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Introduction

Instead of an Introduction

N =
π4

ζ (2) ζodd(2)

where ζ (2) is the value of the Riemann Zeta - function

ζ (s) := 1 +
1

2s
+

1
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+

1
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1

5s
+ etc.

at s = 2 , i.e.

ζ (2) := 1 +
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1
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1
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1
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+ etc.,
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3s
+

1

5s
+

1

7s
+

1

9s
+ etc.
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Introduction

It is easy to see that ζ (2) is a convergent series. Hence, by Weierstrass’s
M-test, ζ (s) , ζodd(s) and ζeven(s) := ζ(s) − ζodd(s) are absolutely
convergent for real s ≥ 2 and also for complex s with Re s ≥ 2 . For
seeing that this is even true in the region Re s > 1 , one has to use the
more complicated Raabe convergence test or the even deeper comparison
test.

Now, obviously

1

2s
ζ (s) = ζeven(s) ,

(
1 − 1

2s

)
ζ (s) = ζodd(s)

such that there is no essential difference between ζ (s) , ζeven(s) and
ζodd(s) .

In particular

ζeven(2) =
1

4
ζ (2) , ζodd(2) =

3

4
ζ (2) .
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Plan of lecture

Plan of lecture

1 The Basel problem

2 Short survey on Euler’s contributions

3 Wallis’ integrals and ζ (2)

4 Euler’s first elementary proof

5 Euler’s differential equation and his second elementary proof

6 Paul Levrie’s approach

7 Appendix: Interchanging integration and summation
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The Basel problem

1. The Basel problem
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The Basel problem

The Basel Problem
In 1650, the Italian mathematician Pietro Mengoli showed in his book Novae
Quadraturae Arithmetica that the sum of the reciprocals of the triangular
numbers

1 , 1 + 2 = 3 , 1 + 2 + 3 = 6 , 1 + 2 + 3 + 4 = 10 , . . .

is 2 . In other words:
∞∑
n=1

2

n (n + 1)
= 2 .

This result is - for modern standards - almost trivial since we have a telescope
series (which, by the way, dominates ζ (2) !):

1

n (n + 1)
=

1

n
− 1

n + 1
.

Oswald Riemenschneider (Hamburg) Elementary analytic evaluations of ζ(2) Lecture Kagoshima University 8 / 46



The Basel problem

The Basel Problem

He asked the obvious question: After having treated
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The Basel problem

The Basel Problem

He asked the obvious question: After having treated

What about the reciprocals of the quadrangular numbers, i.e. the squares?
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The Basel problem

The task to express the limit of the series

1 +
1

22
+

1

32
+

1

42
+

1

52
+ etc.,

by known terms has also been mentioned by John Wallis in the 17th century
and became one of the most urgent challenges at the beginning of the
18th century. Despite the efforts of the most prestigious mathematicians
like Leibniz, Stirling, de Moivre and all the Bernoullis it remained unsolved
for a long time. Because of the involvement of Jakob and Johann Bernoulli
the problem entered the history of mathematics as the “Basel problem”.

A frustrated Jakob Bernoulli, at the time one of the most experienced ma-
thematicians in manipulating infinite series, formulated the following urgent
request:
“ ... sollte jemand das, was unseren Anstrengungen bis jetzt entgangen ist,
finden und uns mitteilen, so werden wir ihm sehr dankbar sein”.
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The Basel problem

The task to express the limit of the series
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by known terms has also been mentioned by John Wallis in the 17th century
and became one of the most urgent challenges at the beginning of the
18th century. Despite the efforts of the most prestigious mathematicians
like Leibniz, Stirling, de Moivre and all the Bernoullis it remained unsolved
for a long time. Because of the involvement of Jakob und Johann Bernoulli
the problem entered the history of mathematics as the “Basel problem”.

A frustrated Jakob Bernoulli, at the time one of the most experienced ma-
thematicians in manipulating infinite series, formulated the following urgent
request:
“ ... should somebody find and communicate to us what escaped our en-
deavors we would be very grateful to him.”
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The Basel problem

Matthäus Merian: Sketch of Basel (ca. 1615)
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The Basel problem

Basel today
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Short survey on Euler’s contributions

2. Short survey on Euler’s contributions

Jakob Emanuel Handmann: Leonhard Euler 1753
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Short survey on Euler’s contributions

In a paper he read at the Petersburg academy on December 5, 1735,
Leonhard Euler (1707 - 1783) presented his ingenious method to cal-
culate the values of the Riemann Zeta function at the even integers
that after some extra work was later brought into the form

ζ (2k) :=
(2π)2k

2 (2k)!
B2k .

In particular, he solved the Basel problem:

(+) ζ (2) = π2/6 .

This paper has been published only in 1740 under the title De Summis
Serierum Reciprocarum in the proceedings of the academy (Com-
mentarii academiae scientiarum Petropolitanae 7, pp. 123–134 [E
41]. An English translation from the Latin by Jordan Bell can be
found under the title On the sums of series of reciprocals in ar-
Xiv:math/05064152v2). Here, E stands for Eneström - Index .
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Short survey on Euler’s contributions

Therefore,

ζ (2) =
π2

6
and ζodd(2) =

π2

8
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Short survey on Euler’s contributions

In a lost letter from Petersburg he had communicated this result and the
value π4/90 for ζ (4) to Daniel Bernoulli in Basel who asked him for a
proof in a letter of September 12, 1736:

Das theorema summationis seriei

1 +
1

4
+

1

9
etc. =

pp

6
und 1 +

1

24
+

1

34
+

1

44
etc. =

p4

90

ist sehr merkwürdig. Sie werden ohne Zweifel a posteriori darauf gekommen
seyn. Ich möchte die Solution gern von Ihnen sehen.

Indeed, Euler had already done parts of his ingenious contributions to the
summation of (slowly) converging series. In De summatione innuberabilium
progressionem [E 20] (submitted 1731, published 1738) he computed the
value up to 6 decimals. And in Inventio summae cujusque seriei ex dato
termini generali [E 47] (read at the St. Petersburg academy on October 13,
1735, published in 1741) he had already 20 decimals. It is believed that this
approximation let him to first “guess” the result π2/6 .
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progressionem [E 20] (submitted 1731, published 1738) he computed the
value up to 6 decimals. And in Inventio summae cujusque seriei ex dato
termini generali [E 47] (read at the St. Petersburg academy on October 13,
1735, published in 1741) he had already 20 decimals. It is believed that this
approximation let him to first “guess” the result π2/6 .

Oswald Riemenschneider (Hamburg) Elementary analytic evaluations of ζ(2) Lecture Kagoshima University 15 / 46



Short survey on Euler’s contributions

In a lost letter from Petersburg he had communicated this result and the
value π4/90 for ζ (4) to Daniel Bernoulli in Basel who asked him for a
proof in a letter of September 12, 1736:

Das theorema summationis seriei

1 +
1

4
+

1

9
etc. =

pp

6
und 1 +

1

24
+

1

34
+

1

44
etc. =

p4

90
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Short survey on Euler’s contributions

Vasilij Sokolov: Leonhard Euler 1737
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Short survey on Euler’s contributions

In his St. Petersburg paper and later on, Euler used the product formula for
the Sin - function:

sin x

x
=
∞∏
n=1

(
1 − x2

(nπ)2

)
just in analogy to the situation for polynomials. This has been criticized,
among others, by Johann Bernoulli in a letter of April 2, 1737 to Euler.

He made some attempts to justify the formula, but did not really succeed.
Some people speculate that he gave up the whole subject because he was
not satisfied with this approach himself.

One should have in mind that a rigorous proof of the product formula was gi-
ven only 100 years later by Weierstraß. In my opinion, evaluations of ζ (2k)
or ζ (2) with formulas like this are really wonderful and should be taught
in Complex Analysis courses, but they can of course not be considered to
be elementary .
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Short survey on Euler’s contributions

However, on August 27, 1737, Euler communicated in a letter to his former
advisor and Daniel’s father Johann I. Bernoulli an elementary proof for ζ (2)
(cf. G. Eneström, Der Briefwechsel zwischen Leonhard Euler und Johann I.
Bernoulli. II. 1736–1738). In fact, he demonstrates a way to the identity

(++)
π2

8
=

1

12
+

1

32
+

1

52
+ · · · .

It is the purpose of this lecture to present a simultaneous proof of (+)
and (++) with Euler’s second method using “[une] équation différentio–
différientelle” which he published only in 1743 under the title Démonstration
de la somme de cette Suite 1 + 1

4 + 1
9 + 1

16 + 1
25 + 1

36 etc . in a rather
obscure journal - and to compare this approach with an idea of

Paul Levrie: Lost and Found: An Unpublished ζ (2) - Proof . The Mathe-
matical Intelligencer, Vol. 33, Number 2, Summer 2011, pp. 29 - 32.
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différientelle” which he published only in 1743 under the title Démonstration
de la somme de cette Suite 1 + 1

4 + 1
9 + 1

16 + 1
25 + 1

36 etc . in a rather
obscure journal - and to compare this approach with an idea of

Paul Levrie: Lost and Found: An Unpublished ζ (2) - Proof . The Mathe-
matical Intelligencer, Vol. 33, Number 2, Summer 2011, pp. 29 - 32.

Oswald Riemenschneider (Hamburg) Elementary analytic evaluations of ζ(2) Lecture Kagoshima University 18 / 46



Short survey on Euler’s contributions

However, on August 27, 1737, Euler communicated in a letter to his former
advisor and Daniel’s father Johann I. Bernoulli an elementary proof for ζ (2)
(cf. G. Eneström, Der Briefwechsel zwischen Leonhard Euler und Johann I.
Bernoulli. II. 1736–1738). In fact, he demonstrates a way to the identity

(++)
π2

8
=

1

12
+

1

32
+

1

52
+ · · · .

It is the purpose of this lecture to present a simultaneous proof of (+)
and (++) with Euler’s second method using “[une] équation différentio–
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Wallis’ integrals and ζ (2)

3. Wallis’ integrals and ζ (2)
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Wallis’ integrals and ζ (2) Wallis’ integrals

Wallis’ integrals

For the Wallis’ integrals

Im :=

∫ 1

0

xm dx√
1 − x2

=

∫ π/2

0
sinm φ dφ

one gets by partial integration - replacing the factor sin2 φ by 1 − cos2 φ
or writing the integrand in the form

xm

√
1 − x2

= u (x) v ′(x) with u (x) = xm−1 , v (x) = −
√

1 − x2

- the well known recursion formulas

(m + 1) Im+1 = m Im−1

with the initial values I0 =
π

2
, I1 = 1 .
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Wallis’ integrals and ζ (2) Wallis’ integrals and ζ (2)

Wallis’ integrals and ζ (2)

For the sake of simplicity we define the sequence(s) (an) for the rest of this
talk via

(◦) a0 = a1 = 1 , (n + 2) an+2 = (n + 1) an .

Obviously, we then have

I2k =
π

2
a2k , I2k+1 = a2k+1 .

By multiplication of (◦) with an+1 we can conclude that the sequence

n an an−1 is constant equal to 1 a1 a0 = 1 , hence

an an−1 =
1

n
, n ≥ 1 .
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Wallis’ integrals and ζ (2) Wallis’ integrals and ζ (2)

Therefore, it follows purely formally and at first sight without any profit

ζ (2) =
∞∑
n=1

an an−1

n
,

or, if n runs first only over the even integers:

ζeven(2) =
1

4
ζ (2) =

∞∑
k=1

a2k a2k−1

2k

and then through the odd integers:

ζodd(2) =
3

4
ζ (2) =

∞∑
k=0

a2k+1 a2k

2k + 1
.
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Euler’s first elementary proof

4. Euler’s first elementary proof
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Euler’s first elementary proof

By induction, it is easily seen that the coefficients a2k are explicitly given
by

a2k =
12 · 32 · . . . · (2k − 1)2

(2k)!
=

1 · 3 · . . . · (2k − 1)

2 · 4 · . . . · (2k)
=

(2k)!

22k k!2
.

Or, to put it differently,

a2k =
1

22k

(
2k

k

)
= (−1)k

(
−1/2

k

)
.

Thus,

1√
1 − x2

=
∞∑
k=0

a2kx2k .

(We will give another proof in the next section without using the generalized
binomial coefficients.)
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Euler’s first elementary proof

By integration, it follows that

arcsin x =
∞∑
k=0

a2k

2k + 1
x2k+1 .

Interchanging summation and integration (which is allowed; see the Appen-
dix) this yields

3

4
ζ (2) =

∞∑
k=0

a2k+1 a2k

2k + 1
=

∞∑
k=0

a2k

2k + 1
I2k+1

=
∞∑
k=0

a2k

2k + 1

∫ 1

0

x2k+1 dx√
1 − x2

=

∫ 1

0

∞∑
k=0

a2k

2k + 1

x2k+1 dx√
1 − x2

=

∫ 1

0

arcsin x dx√
1 − x2

=
1

2
arcsin2 x

∣∣∣∣1
0

=
π2

8
.
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Euler’s differential equation and his second elementary proof

5. Euler’s differential equation

and his second elementary proof
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Euler’s differential equation and his second elementary proof

Euler’s differential equation

Let the power series
∑∞

n=0 αn xn be convergent in a neighbourhood of
the origin 0 , where the sequence of the coefficients αn is not fixed for
the moment. We denote the function determined by the series by f . The
connection with the Wallis’ integrals will be illuminated by the following

Lemma

The following are equivalent :

i) f satisfies in a neighborhood of 0 the linear differential equation :

(×) (1 − x2) f ′(x) = x f (x) + c ,

where necessarily c = f ′(0) = α1 .

ii) The sequence αn is given by the recursion formulas

(n + 2)αn+2 = (n + 1)αn

for all n ≥ 0 .
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Euler’s differential equation and his second elementary proof

In particular, the given power series is convergent in the interval I of the
real numbers x with | x | < 1 , and the differential equation in i) is satis-
fied on I .

Proof . By (formal) differentiation of the power series and subsequent simple
algebraic manipulations it follows that the expression

(1 − x2) f ′(x) − x f (x)

will be represented by the power series

α1 + (2α2 − α0) x + (3α3 − 2α1) x2 + (4α4 − 3α2) x3 + · · · .

Comparison of coefficients on both sides of i) yields immediately the equi-
valence of i) and ii).

Since the given power series is convergent on I under the condition ii) by
the quotient criterion and consequently the power series of its derivative,
too, the last claim is automatically justified by the identity theorem. �
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Euler’s differential equation and his second elementary proof

Remark

Euler’s differential equation shows up in his 1743 paper in the form

ddy (1 − xx) − x dx dy = dx2 .

He then adds:

Mais en divisant l’équation différentio–différentielle par dx2 , nous avons
ddy

dx2
− xxddy

dx2
− x dy

dx
− 1 = 0 .

The paper has been published in the long time forgotten Journal littéraire
d’Allemagne, de Suisse et du Nord, 2:1. pp. 115–127 (1743). Paul Stäckel
reproduced and discussed it in his article Eine vergessene Abhandlung Leon-
hard Eulers über die Summe der reziproken Quadrate der natürlichen Zahlen.
Bibl. Math. (3) 8, pp. 37–54 (1907–1908).
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Euler’s differential equation and his second elementary proof

In order to solve the equation (×) we start with the homogeneous case
c = 0 . Because of linearity, we may assume that f (0) = α0 = 1 .

Lemma

The homogeneous linear differential equation

(1 − x2) f ′(x) = x f (x)

has, with the initial condition q (0) = 1 , the (uniquely determined)
solution

q (x) =
1√

1 − x2
.

In particular,
1√

1 − x2
=

∞∑
k=0

a2k x2k ,

where a0 = 1 and (2k + 2) a2k+2 = (2k + 1) a2k .
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Euler’s differential equation and his second elementary proof

Proof . Because of the initial condition any solution f must be positive in
a neighbourhood of the origin. Hence, there exists the logarithm ln f (x)
near 0 , and we have

2 (ln f (x))′ = 2
f ′(x)

f (x)
=

2x

1 − x2
= − (ln (1 − x2))′ .

Integrating and “exponentiating” results in

f 2(x) =
C

1 − x2
,

whence f = q when f (0) = 1 . �

The inhomogeneous case has been treated by Euler in his 1743 paper. It is
easily solved by the “Ansatz of variable coefficients”:
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Euler’s differential equation and his second elementary proof

f (x) = c (x) q (x) .

f satisfies the inhomogeneous equation if and only if

(1 − x2) c ′(x) q (x) = c ,

i.e.
c ′(x) = c q (x) .

Therefore,
c (x) = c arcsin x + C ,

and the uniquely determined solution of the inhomogeneous equation f
with f (0) = 0 is given by

f (x) =
c arcsin x√

1 − x2
.
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Euler’s differential equation and his second elementary proof

Corollary

On the interval I , one has the power series expansions

arcsin x√
1 − x2

=
∞∑
k=0

a2k+1 x2k+1 , arcsin2 x =
∞∑
k=0

a2k+1

k + 1
x2k+2 ,

where a1 = 1 and (2k + 3) a2k+3 = (2k + 2) a2k+1 .

Remark

Interestingly enough, this expansion for arcsin2 has been known earlier in
Japan as a tool to approximately calculate the length of the chord of a given
arc of a circle. Some historians ascribe this result to the famous Japanese
mathematician Takaharu Seki (1642 - 1708); more recent articles refer
to his pupil Katahiro Takebe (1664 - 1739).
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Euler’s differential equation and his second elementary proof

Euler’s second elementary proof

After our preparations, also Euler’s second elementary proof is mere child’s
play:

1

4
ζ (2) =

2

π

∞∑
k=1

a2k−1I2k

2k
=

2

π

∞∑
k=1

a2k−1

2k

∫ 1

0

x2k dx√
1 − x2

.

Further, as already deduced,
∞∑
k=1

a2k−1

k
x2k = arcsin2 x .

Hence,

1

4
ζ (2) =

1

π

∫ 1

0

arcsin2 x dx√
1 − x2

=
1

π

∫ π/2

0
φ2 dφ =

π2

3 · 8
.
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Euler’s differential equation and his second elementary proof A warning of Euler

A warning of Euler

Ces deux méthodes toutes faciles qu’elles sont, mériteroient une plus grande
attention, si elles se pouvoient employer également pour trouver les sommes
des plus hautes puissances paires, qui sont toutes comprises dans mon autre
méthode générale tirée de la considération des racines d’une équation infinie.
Mais malgré toute la peine que je me suis donnée pour trouver seulement la
somme des biquarrés [...] je n’ai pas encore pu réussir dans cette recherche,
quoique la somme par l’autre méthode me soit connue [...]. Par faciliter la
peine, que d’autres peut–être se donneront, dans cette affaire, j’y joindrai
les sommes de toutes les puissances paires, que j’ai trouvées par l’autre
méthode [...] .
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Ces deux méthodes toutes faciles qu’elles sont, mériteroient une plus grande
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Euler’s differential equation and his second elementary proof A warning of Euler

A warning of Euler

This two methods, however simple they are, would merit a much greater
attention if one could apply them for finding the sums of the higher even
powers which are all comprised by my other general method by considering
the roots of an infinite equation. But despite all the attempts that I have
made for finding just the sum for the bi-squares I have not been again
successful in this research although the sum was known to me by the other
method. In order to facilitate the effort that others may undertake in this
affair I insert the sums of all the even powers which I have found by the
other method [...] .
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Euler’s differential equation and his second elementary proof A warning of Euler

So, it might be advisable not to follow Euler’s elementary path for computing
other values ζ (k) . On the other hand, it is, for instance, not difficult to
represent Apéry’s constant ζ (3) as a certain (well known) integral.

Remark

Arguably, the most elegant, but by no means elementary evaluation of the
values ζ (2k) using exclusively “purely real” methods can be found in the
article of Bruce Berndt: Elementary Evaluation of ζ (2n) . Mathematics
Magazine 48, No. 3, pp. 148-154 (1975).
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Paul Levrie’s approach

6. Paul Levrie’s approach
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Paul Levrie’s approach

Both power series expansions for arcsin und arcsin2 are in fact uniformly
convergent on the closed interval I = [ 0, 1 ] as one can see, e.g., by
Raabe’s criterion. This does not help very much in Euler’s methods because
of the multiplication with the unbounded function q . However, substituting
x = sin φ and replacing the coefficients a2k+1 by the corresponding Wallis
integrals, one obtains the identity

(∗) φ =
∞∑
k=0

I2k+1 sin2k+1φ cos φ

uniformly on J =
π

2
I = [ 0, π/2 ] .

It is Levrie’s merit to having presented in loc.cit. a simple direct proof of this
result à la mode d’Euler . We give another proof using the Wallis integrals
in their “improper” guise that makes the role of the geometric series even
more transparent.
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Paul Levrie’s approach Levries proof

Levries proof

Integration of (∗) yields

(∗∗) φ2 =
∞∑
k=0

I2k+1

k + 1
sin2k+2φ ,

and integrating once more and substituting φ = π/2 gives again the
desired result:

1

3

(π
2

)3
=

∞∑
k=0

I2k+1

k + 1
I2k+2 =

π

2

∞∑
k=0

a2k+1

k + 1
a2k+2 = 2

π

2

ζ (2)

4
.
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Paul Levrie’s approach Levries proof

It remains to present a (new) proof - following Levries idea - of the identity
(∗) in the form

arcsin x√
1 − x2

=
∞∑
k=0

I2k+1 x2k+1 ,

which we already know. For that, we start with the righthand side

∞∑
k=0

I2k+1 x2k+1 =
∞∑
k=0

(∫ 1

0

t2k+1dt√
1 − t2

)
x2k+1

=

∫ 1

0

( ∞∑
k=0

(x t)2k+1

√
1 − t2

)
dt

= x

∫ 1

0

t dt

(1 − (tx)2)
√

1 − t2
.
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Paul Levrie’s approach Levries proof

By substituting τ =
√

1 − t2 , the last integral will become∫ 1

0

x dτ

(1 − x2) + x2τ2
=

∫ x

0

dT
√

1 − x22
+ T 2

,

and this one is, as everybody knows, equal to

1√
1 − x2

arctan
x√

1 − x2
=

arcsin x√
1 − x2

.

Remark

The same trick works also with the function q , thus yielding a fourth
approach.
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Appendix: Interchanging integration and summation A theorem of Beppo Levi type

Appendix: Interchanging integration and summation
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Appendix: Interchanging integration and summation A theorem of Beppo Levi type

A theorem of Beppo Levi type
Euler used implicitly the following

Lemma

Let fn, f be functions on the interval I = [ 0, 1 [ which are improper
integrable such that the sequence (fn)n∈N converges monotone increasing
to f uniformly on every closed subinterval [ 0, a ] of I . Then∫ 1−

0
f (x) dx =

∫ 1−

0
lim
n→∞

fn(x)dx = lim
n→∞

∫ 1−

0
fn(x) dx .

Remark . This is a weak version of Beppo Levi’s theorem of monotone con-
vergent sequences of Lebesgue integrable functions.

Of course, application of Lebesgue theory is not what we mean by an ele-
mentary method.
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Appendix: Interchanging integration and summation A theorem of Beppo Levi type

The main idea of the first proof is contained in the following picture:
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Appendix: Interchanging integration and summation A theorem of Beppo Levi type

More precisely: We define gn := f − fn such that gn ↘ 0 . Since g0 ≥ 0
is improper integrable, there is by the Cauchy criterion for each ε > 0 an
a ∈ I such that for all n ∈ N

0 ≤
∫ 1−

a
gn(x) dx ≤

∫ 1−

a
g0(x) dx ≤ ε

2
.

On the interval [ 0, a ] the sequence (gn)n∈N converges uniformly to 0 .
Therefore, there is an N = N (ε) such that for all n ≥ N

0 ≤
∫ a

0
gn(x)dx ≤ ε

2
.

This implies

lim
n→∞

∫ 1−

0
gn(x) dx = 0 =

∫ 1−

0
lim
n→∞

gn(x) dx . �
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Appendix: Interchanging integration and summation A theorem of Beppo Levi type

The second proof has been communicated to me by Robin Chapman in the
case

f =
∞∑
n=0

fn , fn ≥ 0 .

It uses Cauchy’s Double Series Theorem.
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Appendix: Interchanging integration and summation A theorem of Beppo Levi type

In exact symbols: Choose a sequence 0 = a0 < a1 < a2 < · · · < 1
converging to 1 and define Im := [ am , am+1 ] ⊂ I and

Jmn :=

∫
Im

fn(x)dx .

Then ∑
m=0

(∑
n=0

Jmn

)
=
∑
m=0

∫
Im

f (x) dx =

∫ 1−

0
f (x) dx

and ∑
n=0

( ∑
m=0

Jmn

)
=
∑
n=0

∫ 1−

0
fn(x) dx .
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Other elementary evaluations and reading

An excellent overview of Euler’s work on ζ (2) including historical details
can be found in :
Ayoub, Raymond: Euler and the Zeta Function. The American Mathe-
matical Monthly 81, No. 10, pp. 1067–1086 (1974).

Anybody interested in other elementary calculations of ζ (2) should
consult the article

“Evaluating ζ(2) ”

on the homepage of Robin Chapman (Department of Mathematics,
University of Exeter, Exeter, EX4 4QE, UK; rjc@maths.ex.ac.uk).

Interestingly enough, No. 11 of the 14 different evaluations is due to your
former colleague Yoshio Matsuoka, American Mathematical Monthly 1961!
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Other elementary evaluations and reading

Very nice reading on Euler’s work in general is the series

HEDI = How Euler Did It

by Ed Sandifer which can be found on MAA online.

Thank you for your patience!
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