (four) Jung singularities
(each of type A1 ).
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C

E0 E11 E′11 E21

E12

E′12

E22

E3

Figure 7.15

The result is:

div z = 1C + 2E0 + 2E11 + 1E12 + 2E′11 + 1E′12 + 3E21 + 3E22 + 3E3 .

N = 5 Even more involved, we find a A4–singularity and two others of type A5,3 and A5,2 .

E01 E11 E21

E3

E02

E03

E04

E13

E12 E22

E23C

Figure 7.16

This implies:

div z = 1C + 5E01 + 4E02 + 3E03 + 2E04 + 4E11 + 2E12 + 2E13 + 3E21 + 3E22 + 3E23 + 6E3 .

N = 6

C

E11 E12

E21

E22

E23

E3

Figure 7.17

This finally yields:

div z = 1C + 1E11 + 1E12 + 1E21 + 1E22 + 1E23 + 1E3 .



216 Chapter 7 Jung singularities and resolutions of normal surface singularities

7.14.5 Determination of the selfintersection numbers and (dual) resolution
graphs

Our next goal is the complete examination of the intersection matrix of the divisor div z and, thereby,
of the exceptional set E . By construction it is immediately clear that two different components do not
intersect at all or they intersect transversely at precisely one point. In other words: Their intersection
number is 0 in the first and 1 in the second case. It remains to calculate the selfintersection numbers
of the compact components. This will be achieved by using the next Theorem that shall be proven in
Chapter 9 (Theorem 9.28).

*Theorem 7.24 If C ⊂ M is a compact Riemann surface in a two–dimensional complex manifold
M and g a meromorphic function on M , then

( div g, C ) = 0 .

Before we return to our series of examples, we test this criterion in some special case of cyclic quotient
singularities Anq . Suppose that we have 3 components E1, E2, E3 in the standard resolution, and
remember the patching rules

u0 = 1/u1 , v0 = ub11 v1 ; v1 = 1/v2 , u1 = vb22 u2 ; u2 = 1/u3 , v2 = ub33 v3 .

As we know, the function g = v0 can even holomorphically be extended to the total resolution space
X̃nq . Plugging the coordinate transformations in, we realize that

g = u00v
1
0 = v11u

b1
1 = ub12 v

b1b2−1
2 = vb1b2−13 ub1b2b3−b1−b33 .

So, with two small discs E0 and E4 as in Figure 9, we get

div g = 0E0 + 1E1 + b1E2 + (b1b2 − 1)E3 + (b1b2b3 − b1 − b3)E4 .

Theorem 24 immediately yields

(E1, E1 ) = − b1 , b1 (E2, E2 ) = − 1− (b1b2− 1) = − b1b2 , (b1b2− 1) (E3, E3 ) = − b3(b1b2− 1)

and hence
(E1, E1 ) = − b1 , (E2, E2 ) = − b2 , (E3, E3 ) = − b3 .

Of course, these examples can easily be generalized to

Lemma 7.25 Let E1, . . . , Er be the exceptional curves in the resolution X̃nq = X̃ ( b1, . . . , br ) . Then,

(Ej , Ej ) = − bj .

Proof . We concentrate our reasoning to the j-th curve Ej and the coordinate system (uj , vj) , j =

1, . . . , r . The monomial gj = uαj v
β
j , α, β ∈ Z fixed, extends to a meromorphic function on X̃nq . In

particular, writing the relevant coordinate transformation in the form uj−1 = u−1j , vj−1 = u
bj
j vj , we

get

g = u
βbj−α
j−1 vβj−1 .

Thus, writing the part of the divisor of g on the curves Ej−1, Ej , Ej+1 only, we find

div g = · · · + αEj−1 + β Ej + (β bj − α)Ej+1 + · · ·

and thus
β (Ej , Ej ) = −α − (β bj − α) = −β bj .

Hence, our claim. □
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Thanks to our preparatory work it is now pure counting to find the selfintersection numbers in our
examples. We write E2

j instead of (Ej , Ej ) etc.

N = 2 E2
11 = − 3 , E2

12 = − 3 , E2
2 = − 1 , E2

3 = − 2 .

N = 3 E2
1 = − 1 , E2

21 = − 2 , E2
22 = − 2 , E2

23 = − 2 , E2
3 = − 3 .

N = 4 E2
0 = − 2 , E2

11 = − 2 , E2
12 = − 2 , (E′11)

2 = − 2 , (E′12)
2 = − 2 , E2

21 = − 2 ,

E2
22 = − 1 , E2

3 = − 3 .

N = 5 E2
01 = − 2 , E2

02 = − 2 , E2
03 = − 2 , E2

04 = − 2 , E2
11 = − 2 , E2

12 = − 3 , E2
13 = − 1 ,

E2
21 = − 3 , E2

22 = − 2 , E2
23 = − 1 , E2

3 = − 2 .

N = 6 E2
11 = − 1 , E2

12 = − 1 , E2
21 = − 1 , E2

22 = − 1 , E1
23 = − 1 , E2

3 = − 6 .

Remark . Jung’s method yields - as in all examples we investigated up to now - so called good resolutions.
Under this assumption the information contained in the intersection matrix may be encoded in a dual
resolution graph. (For precise definitions, cf. Chapter 9.26).

N = 2 Our result is the following dual resolution graph

•
−1

•
−3

•
−2

•
−3

which is surprising since we started with an equation of an A2–singularity such that we should expect
the standard dual resolution graph

•
−2

•
−2

However, when blowing up the intersection point of the two curves gives a resolution

•
−3

•
−1

•
−3

and then the above graph looks like what we get after blowing up once more any non–intersection point
on the (−1)–curve. We shall later see that the process of blowing up can be reversed for rational curves
with intersection number −1 (Castelnuovo criterion; see Theorem 9.38).

N = 3 We found

•
−2

•
−2

•
−3

•
−2

•
−1

and after blowing down the (−1)–curve this gives

•
−2

•
−2

•
−2

•
−2

This is in fact the Klein singularity of type D4. (See Chapters 8 and 11).
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N = 4 This is the Klein singularity of type E6 with (a non–minimal and) the minimal resolution
graph

•
−1

• −2

•
−2

•
−2

•
−3

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

N = 5 This is the Klein singularity of type E8 with (a non–minimal and) the minimal resolution
graph

•
−1

• −3

•
−1

•
−3

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

N = 6 If we denote by ■ a certain elliptic curve, the dual resolution graph looks like

•
−1

•−1 ■
−6
•

�
��•

@
@@•

• −1

−1 −1

which after 5 blowing downs is just −1■ , a simple elliptic singularity (c.f. Chapter 10.5).
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7.A Appendix A: Another example illustrating Jung’s method

We study now the hypersurface singularity z2 = (x + y2)(x2 + y7) . As a twofold cover of the (x, y)–
plane it has a branch locus B0 which decomposes into two irreducible components, a smooth one
B01 = { (x, y) : x = −y2} and a singular one B02 = { (x, y) : x2 = −y7} with a A4–curve
singularity.

B01

B02

Figure 7.18

So, it’s necessary to blow up 3 times to resolve this singularity, to separate the irreducible components,
and even once more until we get a divisor with normal crossings.

B01

B1

B02

Figure 7.19

B1 B01

B2

B02

Figure 7.20
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B1 B01 B3

B2

B02

Figure 7.21

B1 B01 B3

B2

B5

B02 B4

Figure 7.22

Carefully performing the σ–processes we find the equations of the Jung singularities over the intersection
points:

B1 ∩B2 : z2 = u3v6

B2 ∩B01 : z2 = u6v1

B2 ∩B3 : z2 = u6v8 i.e. 2 times z1 = u3v4

B3 ∩B5 : z2 = u8v18 i.e. 2 times z1 = u4v9

B5 ∩B02 : z2 = u18v1

B4 ∩B5 : z2 = u9v18 .

All these singularities have a smooth normalization, and the twofold covering ρ̃ : ρ̃−1(B3) −→ B3 is
unbranched such that ρ̃−1(B3) = E31 ∪ E32 with two non–intersecting rational curves (Remark 1).

Hence, the configuration in X̃ looks as follows:

E1 C01 E31 E32

E2

E5

C02 E4

Figure 7.23
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and the divisor of z can explicitly be written down:

div z = 3E1 + 3E2 + 4E31 + 4E32 + 9E4 + 9E5 + C01 + C02 .

From this we deduce

E2
1 = −1 , E2

2 = −4 , E2
31 = −3 , E2

32 = −3 , E2
4 = −1 , E2

5 = −2 ,

and Jung’s procedure gives a resolution with the following dual graph ( • representing rational curves):

•
−3

•
−4

•
−1

•
−1

•
−2

•
−3

After blowing down the exceptional curves of first kind we find

•
−3

•
−3

•
−1

•
−3

and

•
−3

@
@
@•

−2
�

�
�

•
−2

7.B Appendix B: Torus embeddings and toric varieties

It is the goal of this Appendix to put some of the results of Chapter 7 in the right perspective by viewing
Jung singularities in the light of a general concept.

7.B.1 Strongly convex rational polyhedral cones and fans

We first describe the combinatorial “background”. It consists in a free Z–module N ∼= Zr of rank r
and its dual M = HomZ(N, Z) together with the canonical pairing

⟨ · , · ⟩ : M ×N −→ Z

which extends to the canonical R–bilinear pairing

MR ×NR −→ R , NR = N ⊗Z R ∼= Rr , MR = M ⊗Z R ∼= HomR(NR, R) .

A subset σ of NR is called a strongly convex rational polyhedral cone (with vertex at the origin) if

σ =
{ s∑

j=1

cjnj : cj ≥ 0 for all j
}

for some elements n1, . . . , ns ∈ N , σ not containing any positive dimensional subspace of NR , i.e.
σ ∩ (−σ) = { 0 } . Thus, σ is, in fact, a strongly convex polyhedral cone, and it is called rational since
it is spanned by finitely many rational vectors with respect to the lattice N , that is by elements of
NQ = N ⊗Z Q (this is obviously equivalent to the generation by integral elements, i.e. elements in N
itself).

The dual cone of σ in MR is denoted by σ̌ :

σ̌ = {x ∈MR : ⟨x, y ⟩ ≥ 0 for all y ∈ σ } .

One can show that σ̌ is again a convex rational polyhedral cone.
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The dimension dim σ of an arbitrary cone σ is by definition the dimension of the smallest R–
subspace of NR containing σ , viz. σ + (−σ) . Since σ̌ + (−σ̌) = MR for a strongly convex cone, it
follows that always

dim σ̌ = r .

A subset τ of σ is called a face, in symbols τ ≤ σ , if

τ = σ ∩ {m0 }⊥ = { y ∈ σ : ⟨m0, y ⟩ = 0 }

for an element m0 ∈ σ̌ (which can be chosen from M ∩ σ̌ such that τ is a strongly convex rational
polyhedral cone, as well). Clearly, σ ≤ σ and { 0 } ≤ σ (because of the strong convexity).

For a strongly convex rational polyhedral cone σ ⊂ NR , we define

Hσ := M ∩ σ̌ = {m ∈M : ⟨m, y ⟩ ≥ 0 for all y ∈ σ } .

Clearly, Hσ is an additive subsemigroup of M , i.e. 0 ∈ Hσ and m′, m′′ ∈ Hσ implies m′ + m′′ ∈ Hσ

(whence the symbol H for German “Halbgruppe”). Moreover, Hσ is saturated , that means: cm ∈
Hσ , m ∈M , c ∈ N \ { 0 } implies m ∈ Hσ . The following properties are more difficult to show:

*Lemma 7.26

1. Hσ is finitely generated as an additive subsemigroup of M : there exist m1, . . . ,mt ∈ Hσ such
that

Hσ =
{ t∑

k=1

ckmk : ck ∈ Z , ck ≥ 0
}
.

2. Hσ generates the group M :
M = Hσ + (−Hσ) .

3. For any saturated additive semigroup H satisfying 1. and 2., there exists a unique strongly convex
rational polyhedral cone σ ⊂ NR such that H = Hσ .

Instead of a proof , we only remark that 1. is known as Gordan’s Lemma, and 3. is roughly shown as
follows: If H is generated as a semigroup by m1, . . . ,mt , then ρ :=

∑
τ R+mτ is a convex polyhedral

cone in MR , and σ = ρ̌ does the job. □
The basic combinatorial object, called a fan (or a rational partial polyhedral decomposition), is a

collection ∆ ̸= ∅ of strongly convex rational polyhedral cones in NR satisfying the following conditions:

(i) σ ∈ ∆ , τ ≤ σ =⇒ τ ∈ ∆ ,

(ii) σ1 , σ2 ∈ ∆ =⇒ σ1 ∩ σ2 ≤ σ1 , σ2 .

The union
⋃

σ∈∆ σ is called the support of ∆ , denoted by |∆ | .
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Figure 7.24

7.B.2 Construction of toric varieties

In the present Section, it is our aim to construct for each fan ∆ a toric variety . Let us first repeat that
an r–dimensional algebraic torus is just the variety

T = C∗ × · · · × C∗ (r times) ,

viewed as an r–dimensional commutative Lie (or algebraic) group. In a more intrinsic way, starting
from the lattice N of rank r as above, we can identify T with

TN = HomZ(M, C∗) = N ⊗Z C∗ .

Hence, each element m ∈ M gives rise, via the canonical pairing ⟨ · , · ⟩ , to a character of T = TN ,
i.e. to a group homomorphism

χm : TN −→ C∗ ;

more precisely,

χm(t) = m
(∑

j

nj ⊗ cj
)

=
∏
j

c
⟨m,nj ⟩

j ,

where t =
∑

nj ⊗ cj , nj ∈ N , cj ∈ C∗ . Obviously, χm′ +m′′ = χm′ · χm′′ ; in particular, χ0 =
trivial homomorphism. In fact, the assignment m 7→ χm establishes an isomorphism of M with the
character group of TN .

On the other hand, every n ∈ N defines a one parameter subgroup γn : C∗ → TN by

γn(λ) (m) = λ⟨m,n⟩ , λ ∈ C∗ , m ∈M .

Since γn′+n′′ = γn′ γn′′ , we may and will identify N with the group of one–parameter subgroups
of TN .

Working with fixed coordinates on T , i.e. assuming a fixed isomorphism T ∼= C∗ × · · · × C∗ , we
have M ∼= Zr , where

χm(t) = tm := tm1
1 · . . . · tmr

r , m = (m1, . . . ,mr) ∈ Zr , t = (t1, . . . , tr) ∈ T ,

and N ∼= Zr , where

γn(s) = (sn1 , . . . , snr ) , n = (n1, . . . nr) ∈ Zr , s ∈ C∗ ;

moreover,

χm ◦ γn(s) = s⟨m,n⟩ , ⟨m, n ⟩ =
r∑

j=1

mj nj .
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We are now going to associate to each strongly convex rational polyhedral cone σ a certain affine
variety. In algebraic terms, we form the group algebra

C [M ] =
⊕
m∈M

C · χm

with multiplication given by χm′ χm′′ = χm′ +m′′ . Obviously, we may identify this algebra with the
algebra of Laurent polynomials

C [ t1, t
−1
1 , . . . , tr, t

−1
r ]

whose algebraic spectrum is just our torus TN . Now, the semigroup Hσ ⊂M is finitely generated such
that the group algebra

C [Hσ ]

is a finitely generated subalgebra of C [M ] . Hence, the spectrum Vσ := specC [Hσ ] is an affine
algebraic variety, admitting a canonical morphism of algebraic varieties:

TN = specC [M ] −→ specC [Hσ ] = Vσ .

In fact, one can show much more:

*Theorem 7.27 Vσ is an irreducible normal affine algebraic variety of dimension r , containing TN
via the canonical morphism TN → Vσ as a (dense) open subset. The canonical action of TN on itself
by multiplication extends uniquely to an algebraic action of TN on Tσ .

Let us examine some Examples, especially in case r = 2 .

1. For σ = σ0 = { 0 } , we have Hσ = σ̌ ∩M = M and C [Hσ ] = C [M ] , i.e. Vσ = TN .

2. For σ = σ1 = R+(1, 0) ⊂ R2 , it follows easily that σ̌ = R+(1, 0) + R (1, 0) and C [Hσ ] ∼=
C [t1, t2, t

−1
2 ] , i.e. Vσ = C× C∗ .

3. For σ = σ2 = R+(1, 0) + R+(0, 1) , we get immediately Vσ = C2 .

4. For σ = σ3 = R+(1, 0) + R+(1, 2) , it is easily checked that σ̌ = R+(2, −1) + R+(0, 1) and
Hσ = σ̌ ∩M is minimally generated by the three vectors (1, 0) , (0, 1), and (2, −1) such that

C [Hσ ] ∼= C [x1, x2, x3 ]/ (x
2
1 − x2x3) .

Hence, Vσ is a normal affine variety with an A1–singularity at the origin.

Remark that in these examples σ0 ≤ σ1 ≤ σ2, σ3 and Vσj
is a dense open subset of Vσk

, k >
j = 0, 1 . This is a general result, including the second assertion of the above mentioned Theorem:

*Theorem 7.28 If τ ≤ σ , then Vτ is a (dense) open subset of Vσ .

This result, of course, enables us to transfer the construction of Vσ to fans ∆ ⊂ N . First, construct
Vσ for each cone σ ∈ ∆ . Since σ1∩σ2 is in ∆ for σ1, σ2 ∈ ∆ , Vσ1∩σ2

is open and dense in both, Vσ1

and Vσ2 . Hence, we may glue together Vσ1 and Vσ2 along Vσ1∩σ2 . By that procedure, we construct an
algebraic variety which we call V∆ . The only nontrivial part to show is that V∆ is a Hausdorff space.
For this, one has to use the fact that Hσ1∩σ2

= Hσ1
+ Hσ2

.

*Theorem 7.29 For a fan ∆ in N ∼= Zr , the variety V∆ satisfies all the conditions in Theorem [??]
(besides, of course, the assumption to be affine).

Let us discuss here some more Examples.

1. Let σ = R+ ⊂ R , and ∆ = {σ, −σ, { 0 } } . Then Vσ ∼= C and V−σ ∼= C are glued along
Vσ∩(−σ) = V{0} = C∗ . Hence V∆ ∼= P1 .



7.B.3 Classification and resolution of toric varieties 225

2. ∆ = {R+(1, 0), R+(0, 1), { (0, 0) } } is a fan with V∆ = (C×C∗)∪ (C∗ ×C) = C2 \ { (0, 0) } .

3. Taking σ = R+(1, 0) + R+(0, 1) , τ1 = R+(−1, −1) + R+(1, 0) , τ2 = R+(−1, −1) + R+(0, 1)
and their faces, we get V∆ ∼= P2 .

These examples might suggest a conjecture concerning compactness to the reader which, in fact, is
correct:

*Theorem 7.30 The toric variety V∆ associated to the fan ∆ in NR ∼= Rr is compact if and only
if ∆ is finite and |∆ | = Rr .

One can also easily read off the fan ∆ whether the toric variety V∆ is smooth:

*Theorem 7.31 The toric variety V∆ is smooth if and only if each σ ∈ ∆ is nonsingular in that
there exists a Z–basis n1, . . . , ns of N such that σ = R+n1 + · · ·+ R+ns′ for some s′ ≤ s .

We close this Section by an alternative description of the varieties Vσ associated to a strongly convex
rational polyhedral cone σ . Write Hσ = R+m1 + · · ·+ R+mt , define

Uσ = {u : Hσ → C : u (0) = 1 , u (m′ + m′′) = u (m′)u (m′′) , m′, m′′ ∈ Hσ } ,

and set χm(u) = u (m) for m ∈ Hσ , u ∈ Uσ . Then one can show that the image Wσ of Uσ under
the injective map

(χm1
, . . . , χmt

) : Uσ −→ Ct

is a closed algebraic subset of Ct whose ideal is generated by finitely many polynomials of type

xν1
1 · . . . · x

νt
t − xµ1

1 · . . . · x
µt

t ,

where ν1m1 + · · ·+ νtmt = µ1m1 + · · ·+ µtmt , and that Wσ is canonically isomorphic to Vσ .

7.B.3 Classification and resolution of toric varieties

We are now ready to introduce a good class of equivariant morphisms between toric varieties. We call
a Z–linear homomorphism φ : N1 → N2 of free lattices N1 and N2 a map of the fan ∆1 in N1

into the fan ∆2 in N2 , if the scalar extension φR : N1R → N2R has the following property: For every
σ1 ∈ ∆1 there exists a cone σ2 ∈ ∆2 such that φR(σ1) ⊂ σ2 . It is then an easy exercise to construct
a rational map φ∗ : V∆1 → V∆2 associated to φ in a canonical manner and to prove

*Theorem 7.32 The map φ∗ : V∆1 → V∆2 is equivariant with respect to the actions of TN1 and
TN2

on these toric varieties via its restriction

φ∗|TN1
= φ⊗ id : TN1

= N1 ⊗Z C∗ −→ N2 ⊗Z C∗ = TN2
,

a homomorphism of algebraic tori.
Conversely, if f : V∆1 → V∆2 is such an equivariant rational (or holomorphic) map (via a

homomorphism f|TN1
: TN1 → TN2 of algebraic tori), then f = φ∗ for a suitably chosen map

φ : N1 → N2 .
The map φ∗ is proper if, and only if, for each σ2 ∈ ∆2 the set ∆′1 = {σ1 ∈ ∆1 : φ(σ1) ⊂ σ2 } is

finite and

φ−1(σ2) =
⋃

σ∈∆′
1

σ1 .

φ∗ is a proper modification, if φ : N1 → N2 is an isomorphism of lattices and ∆1 is a locally finite
subdivision of ∆2 under the identification N1R ∼= N2R .

Finally, we are in the position to formulate the converse of Theorem [??], the Classification Theorem
for Toric Varieties.
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*Theorem 7.33 Let X be an irreducible normal algebraic variety on which the torus TN acts alge-
braically such that X contains an open (dense) orbit isomorphic to TN . Then there exists a (uniquely
determined) fan ∆ such that X and V∆ are equivariantly isomorphic.

The proof uses heavily the complete reducibility of algebraic tori and the following result (due to
Sumihiro) to be used later again:

*Theorem 7.34 Let the connected linear algebraic group G act algebraically on the irreducible normal
algebraic variety X . Then X is the union of G–stable quasiprojective open subsets. If G is an algebraic
torus, then X is the union of G–stable affine open subsets.

In view of Theorem 22, in order to resolve the singularities of a toric variety V∆ equivariantly, we
have to find a locally finite nonsingular subdivision ∆̃ of ∆ . This is always possible:

*Theorem 7.35 Any toric variety V∆ admits an equivariant resolution V∆̃ of singularities.

From the preceding results, one can easily deduce that the 2–dimensional (normal) affine toric
varieties are precisely the cyclic quotient singularities. Moreover, it is an amusing exercise to perform
the construction of their resolutions by finding the nonsingular subdivisions as above. This leads directly
to the Hirzebruch resolutions X̃ (b1, . . . , br) with their canonical structures as toric varieties.

Notes and References

After the achievement of resolving complex analytic algebraic curves in the last century by Kronecker,
Max Noether and others (see e.g.

[07 - 01] M. Noether, A. Brill: Die Entwicklung der Theorie der algebraischen Funktionen in älterer
und neuerer Zeit. Jahresbericht der Deutschen Math. Vereinigung III, 107–566 (1892–93),

and, for a modern treatment, [04–03]), several approaches for resolving algebraic surfaces were proposed
by the Italian school of algebraic geometers. The history of these attempts was thoroughly surveyed in
Chapter I of

[07 - 02] O. Zariski: Algebraic Surfaces. Second Supplemented Edition. With Appendices by S. S. Ab-
hyankar, J. Lipman and D. Mumford. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band
61. Berlin–Heidelberg–New York: Springer–Verlag 1971;

whose first edition appeared in 1935. In a Note added during the reading of the proofs, Zariski says
there on p. 23: “It has come to my knowledge that R.J.Walker in his Princeton dissertation in course
of publication in the Annals of Mathematics gives a complete function–theoretic proof of the reduction
theorem for algebraic surfaces. Having read the thesis by the courtesy of the author we believe that
Walker’s proof stands the most critical examination and settles the validity of the theorem beyond any
doubt”. Walker’s thesis appeared as

[07 - 03] R. J. Walker: Reduction of the singularities of an algebraic surface. Annals of Math. 36,
336–365 (1935).

He used strongly local resolutions of what we called Jung singularities that go back to

[07 - 04] H. W. E. Jung: Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen
Veränderlichen x, y in der Umgebung einer Stelle x = a , y = b . J. Reine Angew. Math. 133,
289–314 (1908).

Our treatment for the resolution of surface singularities is an adaptation of Hirzebruch’s thesis which
is also based on Jung’s work, but completely in terms of modern analytic geometry:
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[07 - 05] F. Hirzebruch: Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funk-
tionen von zwei komplexen Veränderlichen. Math. Ann. 126, 1–22 (1953).

As an excellent introduction to this circle of ideas including the problem of embedded resolution for
surfaces, we strongly recommend the article:

[07 - 06] J. Lipman: Introduction to resolution of singularities, pp. 187–230; in:

[07 - 07] R. Hartshorne (ed.): Algebraic Geometry, Arcata 1974. Proceedings of Symposia in Pure
Mathematics, Vol. 29. Providence, Rhode Island: American Mathematical Society 1975.

Three other papers should be mentioned in connection with Jung singularities.

[07 - 08] K. Brauner: Zur Geometrie der Funktionen zweier komplexer Veränderlichen, III, IV.
Abh. Math. Seminar Univ. Hamburg 6, 8–55 (1928);

[07 - 09] E. Kähler: Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der
Umgebung einer singulären Stelle. Math. Zeitschrift 30, 188–204 (1929).

Results about the structure of non–normal Jung singularities can be found in the next manuscript which
is based on the author’s thesis at Harvard 1965:

[07 - 10] J. Lipman: Quasi–ordinary singularities of surfaces in C3 . pp. 161–172; in Part 2 of

[07 - 11] P. Orlik (ed.): Singularities, Arcata 1981. Proceedings of Symposia in Pure Mathematics,
Vol. 40. Providence, Rhode Island: American Mathematical Society 1983.

This work was continued by:

[07 - 12] Y.–N. Gau: Topology of the quasi–ordinary surface singularities. Topology 25, 495–519 (1986).

Lipman himself extended the study of quasi–ordinary singularities also to higher dimensions. We men-
tion:

[07 - 13] J. Lipman: Topological invariants of quasi–ordinary singularities. Preprint 1986.

The Hirzebruch–Jung algorithm is taken from [07–04] and [07–05]. Our version (including the de-
termination of the equations for cyclic quotients) appeared in

[07 - 14] O. Riemenschneider: Deformationen von Quotientensingularitäten (nach zyklischen Grup-
pen). Math. Ann. 209, 211–248 (1974).2

More on the concepts of determinantal and quasi-determinantal formats of equations can be found in
Chapter 13.

A conceptual approach to the Hirzebruch-Jung algorithm and some infinite generalizations is due to

[07 - 15] H. Cohn: Support polygons and the resolution of modular functional singularities. Acta Arith-
metica 24, 261–278 (1973).

The procedure for resolving cyclic quotients step by step is contained in

[07 - 16] A. Fujiki: On resolutions of cyclic quotient singularities. Publ. RIMS Kyoto University 10,
293–328 (1974).

Our exposition is taken from

2In this paper, there is an obvious incorrect statement on the Betti numbers of cyclic surface singularities, and a not
so obvious one about explicit equations for the base space of the versal deformation in a special example.
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[07 - 17] H. Pinkham: Singularités de Klein – I.II. pp. 1–20, in: [04–20].

We assume that the reader is familiar with the theory of coverings shortly sketched in Section 2. If
not, he or she may consult any (good) text on Algebraic Topology. There is also a concise introduction
to this topic in Forster’s book on Riemann surfaces. Since this shall be our main source for the Function
Theory in one Variable, we may cite it here:

[07 - 18] O. Forster: Lectures on Riemann Surfaces. Graduate Texts in Mathematics 81. Berlin–
Heidelberg–New York: Springer–Verlag 1981. (First published by Springer under the title Rie-
mannsche Flächen).

For the examples at the end of the Chapter and in Appendix A, we follow closely the exposition
(including the terminology) in Henry Laufer’s book [01 - 13]. Lemma 18 is - in a slightly different version
- due to Tadashi Tomaru in

[07 - 19] T. Tomaru: On Kodaira singularities defined by zn = f (x, y). Math. Z. 236, 133–149 (2001).

Another method can be found in Laufer’s book.

The notions of torus embeddings (toroidal embeddings, toric varieties) etc. in Appendix B have been
introduced in the smooth case by

[07 - 20] M. Demazure: Sous–groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci.
École Norm. Sup.(4) 3, 507–588 (1970);

in the general case, the foundations were laid down in

[07 - 21] G. Kempf, F. Knudsen, D. Mumford, B. Saint–Donat: Toroidal embeddings. I. Lecture Notes
in Mathematics 339, Berlin–Heidelberg–New York: Springer–Verlag 1973.

From the literature concerning this theory, we select only the survey article of

[07 - 22] V. I. Danilov: The geometry of toric varieties. Russian Math. Surveys 33 : 2, 97–154 (1978),

and the book

[07 - 23] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric vari-
eties. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 15. Berlin–Heidelberg–
New York–London–Paris–Tokyo: Springer–Verlag 1988,

which we followed very closely in our presentation of Appendix B. All unproven results may be found
there with a proof or at least with a precise reference. Further, we mention the articles by J. L. Brylinski,
M. Merle and M. Lejeune–Jalabert in

[07 - 24] M. Demazure, H. Pinkham and B. Teissier (eds.): Séminaire sur les singularités des surfaces.
Lecture Notes in Mathematics 777, Berlin–Heidelberg–New York: Springer–Verlag 1980.
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