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Characterizing Moigezon Spaces 
by Almost Positive Coherent Analytic Sheaves 

OSWALD RIEMENSCHNEIDER* 

Introduction 

An irreducible normal compact complex space X is a Moigezon space if 
the transcendence degree of the field of meromorphic functions on X is equal 
to the complex dimension of X. In a joint paper [7] Grauert and the author 
introduced the notion of" quasi-positive" coherent analytic sheaves on complex 
spaces and proved a "vanishing theorem" for such sheaves on Moigezon 
spaces which is analogous to the vanishing theorem of Nakano [18] for 
positive vector bundles on compact complex manifolds. It is well known that 
a normal compact complex space is projective algebraic if and only if it carries 
a weakly positive vector bundle (in the sense of Grauert [6]). Therefore, it is 
a natural conjecture that an irreducible normal compact complex space X is a 
Moi~ezon space if and only if there exists a (torsion free) coherent analytic 
sheaf 5P on X which is weakly positive almost everywhere. 

This paper is a first but very modest step forward to the proof of this 
conjecture. First of all we give the sentence "a  vector bundle E over a complex 
space X with singularities is weakly positive almost everywhere" an exact 
meaning and call such vector bundles almost positive. It has been shown by 
Griffiths [8] and Kobayashi and Ochiai [13] that there are also precise van- 
ishing theorems for almost positive vector bundles on compact K~ihler mani- 
folds (cf. w 1). We then investigate in w 2 the observation of Rossi [-19] that 
coherent analytic sheaves can be made free (modulo torsion) by proper modi- 
fications, i.e.: If 5 ~ is a coherent analytic sheaf on an irreducible compact 
complex space X then there exists a (minimal) proper modification q~: 2 - +  X 
where X is an irreducible compact complex space such that the torsion free 
preimage 5~=5Po q~ = ~o* 5P/torsion (q)* 5 p) is locally free. We shall show that 
Rossi's construction is the (unique) solution of a universal mapping problem 
and that it coincides with monoidal transformations if 5 p is an ideal sheaf on X. 
In w 3 we define a sheaf5 P on X to be almost positive if the locally free sheaf 5P is 
almost positive in the sense of w 1, and prove a vanishing theorem for almost 
positive coherent analytic sheaves on Moi~ezon spaces. The methods are the 
same as in [7]. 

The last paragraph is devoted to the connection between Moigezon spaces 
and almost positive sheaves. We show: Every normal Moi~ezon space X carries 
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an almost positive (torsion fi'ee) coherent analytic sheaf 50 of rank 1. The set A 
where 50 is not free or not positive is analytic and of codimension at least 2 
in X. We are able to prove the converse only in the case where the set A is discrete. 
This gives at least in the case of 2-dimensional normal spaces a characterization 
of Moi~ezon spaces. Finally, we show, generalizing an example of Grauert ,  
that there exist Moigezon spaces X in all dimensions n > 2  which are not 
projective algebraic such that X carries an almost positive coherent analytic 
sheaf of rank 1 with discrete A. 

In general the " b a d "  set A of an almost positive coherent analytic sheaf 5 ~ 
is not assumed to be analytic. In fact the vanishing theorems can be proved 
without such an additional assumption. But it seems to be very difficult to 
prove the conjecture in this full generality. However, there is a hope to prove 
it under the assumption that A itself is a lower dimensional Moigezon subspace 
of X (this makes sense since every subspace of a Moi~ezon space is again a 
Moigezon space). This would give an inductive characterization of Moigezon 
spaces by almost positive coherent analytic sheaves. 

In an appendix we shall show that the vanishing theorems can be proved 
even under a more general definition of almost positivity. Whereas in w 3 the 
bundles are positive (in some sense) in a dense open subset it is enough to 
require that they are positive only in a non-empty open subset U c X  and 
semi-positive outside U. For  this we have to prove an identity theorem for 
harmonic forms with values in a vector bundle which can be derived from an 
identity theorem of Aronszajn [2]. 

I am indebted to L, H6rmander for pointing out Aronszajn's paper to me. Furthermore I 
wish to thank Ronny Wells for his mathematical and linguistic help during my stay at the Institute 
for Advanced Study. 

w 1. Almost Positive Vector Bundles 

1. Let X be an irreducible (reduced) complex space and E - ~  X a complex 
analytic vector bundle of rank r over X. If E* denotes the dual bundle of E then 
P = P ( E )  is defined as E*-X / IE* .  n: P ( E ) - , X  is a fibre bundle whose fibre 
P (E)x is the projective space P (E*) ~ IP r -  1 of lines in E*, x ~ X. E* - X --~ P (E) 
is a principal bundle; we denote the associated line bundle by G =  G(E). 

2. There always exists a biholomorphic mapping 

G * - P -  ~ > E * - X ,  (1) 

and therefore E is positive (in the sense of Grauert) iff G is positive. This can 
be seen immediately by Grauert 's  definition [6]: E is positive if some tubular 
neighborhood of the zero section in the dual bundle E* is strongly pseudo- 
convex. 

If P is a complex manifold (i. e., if X is a manifold) then G is positive if and 
only if there exists an hermitian metric h on G such that the hermitian quadratic 
form 

OG(q) = ~ O~:rligl j, t /=(~ 1, ..., t/n), n = d i m  X,  (2) 
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is positive definite where {Oii} denotes the curvature tensor of G with respect 
to h (Griffiths [8]). 

Remark. If the line bundle G is given by transition functions g,~ with respect 
to a covering { U~} of P (that means we have w, = g, ~ w~ on U, n U~ where w, is 
a coordinate in the trivialization G[ U, ~ , U, x II?) then an hermitian metric h 
on G is given by positive C ~ functions h, on U, such that 

h~=lgK,12 hr (3) 

on U~ c~ U~ (usually such a system {h,} is called an hermitian metric on the dual 
bundle G* !). Then in order that (2) be positive definite it is necessary and suf- 
ficient that the form 

92 ( - -  log h~) 
Oz i ~ j  dz i d~ (4) 

is positive definite on U, for all z. Hence 

G is positive if and only if there exists a system of positive C ~ functions h, 
such that (3) holds and the functions - log h, are strongly plurisubharmonic on U,. 

This is the original definition given by Kodaira [14]. 

Definition. A vector bundle E over a (reduced) complex space X is called 
almost positive if there exist a (positive definite) C ~~ hermitian metric h on the 
associated line bundle G = G(E) over P=P(E) and a dense open set/~ contained 
in the set R=R(P)  of regular points of P such that the hermitian quadratic 
form (2) is positive definite for all points in R. 

Since X is reduced, P=P(E) is also reduced and hence R =R(P)  is an open 
and dense subset of P. 

Remark. Every positive vector bundle in the sense of Grauert is almost positive. 

3. We now introduce the notion of semi-positive vector bundles. 

Definition. A vector bundle E over a complex space X is called semi-positive 
if the following two conditions are satisfied: 

i) there exists an hermitian metric h on G = G(E) such that the hermitian 
quadratic form Oa(t/) is positive semi-definite on R =R(P),  

ii) Gk| n* F is almost positive for every almost positive line bundle F over 
an open set U c X and every k > 1, where n: P ~ X is the canonical projection 
(with respect to the canonical metric on Gk| n* F). 

Lemma 1. In the case of a line bundle G, condition ii) follows from i). 

Proof For E=G, P(E)=X and G(E)=G. If F is an almost positive line 
bundle on U c X such that OF (q) is positive definite on/~ c U then 

OGk| = k OG(~) + OF(V) 

is positive definite on/~, q.e.d. 

Lemma 2. Every positive vector bundle E over X is semi-positive. 
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Proof By definition, G = G(E) carries an hermitian metric such that OG(t/) 
is positive definite on a dense open subset ~ c R ( P ) .  Then OG(t/) must be 
positive semi-definite on R(P) because of continuity. 

If F is an almost positive line bundle on U c X then re* F is obviously semi- 
positive. Hence Gk| * F is almost positive because G is almost positive by 
definition, q.e.d. 

Example 1. Let E be a vector bundle over X and h an hermitian metric 
on E such that the hermitian biquadratic form ({O~ij} denotes the curvature 
tensor of E with respect to h) 

OE(L ~) = Y~ o~,3 ~ ~ t/' ~J (5) 

is positive definite in the two variables ~ = (~a, ..., ~,), r = rank E, t/= (t/a, ..., t/"), 
n = dim X, for all points in a dense open subset/~ o R ( X )  (resp. positive semi- 
definite in R(X)), that means E[/~ is positive in the sense of Griffiths (resp. EI R(X)  
is semi-positive in the sense of Griffiths). Then E is almost positive (resp. semi- 
positive). 

The proof follows easily from formula (2.36) in [-8]. This formula says that 
if E carries an hermitian metric with positive definite (positive semi-definite) 
OE(~,t/) then G=G(E) has an hermitian metric such that OG(t/) is positive 
definite (resp. positive semi-definite and positive definite in the direction of 
the fibres of re' P--+ X). If F is an almost positive line bundle on X then ~* F 
is semi-positive and positive in the directions which are orthogonal to the 
fibres of ~. This implies the statement of Example 1 . - A  special case of this 
example is 

Example 2. Every trivial vector bundle X x ~" is semi-positive. 

Example 3. Let E be a vector bundle generated by its sections. Then E is 
semi-positive. 

For every vector bundle which is generated by its sections is semi-positive 
in the sense of Griffiths (cf. [8], formula (2.24) and the proof of Theorem G on 
p. 212). 

4. We need some functorial properties of almost positive and semi-positive 
vector bundles. We say that a holomorphic mapping (p: X--~ X is of class (*), 
if X and X are irreducible complex spaces of equal dimension and cp is discrete 
at at least one point )2oeX. 

Proposition 1. Let ~o: X--* X be a holomorphic mapping of class (.), and 
let E be an almost positive (resp. semi-positive) vector bundle on X. Then E = ~p* E 
is almost positive (resp. semi-positive). 

Proof There exists a canonical diagram 

P(q~* E) ~ > P(E) 

2 ~' , X ,  



Moigezon Spaces 267 

such that (} is of class (,) and 0=G(g0* E)=(}* G, G=G(E).  Therefore the 
metric h on G defines a metric h on G in an obvious manner. Since ~ is also of 
class (*) the set of points where (} is locally biholomorphic is open and dense 
in P(~o* E). From that it follows easily that f~ possesses the desired properties, 
q.e.d. 

5. Let X, E, P and G be given as in Section 1, let F be a line bundle on X 
and let n be the canonical projection n: P--+ X. We denote by g, fr .~, etc., the 
sheaf of germs of holomorphic sections in E, G, F, etc. Take an open subset U 
of X such that E I U and F I U are trivial. Then 

no )(~r | n* ~ )  = n(o (~k) | ~ ,  

n - I ( U ) = U x I W  - i  and ~kJn-~(U)=(gv|  _,(v)2/g k, 

where ~ denotes the sheaf of germs of holomorphic sections in a positive 
hyperplane bundle H of IP r- 1 and n(l)(Sf) is the l-th direct image sheaf of a 
sheaf ~ Now 

Ht(lPr-1, ~ k ) = o ,  l>O, k=>l, 
and 

H ~ (IW- 1, :~fk) ~ E(k), 

where E (k) denotes the k-th symmetric tensor power of E. This implies 

n0 ) (~k |  1>0, 
and hence 

HI(P, f~k| ~ ) = H z ( X ,  n(o)(Nk |  * if))  
(6) 

= H ' ( X , # ( k ) |  1>0, k>=O. 

6. It is now very easy to give a proof of the vanishing theorem of Griffiths [8J, 
Theorem G, and Kobayashi and Ochiai [13J, Corollary 2.4. 

Theorem 1. Let X be a projective algebraic manifold with canonical bundle 
K x, and let E resp. F be a vector bundle resp. a line bundle on X such that 

i) E is almost positive and F | det E* is semi-positive, or 
ii) E is semi-positive and F |  E* is almost positive, then 

Ht(X,~(k) |174 , l>=l, k>=l. 

Proof. Since (4) holds we have only to show that 

H'(P, Nk | n* ( ~ |  Xx)) = 0, I>1,  k>=l, (7) 

where P=P(E) ,  G=G(E)  and n: P---~X. In both cases i) and ii) 

Gk+' |174  k > l ,  r = r a n k  E, 

is almost positive on P by definition. Since P is again projective algebraic ([15], 
Theorem 8) one gets by a slight generalization of the proof of Kodaira's 



268 O. Riemenschneider: 

vanishing theorem [14]: 

Hz(P, Nk +r @ ~z* ~ @ ~* det 6~* | 5U~) = 0, l>1,  k > l  

(cf. for instance [7], Satz 2.2, and also Theorem 6 in the Appendix of this paper). 
By [8], Formula (2.38) 

K e = G-r | re* ((det E) | Kx), 

and this implies (7), q.e.d. 

w 2. Monoidal Transformations with Respect to Coherent Analytic Sheaves 

1. It was shown by Rossi [19] that coherent analytic sheaves can be "made 
free" by means of modifications. We want to give here a more systematic 
treatment of this subject similar to the representation of monoidal transfor- 
mations in [10]. 

Definition. Let cp: Y--~ X be a holomorphic mapping of complex spaces 
and ~9 ~ a coherent analytic sheaf on X. Then we define the torsion free preimage 

o cp of ~ under cp as the analytic preimage of 50 under cp modulo torsion: 

Sao q~ = (p* ~90/T(q~ * SQ. 

We note some properties of the torsion free preimage (proofs can be found 
in [7], w 1.3): 

Proposition 2. Let <p: Y - ,  X,  ~b: Z - *  Y be holomorphic mappings, and let S P 
be an arbitrary and f f  a locally free sheaf on X. Then 

i) (5~ |  ~p ~(5Po q))| .~. 

ii) I f  ~o is of class (,) (cf. w 1.4) then 

~9% q) ~ (AalT(Aa)) o (p. 

iii) I f  ~ is of class (*) then 

(S~o ~)o ~ = ~ o  (~ o 4,). 

2. We define monoidal transformations axiomatically. All complex spaces 
are assumed to be reduced. 

Definition. Let X be a complex space and 50 a coherent analytic sheaf on X. 
Then a pair (Xs~, (py) of a complex space X~ and a proper modification mapping 
(p~: Xs~---~X will be called the monoidal transformation of X with respect to 
S ~ if the following two conditions are satisfied: 

i) the torsion free preimage S ~ o (p~ is locally free on Xs,, 

ii) if (p: Y-+ X is any proper modification mapping such that i) holds then 
there exists a unique holomorphic mapping ~b: Y--~ X~ with <p = ~p.~o ~b. 

If Xs~ exists it is uniquely determined by ii) up to biholomorphic mappings. 
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3. We shall show now that (Xz, r locally exists (cf. [19]). Let U be an 
open subset of X such that there exists an epimorphism (gq ~ 6 e ~  0 over U 
and let D be the set of points in U where 6 e is not locally free. 

In the following L =  L(6Q denotes the linear space associated to 5 e in the 
sense of Grauert  [6] (cf. also [5]) and V(L) is the coherent analytic sheaf of 
germs of holomorphic functions on the linear space L which are linear along 
the fibres of L. Then 

and L(e)_--- E*, 

if E is a vector bundle. 

L(6Q[ U - D  is a complex analytic vector bundle over U - D .  Set r =  rank 
L(SQ [ U -  D (we may assume that U -  D is connected). The sequence d~q--+ 5P---~ 0 
gives rise to an embedding L(SQ~--~ U • C q of linear spaces. Attaching to every 
point x~ U - D  the r-dimensional linear subspace L(6e)xCC~ we get a holo- 
morphic mapping 

#: U-D---~G(r,q) 

of U - D  into the Grassmann manifold G(r, q) of r-dimensional subspaces of 
C q. It has been shown by Rossi ([193, Proposition 3.4) that # is a meromorphic 
mapping in the sense of Remmert;  that means: 

The closure 0 of the graph of # in U • G(r, q) is a (reduced) complex space. 
In the canonical diagram 

f: 
<) 

U G (r, q) 

~p is proper and induces a biholomorphic mapping of O-q~-I(D) onto U - D .  
Moreover (]-q~-l(D) is dense in (J (i. e., q9 is a proper modification mapping). 

Proposition 3. S,~o ~o is locally fi'ee. 

Proof Let G =  G(r, q), then we have an exact holomorphic vector bundle 
sequence 

0---~ B--~ G • Cq---~ Q--~0 

on G where B is the universal bundle of G (whose fibre Bg at a subspace g eG  
is exactly the vector space g itself). 0 --+ B --~ G • C q is lifted under # to 

L (~ )  ~ U • C q 

on U - D .  Now let 6~-  - V(~k* B) be the locally free sheaf of germs of holomorphic 
functions on $* B which are linear along the fibres of $* B--> ~. Obviously 

~9*B= U•  GB~---*~ • IE a 

such that we have an epimorphism 
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Since V(L(Se))= ~ 5P coincides with q~* 5 e on U-q~- l (D)  and ~ is there equal 
to the canonical epimorphism 

(Pg = ~o* (05 ~ - ,  ~o* 5e--, 0. 

Therefore e annihilates ker/3 on U -  ~o- 1 (D). This remains true on ~o- 1 (D) since 
g is locally free. Thus we get 

o~ ~ , g ~ o  

qo*~,  

7 obviously being surjective. In the exact sequence 

0 ~ X---, ~0" 5e---, g ~  0 

we have T(J l )  = ~ since supp X m ~o- 1 (D) is nowhere dense in fT. This implies 
because of T(SP)= 0 

T(q)*S~)=J~(" andhence  5eoq~=SP, q.e.d. 

Proposition 4. The pair (f_J, ~o) has the universal property ii) of the definition 
in Section 2. 

Proof. Let 0:  V ~  U be an arbitrary proper modification mapping such that 
50~ 0 is locally free. Then Vo=O-I(U-D) is open and dense in V The exact 
sequence ( g q ~ S e ~ 0  leads to an exact sequence ( 9 ~ 0 " 5 e ~ 0  and thus 
to an epimorphism (9 q--, 5~o 0 - ~  0. Since 50~ ~ is locally free of rank r we 
construct as at the beginning of this section a holomorphic mapping 

v: V---, G(r, q). 

Since on Vo = ~ -  1 ( U - D) we have L(5 e o~) = L(O* 5a) = V x vL(Se) the following 
diagram is commutative: 

v0 

U - D  ~ 4 G(r, q). 

Let )~ be the holomorphic mapping of V into U x G(r, q) defined by (~, v). 
X is obviously a holomorphic mapping of V into ~J such that 0 = ~o o )~. 

The uniqueness of )~ is clear since V o is open and dense in V, q.e.d. 

4. Let X be a complex space, 9~ a coherent analytic sheaf on X and U1 and 
U2 open subsets of X such that X = U~ w U 2. Suppose that ~0i: ~ ~ U~ are 
monoidal transformations of U~ with respect to ~ = ~1 U~, i-- 1, 2. Then there 
exists a unique isomorphism i: q~i-l(UlC~ U2)~ q~-l(Ulc~ U2) such that ~ozo i 
= qh on q0i-l(U~ c~ U2). The proof of this statement can be reduced to the case 
in which one of the U~ is equal to X, and this case is an easy consequence of 
the universal property of monoidal transformations. By piecing together the 
local solutions of Section 3 we have proved (cf. [19], Theorem 3.5): 
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Theorem 2. Let X be an (irreducible) complex space, 5 '~ a coherent analytic 
sheaf on X and D={x~X:  50 is not locally free at x}. Then there exists the 
monoidal transformation (X~, q~) of X with respect to 5(. X~ is a reduced 
(irreducible) complex space and ~p~ is a proper modification such that q~: 
X ~ -  ~p~l(D) --~ X -  D is biholomorphic. 

I f  U c X  is an open subspace of X then (~o~l(U), ~p~) is the monoidal trans- 
formation of U with respect to 5r 

Remark. Let (X~, ~p~) be the monoidal transformation of X with respect to 
a coherent analytic sheaf ~ of rank r. Then one should be able to prove the 
more general fact 

ii') I f  9: Y-~ X is any holomorphic (not necessarily proper modification) 
mapping such that 5:0 q~ is locally free of rank r then there exists a unique 
holomorphic mapping ~: Y--> X~ such that tp = ~o~ o ~. 

The statement ii') is obviously false if one only requires that 5:~ q~ is locally 
free of arbitrary rank. 

5. We want to show that in the special case of ideal sheaves our construction 
coincides with the usual notion of monoidal transformations. 

Let the ideal J be locally generated by holomorphic functions fl  . . . .  ,fq; 
thus we have an epimorphism 

q 
(9~: p , J - * 0 ,  p(h 1 . . . . . .  ,hq,x)= ~h~,xf~,~, 

and therefore ~= 1 

L('ff)=( (X' wl' '''' wq)~U • v=l~h~(x) w ~ = 0  for all (hl, . . . ,hq)~kerp,}, 

where p , :  F(U,(9~)~F(U,J) .  Since obviously (x, fl(x), ...,fq(X))EL(J)~, 
L(J)~ is, at a point x ~ X  where J~ is free, equal to the 1-dimensional linear 
space through 0 and (fl(x) . . . .  ,fq(X)) in C q, i.e., #: U-D---~ G(1, q)=IP q-1 is 
given by #(x)=(fl(x):...:fq(x)) and this is exactly the construction of the 
monoidal transformation with center Z(J)={x~X:Jx+(gX,x}  (cf. [10], 
Remark 2). 

6. For the investigations in w 4 we need in particular the case where 5 ~ 
is a rank one sheaf. We look at the local situation 

U G(1, q). 

g = 50o q~ is the sheaf of germs of holomorphic functions on L(~* B) which 
are linear along the fibres of ~ * B - +  U where B is the universal bundle of 
G(1, q). But G(1, q)=lP  q-1 and B is the dual of the positive hyperplane bundle 
on IP q- 1. From that we derive 
19 Math. Z., Bd. 123 
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Proposition 5. Let (Xs~, q)s~) be the monoidal transformation of X with 
respect to the rank one sheaf ~, and let x~D. Then q)~a(x)=Xse ~ is a projective 
algebraic space and 6~'o q)s~lXs~ ~ is the sheaf of germs of holomorphic sections 
in the positive hyperplane bundle of Xsr 

We have only to apply the formula V(E)= ~* where E denotes a vector 
bundle and g* the sheaf of germs of holomorphic sections in the dual bundle E*. 

w 3. Almost Positive Coherent Analytic Sheaves 

1. Let ~ be a coherent analytic sheaf over a (reduced) irreducible complex 
space X. Then there exists, as was shown in w 2, a (minimal) irreducible complex 
space Xsv and a proper modification mapping ~Ps~: Xs~-->X such that ~ o  ~p~ 
is locally free. X~ is reduced, and it is compact if X is compact. Denote the set 
of nonsingular points of X by R (X) and the set of points where ~ is not locally 
free by D (~). 

Definition. 50 is called almost positive if the vector bundle E(~o~psv ) is 
almost positive over Xs~ in the sense ofw 1.2 (E = E ( ~ o  ~p~) denotes the uniquely 
determined vector bundle with g_-_ ~ o  ~Ps~). 

Moreover, if A c X is a nowhere dense closed subset such that 

X - A c R ( X )  c~D(~) 

and G=G(E) is positive on P(E)-(~os~o~)-l(A), where ~: P(E)-*Xs~, we say 
that 5 ~ is positive on X -  A. 

Semi-positivity is defined in exactly the same fashion. 

2. Let 5 ~ be a coherent analytic sheaf over X and L =  L(~)  the complex 
linear space associated to ~ Assume that there exists an hermitian form hx 
on each fibre L x. h = {hx} is called an hermitian form on L in [7], if there exist a 
neighborhood U of each point xoeX, an embedding L] U~- ,UxqY and a 
positive hermitian form 

h = ~ hiywlwj 

on U x Cq with C ~ functions hij such that hx=~lL ~ for all x~ U. 

If/~ is open and dense in R(X)c~D(~) then Zl/~ is a vector bundle on the 
manifold/~ with an hermitian metric h. 

6 ~ is called Nakano quasi-positive in [7], if there exists an hermitian form h 
on L = L(6Q and a dense open subset/~ of R (X) c~ D (6 p) such that L I/~ is negative 
with respect to hl/~ in the sense of Nakano [18]. (Unfortunately there is a 
mistake in the definition of [7], p. 265. 6 e is called positive, if L(6Q is positive. 
But this is wrong since L(g) = E* for a vector bundle E and E should be positive 
if and only if g is positive !) 

In the same way one can define Griffiths quasi-positive sheaves 6~. It is 
well known that 

Nakano quasi-positive ~ Griffiths quasi-positive. 
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We want to show now that 

Griffiths quasi-positive ~ almost positive. 

Let h be the hermitian form on L(5 e) and q)so: Xs~-* X the monoidal 
transformation with respect to ~ As was shown in [7], Satz 1.4, L(5% q~s,) 
carries an hermitian metric which is obviously Griffiths negative in a dense 
open subset of Xs,. Since ~o(,o~ is locally free, L(Seoq~s,)=E(Seogs,)* and 
therefore E(5~o ~o~) is almost positive in the sense of Griffiths. This implies that 
E( 5go q)s,) is almost positive (Example 1, w 1.3), q.e.d. 

3. A (reduced) compact complex space X is called a Moi~ezon space if every 
irreducible component Xi of X admits nj = dim e X~ (algebraically and analyti- 
cally) independent meromorphic functions. Let 5 e be a coherent analytic sheaf 
on an irreducible Moigezon space then the monoidal transformation q~s~: Xs--* X 
with respect to 5 e is a modification and hence Xso is again a Moigezon space. If 

. . . . .  ~ are finitely many coherent analytic sheaves, 

e = q ~  ..... ~ = q ~  x . . .  x q~z : Xs,, ..... s =  X ~  X x . . -  X x X s  - *  X 

is a modification of X such t h a t ~  o q~ is locally free for all z = 1 . . . .  , t (here one 
needs Proposition 2, iii)). Xs,1 ..... ~ is a Moigezon space since each finite product 
of Moigezon spaces and each subspace of a Moi~ezon space is again a Moigezon 
space (cf. for example [16], Chapt. I, Theorem 3). Moreover ~ o  ~o is almost 
positive if ~ is almost positive because of Proposition 1. 

Due to Moigezon [16] there exists a desingularization n: X---+X~ ...... ~, 
where 2 is a projective algebraic manifold (cf. also w 4.1). In summary we get 

Let ~ , . . . ,  ~ be finitely many coherent analytic sheaves on a Moi~ezon 
space X. Then there exists a projective algebraic manifold 2 and a modifieation 
q~: 2 - *  X, such that all ~oq) are locally free. I f  one ~ is almost positive then 
5~ o (p is also almost positive. 

In the situation above we define the torsion free sheaf 

N~"'~" ..." ~,("~" ~fx 

as the zeroth direct image of (No cp)("l)| ... |  p) (u ' ) |  x under ~o, where 
K~ denotes the canonical line bundle of X. This definition is independent of 
the choice of 2 (cf. [7], w 2.1 and3). 

If ~ . . . .  , ~ are locally free we have 

~, ,~ . . . . .  ,~o,~..x"~ = (~',~ | | | 

where o,Ux is the canonical sheaf of X defined in [7], w 2.1. 

Finally let ~ and 5P2 be two sheaves on X, let Y=Xs~ x x X ~  and ~0= 
qh x ~0 2 : Y-* X be the canonical modification. Then we say that ~ �9 (det 5e2)* 
is almost positive (resp. semi-positive) if the vector bundle ( ~  o 9 ) |  det (~2 o q))* 
is almost positive (resp. semi-positive). 
19" 
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4. We are now in the position to state the vanishing theorem of Griffiths, 
Kobayashi and Ochiai for almost positive coherent analytic sheaves on 
Moigezon spaces with singularities. 

Theorem 3. Let  X be a Moi~ezon space, 30 and Y coherent analytic sheaves 
with rank 3--= 1 such that 

i) 5 ~ is almost positive and 3-  . (det 50)* is semi-positive, or 

ii) 3" is semi-positive and 3 - .  (det 5O)* is almost positive, then 

H l (X, 5o(k). j - .  2Ux) = O, 1 > 1, k > 1. 

We proceed as in the proof of [7], Satz 2.1. Hence we have first to show the 
analogue to Satz 2.3. 

Proposition 6. Let  X be a projective algebraic space and q): X - +  X a 
desingularization of  X .  Further let E resp. P be a vector bundle resp. a line bundle 
over X such that 

i) /~ is almost positive and P | det/~* is semi-positive, or 

ii) /~ is semi-positive and F |  det/~* is almost positive, then 

~o(~)(g~) |174 v > l ,  k > l .  

Proof  Assume that we have already proved 

q~(.) (~k) | ~ | s x )  = 0 

for all k and 1 _-< # < v, where v is fixed. Then we take Stein coverings ~ = { Uo} 
of X resp. ~U = { V~} of X and form the double complex 

{c,,~= c~,~(~2, :r; ~ ) O g |  ~', ~"} 

belonging to the two coverings ~2 = { 0 o = q~- 1 (Up); Up E ~/} and ~ of 2 :  

cO, O ~' ,C1, o ~' >C2, ~ >... >C~, ~ ~' )C~+1,o , . . .  

cO,1 3' > C1,1 

: 

c O ,  v - 1  6' ) C 1 , v - 1  

6"1 
C O , v 5 '  

6 '  C 2 ,  1 

1 
/ / ~ "  ~ 

5 '  > C 2 ,  V - 1  

/ 
/ 

> Cl,V 6' ) C2,V 

1/////J:l 
> . . .  > C v ,  1 a" > CV+l,1 > ... 

/ "  : �9 

l i 
) . . ,  ) C V ,  V - 1  8 '  ) c v + l , v - 1  > . . .  

) o . .  
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All horizontal sequences in this diagram are exact. Since we have by the 
induction hypothesis 

H~(~o-I(U), ~k) |  ~ | ~Q)= r ( u ,  ~o{~}(~k}| ~ | = 0 

for all Stein open sets U ~ X and all 1 </~ < v, k > 1, the vertical sequences 

cr, O ~") cr, 1 6 - ) . . .  6"> cr,  v-1 

are exact up to v -  1 for all r. From this one derives by "ascending" a canonical 
isomorphism H 2, v- 1 ___ H v + 1, o 

Since X is projective algebraic there exists an almost positive line bundle H 
on X ; / t =  9*H is almost positive on 2 because of Proposition 1. Obviously 
for all p and l>__ 0 

Since therefore q}(u) (o ~k) | ~ | s = 0 if and only if q}(.) (4 ~k} | (.~ | ~z)  | .X';?) 
vanishes and F | det E* is almost positive (resp. semi-positive) if and only if 
(P|174 is so for one l__>0 we may replace P by a suitable product 
p | without loss of generality. 

Due to Grauert [6] there exists an integer l 0 such that 

H~+I(X, ~O<o)(~) | g | x,z) | x~') = 0 
for all 1 >__ to, k fixed. Hence 

m+' (x ,  ~(o)(~)| | ~')| ~))= o 
and we may assume that 

= H ' + ' ( X ,  ~0{o} (gqk} | ~ | og(})) = 0. 

Suppose now that (p(~}(g'~k)|174 Since we are again allowed to 
tensorize by a suitable power of H we may assume that there exists a global 
section o- 4= 0 in F(X, q~(~)(g'Xk) | o~ | XX)). 

But then one can find a non-vanishing cohomology class in 
H~(2, g~k}|174 because of H 2,v-1 --~_H v+l '0=0 (cf. [7], p.276). That 

means H ~ (2, ~k) |  | 2UX) 4= 0, 

which is a contradiction to Theorem 1 (2  is necessarily a projective algebraic 
manifold and hence Kihler). 

The proof works also in the case v = 1, q.e.d. 

Proof of Theorem 3. By assumption there exists a projective algebraic 
manifold 2 and a modification mapping ~o: 2 ~ X such that for 5 ~ = 5~o (p 
and ~-~ = ~--o (p one of the two cases i) and ii) holds: 

i) 5P is almost positive and J~ | det 5P* is semi-positive, 
ii) 5 ~ is semi-positive and ~ | det 5 ~* is almost positive. 
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Moreover due to Artin [-3] there exists for every point xoEX a projective 
algebraic space Y, a holomorphic map a: Y--+ X and a (lower dimensional) 
algebraic subset A c Y such that o-} Y - A  is locally biholomorphic and 
xoe~r(Y-A).  In particular o- is of class (,). 

The fibre product I 7= Y x x X  is a projective algebraic space which possesses 
a projective algebraic desingularization 17 (Hironaka [-9]). We have thus a 
diagram 

17 ~ ~ 

.1 1. 
Y ~ ~X, 

in which all mappings are of class (,). Therefore we can see tha t /~=E(z*  5P) 
and P=E(z*  g )  satisfy one of the two conditions i) and ii) of Proposition 2 
on 17, and hence 

CMg'~k~ | g | X~) = 0, v_->l. 

Outside A = r  the mapping ~ is locally biholomorphic, and one has 
x0 e q~ (z ( ~ -  4)). This implies the vanishing of q~(~) (5~(k) | g | JUX) in a neighbor- 
hood of Xo for all v > 1 and all k > 1. Hence 

~o(~(g(k~ | f | ~ )  = 0, v > 1, 

and because of Theorem 1 

l ~ l , k > l ,  

H l (X, ~(k). j .  Xx) = H'(X, q~(o, (S~(k) | f | X~)) 

= H i (2 ,  ~(k) | J~ | j(('.~) 

=0, 
q.e.d. 

w 4. Some Properties of Moigezon Spaces 

1. Let X be a (reduced) Moigezon space. Then X is properly bimero- 
morphically equivalent to a projective algebraic variety Y ([16], Chapt I, 
Theorem 1); that means: 

There exist a projective algebraic variety Y, a compact complex space X' and 
proper modifications X'  

/ \  
X Y. 

Since Yis projective algebraic X' may be supposed to be projective algebraic, 
too. Therefore we can find a desingularization 2 ~ X' due to Hironaka, and 
we have proved the following statement ([16], Chapt. I, Theorem 7): 
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Every M oi~ezon space X has a projective algebraic desingularization rc : f (  ~ X. 

This proposition can be sharpened as follows (Moi~ezon [17]): 

Let X be an (irreducible) Moi~ezon space. Then there exists a finite sequence 
of monoidal transformations of the space X, say (Pi : X i +1--~ Xi, 0 < i <  r, Xo = X, 
such that 

i) the center Bi of the monoidal transformation q~i is a nonsingular projective 
algebraic variety, 

ii) Bi is nowhere dense in Xi, and if Xi is singular, then Bicsing(Xi), where 
sing (Xi) is the set of singular points of Xi, 

iii) Xr is a projective algebraic manifold. 

2. We now prove 

Theorem 4. Every normal Moi~ezon space X carries a torsion flee almost 
positive coherent analytic sheaf 5P of rank 1 .5  P is positive outside an analytic 
subset A of X of codimension at least 2. 

Proof As was pointed out in Section 1 there exists a projective algebraic 
desingularization 7~: X - * X  of X. Since X is normal and rc is a proper modi- 
fication the image A = ~ (4) of points 2 E X at which ~ is degenerated is analytic 
of codimension 2. 

Now let E be an ample line bundle on X in the sense of Griffiths [81 ; that 
means 

i) the global sections of E over X generate each fibre E~, 
ii) if T denotes the tangent bundle of 2 and F~ the vector space of global 

sections of E vanishing at 2 s X then the natural mapping 

F ~  E~| T~ 

is surjective for all 22~X. 

Each sufficiently high power of a positive line bundle satisfies these conditions 
([8], Theorem C). 

Since E is generated by its sections we have an epimorphism 

(9~---, ~ ~ 0, q = dime H ~ (_~, ~), 

and hence an embedding 
L(g) ~--*X- x C q. 

Remembering that L(g)=E* we derive from Griffiths proof of his Theo- 
rem A ([8], p. 201) the following statement: 

The fiat metric on X • ~q induces an hermitian metric on L(g) whose curvature 
tensor 61 = {61if} has the property that the hermitian quadratic form 

61 (tl) = Y, o i  j ni rl~ 

is negative definite. 
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Define now ,9~ im (re(0) (gq---~ ~(o)g). 50 is coherent and as subsheaf of the 

torsion free sheaf rh0 ) g again torsion free. Since ~ coincides with g outside A, 
5 ~ is of rank 1. 

Obviously z(o)(9}= (9} because X is normal. This implies an epimorphism 

(9} ~ 5 P ~  0 which leads to an embedding 

L ( ~ )  ~--*X x 112 q. 

Restrict the flat metric of X • IEq to L(SP). This gives an hermitian metric on 
L(5~), and since this metric coincides with the metric on L(g) outside A the 
sheaf 5 P is Griffiths quasi-positive and thus almost positive (cf. w 3.2). The 
positivity of 5 ~ on X - A  is clear, q.e.d. 

3. In a very special case we can prove the converse of Theorem 4: 

Theorem 5. Let X be an irreducible normal compact complex space and 5 r 
an almost positive coherent analytic sheaf of  rank 1 on X which is positive outside 
an analytic subset A c X of dimension 0 (in particular X has only isolated singu- 
larities since sing X c A).  Then X is a Moi~ezon space. 

The idea of the proof is the following: There exists a proper modification 
re: Y--+X such that Y is a manifold, zc induces an isomorphism Y-Tz-I(A) 

~ ~ X - A  and Y-=5~o cp is a locally free rank one sheaf. E ( Y ) i s  positive on 
Y - ~ - I ( A ) .  Moreover  re-1 (A) will be locally defined by one function such that 
7z- 1 (A) defines a line bundle F. We will show that F carries an hermitian metric 
which is positive in a suitable neighborhood ~ of rc-l(A) and is trivial on the 
trivial bundle F [ Y -  W2, W 1 c ~ W 2 ~ ~ Y. Then a certain product F | E (~--)l is 
positive everywhere and thus Y is projective algebraic due to Kodaira.  But 
then X must be a Moigezon space. 

Let us carry out this program. We start with the monoidal t ransformation 
(Z, cp) of X with respect to ~ Then X -  A is nonsingular, Z -  cp - ~ (A) is dense 
in Z and cp induces an isomorphism Z - c p - ~ ( A )  ~ , X - A  since D ~ A  (if 
there are points in A -  D we make in addition monoidal transformations with 
respect to the maximal ideals of these points such that r is degenerated exactly 
over A). Since the triple (Z, cp, X) satisfies the assumptions of Theorem 1 in [10] 
we find a complex manifold Y and proper modifications zc: Y ~  X, ~: Y ~  Z 
such that ~z = cp o ~. Moreover  there exists an ideal sheaf J on X such that 
Z ( • ) =  { x e X :  (gx, x / J x + O } = A =  {xl . . . .  , x,} and (I1, ~) is the monoidal  trans- 
formation of X with center A (with respect to the ideal sheaf J ) .  rc is degenerated 
exactly over A. E = E ( Y o  rc)=E(SPo q~) x z Y is an almost positive line bundle 
which is positive outside B = 7c-1 (A). 

Moreover  j = z c - ~ ( J ) = J o ~ z  is locally free of rank 1 such that F = E ( J )  
is a line bundle on Y. F* = E ( J ) *  = L ( J )  is the normal bundle of the embedding 
B = Z ( J ) ~ - ~ Y .  As we pointed out in w FtB~ is the positive hyperplane 
bundle of the projective algebraic space B~=~z-l(x~). We now claim more 
generally the following statement: 
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-(*) There exist neighborhoods V~c c W~ of  B~ in I1, ~=1 . . . . .  t, such that 
W~ ~ W~ = 0 for  all a + ~ and W~ + Y for  all a, and an hermitian metric h on F such 

(j that F is positive on V~ and h is on Y -  U ~ equal to the f la t  metric (with 
�9 = 1  1 :=1  

t 

curvature O) o f  the trivial line bundle F[ Y -  U ~ .  
~ = 1  

t 

Assume that we have already proved (,). Since E is positive outside B = U Be 

we can find a neighborhood U c c V~ of B and a positive integer l such that 

t 

F | E l is positive on Y -  U. But on V= U V~ the line bundle F is positive and E 
1 :=1  

is at least semi-positive such that F |  is positive on V ~ ( Y - U ) =  Y. Then 
Y must be projective algebraic and X is a Moigezon space since n is a proper 
modification and X is normal.  

It remains to prove (.). Since the statement is obviously local with respect 
to X we only must prove the following: 

Let  Xo be a point o f  a complex space U which is embeddable as an analytic 
subvariety in a domain o f  a suitable 112 N such that x o =0~IIY v. Assume that there 
are holomorphic functions fo ,  . . . ,  f~ on U such that 

{fo . . . . .  f r = 0 }  =Xo, 

and let ((J, n), (_J c U x IP ~, be the monoidal transformation of  U with respect to 
~r . . . , f~)(gv. Assume moreover that 0 is nonsingular. Then there exist 
neighborhoods V c ~ W c  ~ U of  x o and an hermitian metric h on E =  E(n - I ( J ) . )  
such that E is positive on fz = n - a ( V) and has curvature 0 outside 17V = n - 1 (W)  ~ ~ U 
with respect to h. 

Proof. Denote by (~o, --., (~) a system of homogeneous coordinates of IPL 
The functions 

g~--iCol=+...+l~l z on Z o = { ~ p + 0 } c I P  r 

are C OO and positive. Since - l o g  gp is strongly plurisubharmonic on Zp, 

go = g~ on Zp c~ Z~ 

. . . . .  ~ l  and the hyperplane bundle H on IP r as given by the transition functions gp~ = 
the system {gp} is a positive metric on H (cf. w 1.1, Remark). 

Denote by O the canonical projection ~ ~ IP r. Then E = E ( n - l ( J ) ) =  gJ*H 
and the transition functions orE are j~/J~ where j~ = fp  o n. The system {h; = gpo 0} 
is a metric on E since we have h; = [J~)f~[ 2 h ' .  

The function a o = h' o o n-1  is defined on Up--{fo +0}, positive and satisfies 
ap=[fo/f~[Za~ on Uoc~U ~. Therefore a=lfolZ/ao is a well defined positive 
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C ~176 function on O U p = U - x o .  We can now find open neighborhoods_ 
V c c W ~ c U and a positive C ~ function 6 on U such that 6 is, on U -  W, equal 
to a and, on V, equal to the restriction of (1 +]z l l2+ ... +]zN]2) -x to V where 
z~, ..., zN are complex coordinates of I12 N. Define now hA= 6. h;; the system 
{hp} is a metric on E such that hp ] r c - i ( U - W ) =  a hp = ]j~12. This means that 
hp is the trivial metric outside rc-l(W). On rc-l(Vc~ Up)c ~;N x Zp we have 

hp=(l+lzll2+...+lzNi2)-i I~p[ 2 ~-l(Vc.,  Up)" 

Thus - log hp is as restriction of a strongly plurisubharmonic function to the 
subvariety rc-l(Vc~ Up) again strongly plurisubharmonic which implies the 
positivity of E on l r - l (v )  with respect to h, q.e.d. 

Remark. The proof shows that a complex space satisfying the assumptions 
of Theorem 5 can be desingularized to a projective algebraic manifold by means 
of a finite number of monoidal transformations with center a point in X. 

4. Obviously Theorem 4 and 5 give a characterization of 2-dimensional 
Moigezon spaces: 

Corollary 1. A 2-dimensional irreducible normal compact complex space X 
is a Moi~ezon space if and only if X carries an almost positive coherent analytic 
sheaf 5~ of rank 1 which is positive outside an analytic subset A c X of dimension O. 

The first example of a 2-dimensional Moigezon space with one isolated 
singularity which is not projective algebraic and moreover not algebraic in 
the sense of A. Weil is due to Grauert  [6]. 

Such an example does not exist i fX is nonsingular (Chow and Kodaira [-4]): 

A 2-dimensional nonsingular Moi~ezon space is projective algebraic. 

This can be shown in the following way: Let n: X--+X be a proper modi- 
fication such that 2 is projective algebraic. Then due to Hopf  [11] zc is a finite 
succession of a-processes lrp: Xp ~ Xp_ l, 1 -__ p < r, X0 = X, Xr = 2 ,  ~l . . . . .  zcr = zc 
(a a-process is the monoidal transformation of a manifold with center a point 
xo where the ideal sheaf is the maximal ideal defined by x0). Now if lrp: Xp--* Xp_ 1 
is a a-process and Xp is projective algebraic then Xp_ 1 is projective algebraic 
(cf. for example [6], w 4). 

There are 3-dimensional nonsingular Moigezon spaces which are neither 
projective algebraic nor an abstract algebraic variety (Moigezon [16], 
Chapt. III). But every compact Kfthler manifold X with n = dim X independent 
meromorphic functions is projective algebraic ([16], Chapt. I, Theorem 11). Thus 
we get finally 

Corollary 2. An irreducible compact complex manifold of dimension 2 or an 
irreducible compact complex Kiihler manifold of arbitrary dimension is projective 
algebraic if and only if there exists an almost positive coherent analytic sheaf of 
rank 1 on it which is positive outside a discrete set. 
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5. At the end of this paper we generalize the example of Grauert  [-6] in 
order to show that there exist spaces X in all dimensions n >  2 satisfying the 
assumptions of Theorem 5 which are however not projective algebraic. We 
prove first: 

There exist n-dimensional compact complex manifolds R.,  n > 1, with positive 
canonical bundle K .  such that H a (R., K.)~= O. 

Let R be a Riemann surface of genus g > 2 and K the canonical bundle of 
R; then 

H ~ (R, K) = g, H ~ (R, K) = 1 

a n d - c  (K) denotes the Chern number of K -  : 

c ( K ) = 2 ( g -  1)>2.  

Therefore R = Rt is an example in the case n = 1. In the general case take 

R, = R  x . - .  x R (n times). 

The canonical bundle K.  of R. is equal to p * K | 1 7 4  where p~ is the 
canonical projection of R . = R  x . . .  x R onto the i-th factor R. It is an easy 
exercise to prove the positivity of K. with the help of the positivity of the K's. 
Finally, by the Ktinneth formula (cf. for instance [12]) and induction 

d i m H ~ ( R . , K . ) = n ( n - 1 ) g + O ,  n>2.  

The argument now follows the one given by Grauert:  Take a covering 
= { U~} of R. such that K.  is defined by transition functions f~j. and such that 

there exists a cocycle ~ = {~ii} e ZI(q/, K.) whose cohomology class ~e HI(R., K.) 
is different from zero. Look at the products U~ x ~i,  where ~i is the complex 
line ~ with the variable zi, and patch them together by the formula 

z,=f~j(x) zj+ ~,~(x), x e  u, c~ uj 

(remark that ~ij may be regarded as holomorphic function on U/c~ Uj). Thus we 
get a complex analytic fibre bundle Y--, R. with fibre C and structure group 
the group of all affine transformations of 112. Now by compactification of each 
fibre Yx--- 112 one gets a fibre bundle n: Y---~ R, with fibre IP 1 = Yx w Yx, ~. Y is a 
projective algebraic manifold. 

It is easy to check that the normal bundle of the set A = U Yx, ~ in Y is 
x~ Rn 

isomorphic to K*. Since K* is negative A can be blown down to a point x o 
in a normal compact complex space X; the projection ~: Y-~X is biholo- 
morphic outside ~p-l(Xo)=A. Exactly as in the proof of Theorem 4 one con- 
structs an almost positive coherent analytic sheaf of rank 1 on X which is 
positive outside x0. 

That X is not projective algebraic can be seen as in [6], p. 366. 
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Appendix 

We want to show here that one can prove the vanishing theorem (Theorem 3) 
under much weaker conditions: The almost positive coherent analytic sheaves 
may be replaced by sheaves which are positive only on a nonempty open subset 
U c X  and semi-positive outside U. Since we do not want to repeat all steps 
we restrict ourselves to the case of complex analytic vector bundles on K~ihler 
manifolds. In order to obtain also a generalization of the vanishing theorem 
in [7] we deal with Nakano positivity. 

Definition. Let E be a complex vector bundle on a complex hermitian 
manifold X. E is called (Nakano)  quasi-positive if there exist an hermitian 
metric h on E and a nonempty open subset U of X such that E] U is positive 
and E [ X -  U is semi-positive with respect to h in the sense of Nakano [18]. 

Remark. If E is an almost positive line bundle then it is also quasi-positive. 

Theorem 6. Let E be a Nakano quasi-positive vector bundle on a connected 
compact KiihIer manifold X. Then 

H ~ ( X , g |  v> l. 

Proof We use the usual notations in the theory of K~ihler manifolds (cf. for 
instance [7], proof of Satz 2.2); A p'q is the complex vector space of C ~ forms 
of type (p, q) on X with values in E and [] = d" b" + 6" d": A p' q ~ A p' q denotes 
the complex Laplace-Beltrami operator. Then we have 

H~(X, ~ |  {~A"'~: [] e=O}. 

Due to Nakano one has for all q~ ~ WP' q (E) the inequality 

(Z A A (p, qo) : SZ A A  q~ Au 
X 

On the other hand, since E is Nakano semi-positive, we have for all ~o ~ A"' ~, v _-> 1, 
at each point Xo ~ X: 

r Au 

(r is a (n, n)-form) and ~b is at XoS U= { x e X :  E is Nakano positive at x} strictly 
smaller than zero if cp :t: 0. This implies 

q)lU-=0. 

The proof is finished if we can show the following identity theorem for harmonic 
forms with values in an hermitian vector bundle. 

Theorem 7. Let E be an hermitian vector bundle on a connected complex 
hermitian manifold X. Then a harmonic form qocJt~P'q(E) vanishes identically 
on X if it vanishes on a nonempty open subset U c X. 

Proof Let D =  { x e X :  ~o is identically zero in a neighborhood of x}. D is 
nonempty and open. We have only to show that D is also closed. Since this is 
a local problem it is enough to prove the following: 
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Let V be an (arbitrary small) domain in X and let W c  V be a nonempty 
open subset of X such that q)[ W=O. Then q)[ V=_O. 

We may choose V so small that V c c V ' c  ~" and EI V' is trivial. Represent 
~0e~P'q(E)l V' by C ~ functions (qh, ..-, q~N) on V'. Then there exist a strongly 
elliptic differential operator A of order 2 and differential operators L~u, 1 < v, 
g < N, of order < 1 on V', such that 

N 
([5] ~o)~=A q~+ ~ L~u (ou 

,u=l 

(cf. [1], formula (30)). The coefficients of A and L~, depend differentiably on 
the hermitian metrics on X and E and hence they are Coo. If now 9 = ((P~ . . . .  , q~N) 
is a solution of [] cO = 0 on V' there exists a real constant M > 0 such that 

]A q~[ 2 < M  +[q~,l v= ,=1 ~ x ~  ), 1,...,N, 

for ~o[ Vwhere (xl . . . . .  X2n  ) is a real coordinate system of 112". But this is exactly 
the situation regarded by Aronszajn in [2], (Remark 3, p. 248). From his main 
theorem it follows immediately that q~[ V - 0  if qo I W - 0 ,  q.e.d. 
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