There has been an extensive study on the deformation theory of Klein singularities, i.e. quotient surface singularities of embedding dimension 3, alias rational double points. For example, P. B. Kronheimer [J. Differential Geom. 29 (1989), no. 3, 665–683; MR0992334; J. Differential Geom. 29 (1989), no. 3, 685–697; MR0992335] gave an invariant-theoretic construction of the monodromy trivializing finite covering of the versal deformation and the simultaneous resolution of this family. A quiver-theoretic approach has been proposed by him and was carried out by H. Cassens and P. Slodowy [in Singularities (Oberwolfach, 1996), 263–288, Progr. Math., 162, Birkhäuser, Basel, 1998; MR1652478].

But this quiver-theoretic construction cannot be extended straightforwardly to general quotient surface singularities $X = \mathbb{C}^2/\Gamma$, Γ a small finite subgroup of $\text{GL}(2, \mathbb{C})$ (not in $\text{SL}(2, \mathbb{C})$, which is the case of Klein singularities). In this note the author restates the McKay quiver construction for the A_n-singularities in such a manner that it can be generalized to yield, up to a smooth factor, the monodromy covering of the Artin component for all cyclic quotient singularities $A_{n,q}$.

{For the collection containing this paper see MR1660623}