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Abstract. We define a relative version of the Loday construction for a sequence of commuta-
tive S-algebras A→ B → C and a pointed simplicial subset Y ⊂ X. We use this to construct
several spectral sequences for the calculation of higher topological Hochschild homology and
apply those for calculations in some examples that could not be treated before.

1. Introduction

Considering relative versions of (co)homology theories is crucial for obtaining calculational
and structural results. We work in the setting of commutative S-algebras (see [EKMM]) and
these can be tensored with simplicial sets or topological spaces. Important invariants of a
commutative S-algebra A are the homotopy groups of A ⊗X for suitable spaces or simplicial
sets X. We call this the Loday construction of A with respect to X and denote it by LX(A).

An important special case is the higher order topological Hochschild homology of A,

THH
[n]
∗ (A) = π∗(A⊗ Sn),

where Sn is the n-sphere. For n = 1 this reduces to ordinary topological Hochschild homology
of A, THH(A), which receives a trace map from the algebraic K-theory of A, K(A), and can be
used via the construction of topological cyclic homology to obtain an approximation of K(A).
Another important case is torus homology of A, π∗(A⊗ Tn) for the n-torus Tn, which receives
an n-fold iterated trace map from the iterated algebraic K-theory of A. The hope is that the
homotopy fixed points with respect to the torus action of torus homology will reveal so-called
red-shift phenomena [AuR]. Positive results in that direction were obtained by Rognes and
Veen [V], and in ongoing work Ausoni and Dundas [AD] extend these results to all chromatic
layers.

One strength of the construction of A ⊗ X is that it is functorial in both X and A, which
allows us to study the homotopy type of A ⊗ X by iteratively constructing X out of smaller
spaces. This iterative method is for instance heavily used in Veen’s work [V] and in [DLR],

[BLPRZ]. As spheres are the building blocks of CW complexes, the calculation of THH
[n]
∗ (A) is

crucial for understanding π∗(LX(A)) for CW-complexes X. The aim of this paper is to develop
new tools for the calculation of higher order topological Hochschild homology by using the extra
flexibility that is gained by a relative approach.

For a sequence of morphisms in the category of commutative S-algebras A→ B → C and for
a pair of pointed simplicial sets (X,Y ) with Y a subcomplex of X, we consider a relative version
of the Loday construction, L(X,Y )(A,B;C): This relative version places C over the basepoint,
B over all points of Y that are not the basepoint and A over the complement of Y in X.

We define this relative Loday construction and show some of its properties in Section 2.
Section 3 exploits this relative structure and other geometric observations to establish several
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weak equivalences (juggling formulae) which relate higher THH groups with respect to the
sphere spectrum as the ground ring and those with respect to other commutative S-algebra
spectra as ground rings, and also relate higher THH-groups THH[m] for m = n and n − 1. We
use these juggling formulae to construct several spectral sequences for the calculation of higher
topological Hochschild homology and apply these spectral sequences to obtain calculations for
(higher) topological Hochschild homology that were not known before. In Section 4 we determine
higher order relative THH of certain Thom spectra and the higher order Shukla homology of
Fp with respect to pointed commutative Fp-monoid algebras. We gain additive results about

THHE(HFp) and THH[2](E;HFp) for E = ko, ku, tmf at p = 2 and E = ` the Adams summand
for p an odd prime. Furthermore, we show a splitting result for higher THH of the form
THH[n],Hk (HA), where k is any commutative ring and A is any commutative k-algebra.

In the following we work in the setting of [EKMM] and we use the model structure on
commutative S-algebras from [EKMM, chapter VII]. Let A be a commutative S-algebra. As
the category of commutative A-algebras is equivalent to the category of commutative S-algebras
under A, we obtain a model category structure on the category of commutative A-algebras. In
particular, a commutative A-algebra B is cofibrant if its unit map A → B is a cofibration of
commutative S-algebras.

2. The relative Loday construction

Higher topological Hochschild homology of a commutative ring spectrum A is a special case of
the Loday construction, or the internal tensor product, which sends A and a pointed simplicial
set X to a commutative simplicial ring spectrum LX(A) = A ⊗ X, which is a commutative
augmented A-algebra. This is a ring spectrum version of the Loday construction defined by
Pirashvili in [P] for commutative rings, which sends a commutative ring R and a pointed
simplicial set X to the commutative augmented simplicial R-algebra R⊗X.

For a cofibrant commutative S-algebra A this construction is homotopy invariant as a functor
of X, that is: if one works with homotopy equivalent simplicial sets, we get homotopy equivalent
augmented simplicial commutative A-algebras; in particular, this is true if one works with two
simplicial models for the same space.

Let X be a pointed simplicial set. Since all boundary maps in a pointed simplicial set send the
basepoint to the basepoint, given an A-module C (and in particular, a commutative A-algebra
C) we can also study Loday constructions with coefficients LX(A;C) which replaces the copy
of A over the base point by a copy of C. We now define a relative version of this.

Definition 2.1. Let A be a commutative S-algebra, B a commutative A-algebra, and C a

commutative B-algebra, with maps A
f−→ B

g−→ C. Let X be a pointed simplicial set and Y be
a pointed simplicial subset. Then we can define

(L(X,Y )(A,B;C))n :=

 ∧
Xn\Yn

A

 ∧
∧
Yn\∗

B

 ∧ C,
where ∧ is the smash product, which is the coproduct in the category of commutative ring
spectra. We call this the nth simplicial degree of the relative Loday construction of A and B
with coefficients in C on (X,Y ). In our paper we will only consider pointed simplicial sets that
are finite in every degree. In the infinite case one defines the ∧-product over an infinite set as
the direct limit of the coproducts over finite subsets of the indexing set.

The structure maps of the relative Loday construction use the fact that the smash product
is the coproduct in the category of commutative S-algebras and they are given as follows: Let
ϕ ∈ ∆([m], [n]) and let ϕ∗ denote the induced map on X and Y :

ϕ∗ : Yn → Ym, ϕ∗ : Xn → Xm.
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Note that Xn \Yn is not a subcomplex of Xn, so ϕ∗ might send elements in here to Ym. We get
an induced map

ϕ∗ :

 ∧
Xn\Yn

A

 ∧
∧
Yn\∗

B

 ∧ C →
 ∧
Xm\Ym

A

 ∧
 ∧
Ym\∗

B

 ∧ C
by looking at the map induced on the coproduct by the following maps:

• If for x ∈ Xn \ Yn the image ϕ∗(x) is in Ym \ ∗, then for the smash factor A mapping

into the coproduct by inclusion in the x-coordinate A
ix−→ (L(X,Y )(A,B;C))n, we look at

the composition

A
f //B

iϕ∗(x) //(L(X,Y )(A,B;C))m.

• If x ∈ Xn \ Yn is sent to the basepoint in Ym under ϕ∗, then for the smash factor A

mapping into the coproduct by inclusion in the x-coordinate A
ix−→ (L(X,Y )(A,B;C))n,

we take the composition

A
f //B

g //C
iϕ∗(x) //(L(X,Y )(A,B;C))m.

• If for x ∈ Xn \Yn, the element ϕ∗(x) is in Xm \Ym, then for the smash factor A mapping

into the coproduct by inclusion in the x-coordinate A
ix−→ (L(X,Y )(A,B;C))n we consider

iϕ∗(x) : A→ (L(X,Y )(A,B;C))m.

• Similarly, if a y ∈ Yn \ ∗ is sent to the basepoint, then for the smash factor B mapping

into the coproduct by inclusion in the y-coordinate B
iy−→ (L(X,Y )(A,B;C))n, we look at

the composition

B
g //C

iϕ∗(y) //(L(X,Y )(A,B;C))m.

• If y ∈ Yn \ ∗ is sent to Ym \ ∗, then for the smash factor B mapping into the coproduct

by inclusion in the y-coordinate B
iy−→ (L(X,Y )(A,B;C))n, we take

iϕ∗(y) : B → (L(X,Y )(A,B;C))m.

• For the base point ∗ which has to map to itself by ϕ∗, then for the smash factor C

mapping into the coproduct by inclusion in the ∗-coordinate C
i∗−→ (L(X,Y )(A,B;C))n,

we consider

iϕ∗(∗) : C → (L(X,Y )(A,B;C))m.

As the multiplication maps on A, B and C are associative and commutative and as the maps
f and g are morphisms of commutative S-algebras, this gives the relative Loday construction
the structure of a simplicial spectrum.

Lemma 2.2. The relative Loday construction, L(X,Y )(A,B;C)•, is a simplicial augmented
commutative C-algebra spectrum.

Proof. The multiplication

L(X,Y )(A,B;C)n ∧C L(X,Y )(A,B;C)n → L(X,Y )(A,B;C)n

is defined coordinatewise and is therefore compatible with the simplicial structure. Hence we
obtain a simplicial commutative augmented C-algebra structure on L(X,Y )(A,B;C)•. �
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Remark 2.3. We could use the smash product to denote the coproduct in the category of
commutative algebras over a general commutative ring spectrum, k. In this case, we will add a
superscript to the notation,

Lk(X,Y )(A,B;C)•.

If B = C then the simplicial subset Y of X does not have to be pointed; then the construction
will be called Lk(X,Y )(A,B)•, and is a simplicial k-algebra.

One can also define a version of the relative Loday construction if C is a B-module, rather
than a commutative B-algebra. In that case, we let Lk(X,Y )(A,B;C)• = Lk(X,Y )(A,B;B)• ∧B C,

and obtain a simplicial B-module spectrum.

Example 2.4. As an explicit example of a pointed simplicial subcomplex we consider ∂∆2 ⊂ ∆2

whose basepoint ∗ ∈ ∆([n], [2]) is the constant map with value 0. Note that the number of

elements in ∆([n], [m]) is
(
n+m+1
n+1

)
.

We describe the effect of the maps ϕ : [1] → [2], ϕ(0) = 0, ϕ(1) = 2 and ψ : [2] → [1],
ψ(1) = ψ(0) = 0 and ψ(2) = 1.

ϕ -

��
�*

0

1

0,

1

2

ψ -
HHHj

HHHj

0

1

0.

1

2

In L(∆2,∂∆2)(A,B;C)2 there is only one copy of A because

∆2[2] \ ∂∆2([2]) = ∆([2], [2]) \ ∂∆2([2]) = {id[2]}.

Thus

L(∆2,∂∆2)(A,B;C)2 = A ∧

 ∧
∂∆2([2])\∗

B

 ∧ C.
As ∂∆2[1] = ∆2[1] we get

L(∆2,∂∆2)(A,B;C)1 =

 ∧
∂∆2([1])\∗

B

 ∧ C.
The map ψ∗ : ∆2([1]) → ∆2([2]) sends the six elements of ∆2([1]) injectively to six elements
in ∆2([2]), so on the Loday construction we only use the unit maps of A and B to fill in the
gaps. In particular, the identity of [2] is not in the image of ψ and we get as ψ∗ on the Loday
construction(∧

∂∆2([1])\∗B
)
∧ C

∼= // S∧
(∧

∆2([2])\({id[2]}∪im(ψ∗)) S
)
∧
(∧

im(ψ∗)\∗B
)
∧ C

ηA∧
(∧

∆2([2])\({id[2]}∪im(ψ∗)) ηB

)
∧(
∧

im(ψ∗)\∗ idB)∧idC
��

A ∧
(∧

∂∆2([2])\∗B
)
∧ C.

In contrast to this, the map ϕ∗ : ∆2([2]) → ∆2([1]) is surjective. The preimage of the
basepoint under ϕ∗ is just the basepoint, so we get the identity on the C-factor in A ∧(∧

∂∆2([2])\∗B
)
∧ C, but we have to use the map f : A → B and several instances of the

multiplication on B to get to
(∧

∂∆2([1])\∗B
)
∧ C because there is a fiber of cardinality three

and a fiber of cardinality two.

Example 2.5. If in Definition 2.1 we take A = B, then L(X,Y )(A,A;C)• = LX(A;C)•. If in
addition A = C then we obtain L(X,Y )(A,A;A)• = LX(A)•.
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Example 2.6. If we work relative to A, i.e., if we consider LA(X,Y )(A,B;C)•, then the A-factors

disappear because we smash over A and we get

LA(X,Y )(A,B;C)• ∼= LAY (B;C)•.

Definition 2.7. For k a commutative S-algebra, A a commutative k-algebra, and C a com-
mutative A-algebra, we define higher topological Hochschild homology of order n of A with
coefficients in C by THH[n],k(A;C) := LkSn(A;C)•. Here, Sn is a pointed simplicial model of
the n-sphere. Note that if we take C to be just an A-module, this definition still makes sense but
THH[n],k(A;C) will be an A-module rather than a C-algebra (and therefore also an A-algebra).

Notation 2.8. As above, if k is the sphere spectrum it is omitted from the notation. Similarly,
if n = 1 this may be omitted also and written as THHk(A;C). If C = A, we may write

THH[n],k(A).

Remark 2.9. If k is a discrete commutative ring, A is a commutative k-algebra, and C is an
A-algebra (or, as above, even just an A-module if we are willing to give up the multiplicative
structure on the result), Pirashvili [P] defined higher Hochschild homology of order n of A

with coefficients in C HH[n],k(A;C) by doing the analogous Loday construction for discrete
commutative rings rather than for commutative S-algebras. Note that if A is flat over k, then
by Theorem 1.7 in [EKMM] in the case n = 1, and in general by the method of the proof there,
we have

THH
[n],Hk
∗ (HA; HC ) ∼= HH

[n],k
∗ (A;C).

Proposition 2.10.
(a) For A,B, and as in Definition 2.1, C a commutative B-algebra, X a pointed simplicial

set and Y a pointed simplicial subset, we get an isomorphism of augmented simplicial
commutative C-algebras

(2.10.1) Lk(X,Y )(A,B;C)• ∼= LkX(A;C)• ∧LkY (A;C)•
LkY (B;C)•.

(b) For X0 a common pointed simplicial subset of X1 and X2 and Y0 a common pointed
simplicial subset of Y1 and Y2 so that Yi ⊆ Xi for i = 1, 2 and Y0 = X0 ∩ Y1 ∩ Y2, we
have an isomorphism of augmented simplicial commutative C-algebras

(2.10.2) Lk(X1∪X0
X2,Y1∪Y0

Y2)(A,B;C)• ∼= Lk(X1,Y1)(A,B;C)•∧Lk
(X0,Y0)

(A,B;C)•
Lk(X2,Y2)(A,B;C)•.

If C = B, then in both statements we can work in the unpointed setting, though the al-
gebras in Equations (2.10.1) and (2.10.2) will no longer be commutative C-algebras and the
isomorphisms we get will be isomorphisms of simplicial commutative k-algebras.

Proof. For the claim in (2.10.1) we have a levelwise isomorphism of simplicial spectra

(LkX(A;C))n ∧(LkY (A;C))n
(LkY (B;C))n ∼= (Lk(X,Y )(A,B;C))n

given by the identification of coequalizers ∧
Xn\Yn

A

 ∧
∧
Yn\∗

A

 ∧ C
 ∧

(
∧
Yn\∗ A)∧C

∧
Yn\∗

B

 ∧ C
 ∼=

 ∧
Xn\Yn

A

∧
∧
Yn\∗

B

∧C.
Similarly, for (2.10.2) we have a levelwise isomorphism of simplicial spectra

(Lk(X1,Y1)(A,B;C))n ∧(Lk
(X0,Y0)

(A,B;C))n
(Lk(X2,Y2)(A,B;C))n ∼= (Lk(X1∪X0

X2,Y1∪Y0
Y2)(A,B;C))n.
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Here we use that tensoring a commutative S-algebra with a pointed simplicial set is compatible
with pushouts of simplicial sets, hence we get ∧

(X1)n\(Y1)n

A ∧
∧

(Y1)n\∗

B ∧ C

 ∧
(∧

(X0)n\(Y0)n
A∧
∧

(Y0)n\∗B∧C
)
 ∧

(X2)n\(Y2)n

A ∧
∧

(Y2)n\∗

B ∧ C


∼=

∧
(X1∪X0

X2)n\(Y1∪Y0
Y2)n

A ∧
∧

y∈(Y1∪Y0
Y2)n\∗

B ∧ C.

�

Remark 2.11. An immediate consequence of Proposition 2.10 is a suitable form of homotopy in-
variance for the relative Loday construction. If you replace the pair (X,Y ) of pointed simplicial
sets with a homotopy equivalent one (X ′, Y ′) and if the equivalence is a homotopy equiva-
lence of pairs, then the relative Loday constructions Lk(X,Y )(A,B;C)• and Lk(X′,Y ′)(A,B;C)•
are homotopy equivalent as augmented simplicial commutative C-algebras.

Let A be an augmented commutative C-algebra, i.e., in addition to the map g ◦ f : A → C
we have a map η : C → A, such that g ◦ f ◦ η = idC . In that case, we can identify the relative
Loday construction LC(X,Y )(A,C;C)• with the Loday construction of the quotient:

Proposition 2.12. Let A be an augmented commutative C-algebra. Then there is an isomor-
phism of simplicial augmented commutative C-algebras

(2.12.1) LC(X,Y )(A,C;C)• ∼= LCX/Y (A;C)•

where X/Y has the equivalence class of Y as a basepoint.

Proof. We use Proposition 2.10 above and obtain that

LC(X,Y )(A,C;C)• ∼= LCX(A;C)• ∧LCY (A;C)• L
C
Y (C;C)•

but LCY (C;C)• is isomorphic to the constant simplicial object C• with C in every simplicial
degree. Thus

LC(X,Y )(A,C;C)• ∼= LCX(A;C)• ∧LCY (A;C)• C•
∼= LCX/Y (A;C)• ∧C C ∼= LCX/Y (A;C)•

as claimed. �

Proposition 2.12 immediately gives rise to the following spectral sequence.

Proposition 2.13. If C is a cofibrant commutative S-algebra and A is a cofibrant commutative
augmented C-algebra and if Y is a pointed simplicial subset of X, then there is a spectral
sequence

E2
s,t = Tor

π∗(LCY (A;C)•)
s,t (π∗(LCX(A;C)•), π∗C)⇒ π∗(LCX/Y (A;C)•).

Proof. The isomorphism from Proposition 2.12

LCX(A;C)• ∧LCY (A;C)• C
∼= LCX/Y (A;C)•

induces a weak equivalence

LCX(A;C)• ∧LLCY (A;C)•
C ' LCX/Y (A;C)•

and the cofibrancy assumptions ensure that we get the associated Künneth spectral sequence.
�
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3. Spectral sequences with the relative Loday construction

In this section we set up some spectral sequences. Let S be the sphere spectrum and let
R be a commutative S-algebra. Unadorned smash products will be over S. We first recall
some properties of the category of commutative R-algebras: The category of commutative R-
algebras is a topological model category ([EKMM, VII.4.10]). This implies that it is tensored
over the category of unbased spaces and that for every sequence of cofibrations R→ A→ B of
commutative S-algebras and every relative CW-complex (L,K) the map

(A⊗ L) ∧(A⊗K) (B ⊗K)→ B ⊗ L

is a cofibration. For a simplicial finite set X and commutative R-algebra A there is a natural
isomorphism (see [EKMM, VII.3.2]):

|LRX(A)•| ∼= A⊗ |X|.

We define the Loday construction LR|X|(A) as A ⊗ |X|. In the pointed setting, we can use the

inclusion of a one-point space into the basepoint to make LR|X|(A) into a commutative augmented

A-algebra. We can then also define LR|X|(A;C) = LR|X|(A)⊗A C, and we can define the relative

Loday construction for a pair of pointed CW complexes Y ⊂ X and a sequence of maps of
commutative S-algebras R→ A→ B → C using Proposition 2.10 (a) as

(3.0.1) LR(X,Y )(A,B;C) := LRX(A;C) ∧LLRY (A;C)
LRY (B;C).

Theorem 3.1. Let A be a cofibrant commutative S-algebra, and let B be a cofibrant commutative
A-algebra. There is an equivalence of augmented commutative B-algebras

L(Dn,Sn−1)(A,B) ' THH[n−1],A(B)

for all n.

Proof. We proceed by induction on n. For n = 1, L(D1,S0)(A,B) is the two-sided bar construc-

tion B(B,A,B) which is a model for B ∧LA B. Here D1 has the standard simplicial structure
with a single 1-cell.

Since we assumed B to be a cofibrant commutative A-algebra, B ∧LA B is weakly equivalent

to B ∧A B which is THH[0],A(B). For simplicity we will use the tensor over spaces for the

rest of this proof. For the inductive step, we assume that L(Dn,Sn−1)(A,B) ' THH[n−1],A(B).
By decomposing the n-sphere into two hemispheres glued along an (n − 1)-sphere as in [V,

Proposition 2.1.3 and Section 7], we know that THH[n],A(B) is weakly equivalent to the bar

construction BA(B,THH[n−1],A(B), B).
We also know that L(Dn+1,Sn)(A,B) can be built from two half-disks of dimension n+1, part

of whose boundary (the outside edge) has B’s over it, and the other part (the n-disk we glue
along) has A’s over it. So by (2.10.2),

L(Dn+1,Sn)(A,B) = L(Dn+1
⋃
Dn D

n+1,Dn
⋃
Sn−1 Dn)(A,B)

∼= L(Dn+1,Dn)(A,B) ∧L(Dn,Sn−1)(A,B) L(Dn+1,Dn)(A,B).

For example, when n = 1 we have

L(D2,S1)(A,B) ' L(
,

)(A,B) ∧L(
,

)(A,B) L(
,

)(A,B)
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So we have

L(Dn+1,Sn)(A,B) ∼= L(Dn+1,Dn)(A,B) ∧L(Dn,Sn−1)(A,B) L(Dn+1,Dn)(A,B)

' L(∗,∗)(A,B) ∧LL(Dn,Sn−1)(A,B) L(∗,∗)(A,B) (by homotopy invariance)

' B ∧LL(Dn,Sn−1)(A,B) B

' BA(B,L(Dn,Sn−1)(A,B), B)

' BA(B,THH[n−1],A(B), B) (by assumption)

' THH[n],A(B). (by [V])

�

Let C be a commutative R-algebra. Let CR/C and CC/C denote the categories of commutative
R-algebras over C and of commutative C-algebras over C. We denote by T the category of
based spaces. We have a functor

⊗̄C : CR/C × T → CC/C
defined by (A,X) 7→ A ⊗̄C X := (A ⊗ X) ∧A C. Here, the map A → A ⊗ X is given by
the composition of the isomorphism A ∼= A ⊗ ∗ with the map induced by the inclusion of the
basepoint. The augmentation A ⊗̄C X → C is given by

(A⊗X) ∧A C → (A⊗ ∗)⊗A C ∼= C.

We have a natural homeomorphism

CC/C(A ⊗̄C X,B) ∼= T (X, CR/C(A,B)).

Let D → E be a map in CR/C such that the underlying map of commutative R-algebras is a
cofibration. Let K → L be an inclusion of based spaces such that (L,K) is a relative CW -
complex. Then the natural map

(D ⊗̄C L) ∧(D⊗̄CK) (E ⊗̄C K)→ E ⊗̄C L
is a cofibration of commutative R-algebras. For A ∈ CR/C and a simplicial finite pointed set X,
we have a natural isomorphism of C-algebras over C:

|LR(X,∗)(A;C)•| ∼= A ⊗̄C |X|.

Theorem 3.2. Let S → A→ B → C be a sequence of cofibrations of commutative S-algebras.
Then

(a) THH[n],A(B) ∼= A ∧THH[n](A) THH
[n](B) and

(b) THH[n],A(B;C) ∼= C ∧THH[n](A;C) THH
[n](B;C).

In both cases, the smash product models the derived smash product.

Proof. In order to show (a) we first prove that

A ∧THH[n](A) THH
[n](B)

models the derived smash product of A and THH[n](B) over THH[n](A). For this we first show

that THH[n](A) is a cofibrant commutative S-algebra: Since A is a cofibrant commutative

S-algebra, it suffices to show that the unit A → THH[n](A) or equivalently that the map
A⊗ ∗ → A⊗ Sn is a cofibration of commutative S-algebras. By the properties listed above the
map

(S ⊗ Sn) ∧(S⊗∗) (A⊗ ∗)→ (A⊗ Sn)

is a cofibration. As S ⊗ ∗ ∼= S ⊗ Sn, we get that

(A⊗ ∗) ∼= (S ⊗ Sn) ∧(S⊗∗) (A⊗ ∗).
8



Thus, THH[n](A) is cofibrant. A standard argument then shows that THH[n](A) → THH[n](B)
is a cofibration of commutative S-algebras: Since A→ B is a cofibration, the map

(A⊗ Sn)⊗(A⊗∗) (B ⊗ ∗)→ (B ⊗ Sn)

is a cofibration. Because cofibrations are stable under cobase change the map

(A⊗ Sn)→ (A⊗ Sn)⊗(A⊗∗) (B ⊗ ∗)

is a cofibration. Thus A⊗Sn → B⊗Sn is a cofibration. We therefore get by [EKMM, VII.7.4]
that the functor

− ∧THH[n](A) THH
[n](B)

preserves weak equivalences between cofibrant commutative S-algebras. We factor the map
THH[n](A)→ A as a cofibration followed by an acyclic fibration

THH[n](A) // //Ã
' // //A

and obtain a weak equivalence

Ã ∧THH[n](A) THH
[n](B)

'−→ A ∧THH[n](A) THH
[n](B).

By [EKMM, VII.6.7] the S-algebra

Ã ∧THH[n](A) THH
[n](B)

models the derived smash product of A and THH[n](B) over THH[n](A).
We now show that there is an isomorphism of commutative S-algebras

THH[n],A(B) ∼= A ∧THH[n](A) THH
[n](B).

We start with the isomorphism of commutative S-algebras

A ∧THH[n](A) THH
[n](B) ∼= |L∗(A)•| ∧|LSn (A)•| |LSn(B)•|

∼= |L∗(A)• ∧LSn (A)• LSn(B)•|.
By a comparison of coequalizer diagrams we have, for all n, isomorphisms of commutative
S-algebras:

A ∧A∧n (B∧n) ∼= B ∧A . . . ∧A B︸ ︷︷ ︸
n

and these induce an isomorphism of simplicial commutative S-algebras

L∗(A)• ∧LSn (A)• LSn(B)• ∼= LASn(B)•.

This proves part (a) of the theorem.
We now prove part (b). We again first show that

C ∧THH[n](A;C) THH
[n](B;C)

models the derived smash product of C and THH[n](B;C) over THH[n](A;C). For this it

suffices to show that THH[n](A;C) is a cofibrant commutative S-algebra and that the map

THH[n](A;C) → THH[n](B;C) is a cofibration of commutative S-algebras. The morphism

C → THH[n](A;C) is a cofibration because

C → A ⊗̄C Sn = (A⊗ Sn) ∧A C

is a cofibration. Thus THH[n](A;C) is cofibrant. The map THH[n](A;C) → THH[n](B;C) is a
cofibration because A ⊗̄C Sn → B ⊗̄C Sn can be written as

A ⊗̄C Sn → (A ⊗̄C Sn) ∧(A⊗̄C∗) (B ⊗̄C ∗)� B ⊗̄C Sn.
The first map of the composition is an isomorphism, because the map A⊗̄C ∗ → B⊗̄C ∗ identifies
with the identity of C.

9



It remains to prove that there is an isomorphism of commutative S-algebras

THH[n],A(B;C) ∼= C ∧THH[n](A;C) THH
[n](B;C).

This follows as above by using that we have an isomorphism of commutative S-algebras

C ∧(A∧n∧C) (B∧n ∧ C) ∼= B∧An ∧A C

for all n > 0. �

Remark 3.3. The proof shows that Theorem 3.2 also holds for general finite pointed simplicial
sets X and a sequence of cofibrations of commutative S-algebras S → A → B → C, giving us
isomorphisms

(a) LA|X|(B) ∼= A ∧L|X|(A) L|X|(B) and

(b) LA|X|(B;C) ∼= C ∧L|X|(A;C) L|X|(B;C).

Remark 3.4. It is known that for topological Hochschild homology, there is a difference between
Galois descent and étale descent: John Rognes [R] developed the notion of Galois extensions for
commutative S-algebras and showed that for a Galois extension A→ B with finite Galois group
G the canonical map B → THHA(B) is a weak equivalence [R, Lemma 9.2.6]. Akhil Mathew
[M] provided an example of such a Galois extension that does not satisfy étale descent, i.e., the
pushout map

B ∧A THH(A)→ THH(B)

is not a weak equivalence. Theorem 3.2 doesn’t contradict this. We take a finite Galois extension
A→ B. Then we obtain a weak equivalences

B → THHA(B) ∼= A ∧THH(A) THH(B).

But if we then smash this equivalence with THH(A) over A the resulting equivalence

(3.4.1) B ∧A THH(A) ' (A ∧THH(A) THH(B)) ∧A THH(A)

cannot be reduced to the statement that B ∧A THH(A) is equivalent to THH(B): On the right
hand side of (3.4.1) we cannot reduce the THH(A)-term because in the smash product we use
the augmentation map THH(A) → A and its composite with the unit is not equivalent to the
identity map.

Let R be a commutative S-algebra, and CR the category of commutative R-algebras. Let
D be the category {b ←− a −→ c}. Then the category DCR of functors from D to CR admits
a model category structure, where the weak equivalences (resp. fibrations) are the maps that
are objectwise weak equivalences (resp. fibrations). We have a cofibrant replacement functor
DCR → DCR. The homotopy pushout B ∧̃AC of a diagram B ←− A −→ C in CR is constructed
by taking the chosen cofibrant replacement B′ ←− A′ −→ C ′ of the diagram and then taking
the usual pushout B′ ∧A′ C ′. One gets a functor

(−) ∧̃(−) (−) : DCR → CR.

This functor sends weak equivalences to weak equivalences. There is natural map

B ∧̃A C → B ∧A C

which is a weak equivalence when A is cofibrant and A → B and A → C are cofibrations. If
A is cofibrant, then the homotopy pushout B ∧̃A C is equivalent to the derived smash product
B ∧LA C of B and C over A. One can show:
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Lemma 3.5. For a commutative diagram

E D //oo F

B

��

OO

A //oo

��

OO

C

��

OO

H G //oo I

in CR there is a zig-zag of weak equivalences

(E ∧̃D F ) ∧̃(B∧̃AC) (H ∧̃G I) ' (E ∧̃B H) ∧̃(D∧̃AG) (F ∧̃C I)

over (E ∧B H) ∧(D∧AG) (F ∧C I) where

(E ∧̃D F ) ∧̃(B∧̃AC) (H ∧̃G I)→ (E ∧B H) ∧(D∧AG) (F ∧C I)

is given by the compositions of the morphisms

(E ∧̃D F ) ∧̃(B∧̃AC) (H ∧̃G I)→ (E ∧D F ) ∧̃(B∧AC) (H ∧G I)→ (E ∧D F ) ∧(B∧AC) (H ∧G I)

with the standard isomorphism

(E ∧D F )∧(B∧AC)(H ∧G I) ∼= (E ∧B H) ∧(D∧AG) (F ∧C I)

and the morphism

(E ∧̃B H) ∧̃(D∧̃AG) (F ∧̃C I)→ (E ∧B H) ∧(D∧AG) (F ∧C I)

is given by

(E ∧̃B H) ∧̃(D∧̃AG) (F ∧̃C I)→ (E ∧B H) ∧̃(D∧AG) (F ∧C I)→ (E ∧B H) ∧(D∧AG) (F ∧C I).

Theorem 3.6. Let S → A→ B → C be a sequence of cofibrations of commutative S-algebras.
Then

THH[n](B;C) ' THH[n](A;C) ∧L
THH[n−1],A(C)

THH[n−1],B(C),

where we regard THH[1](A;C) = C ∧LC∧SA C as a THH[0],A(C) = C ∧LA C-algebra using the map

A→ C ∧S A, and then once we know how to give THH[n](A;C) a THH[n−1],A(C)-algebra struc-

ture, we use that to get a THH[n],A(C) ' C∧L
THH[n−1],A(C)

C-algebra structure on THH[n+1](A;C) '
C ∧L

THH[n](A;C)
C.

Proof. We work in the model category of commutative S-algebras. For a map of commutative
S-algebras D → E we define commutative S-algebras T [n],D(E) augmented over E inductively

as follows: Let T [0],D(E) be E ∧̃D E and let T [0],D(E)→ E be defined by

E ∧̃D E → E ∧D E → E.

Set T [n+1],D(E) := E ∧̃T [n],D(E) E and define T [n+1],D(E)→ E by

E ∧̃T [n],D(E) E → E ∧T [n],D(E) E → E.

The T [n],(−)(E) are then endofunctors on the category of commutative S-algebras over E. Using
the decomposition Sn = Dn∪Sn−1Dn, one can show that there are zig-zags of weak equivalences
over C (compare with [V, Section 7])

THH[n],A(C) ' C ∧̃THH[n−1],A(C) C

THH[n](A;C) ' C ∧̃THH[n−1](A;C) C.

11



With that it follows that there are equivalences over C

THH[n],A(C) ' T [n],A(C)

THH[n](A;C) ' T [n−1],C∧SA(C).

The same is true for B instead of A.
It thus suffices to show:

T [n],C∧SB(C) ' T [n],C∧SA(C) ∧̃T [n],A(C) T
[n],B(C).

We prove by induction on n that these S-algebras are equivalent via a zig-zag of weak equiva-
lences over C where the augmentation of the right-hand side is given by

T [n],C∧SA(C) ∧̃T [n],A(C) T
[n],B(C)→ T [n],C∧SA(C)∧T [n],A(C)T

[n],B(C)→ C.

We have an isomorphism T [0],C∧SB(C) ∼= T [0],(C∧SA)∧AB(C) over C. Because of the cofibrancy
assumptions the map

(C ∧S A) ∧̃A B −→ (C ∧S A) ∧A B

is a weak equivalence. It induces a weak equivalence

(C ∧̃C C) ∧̃((C∧SA)∧̃AB) (C ∧̃C C)
'−→ C ∧̃((C∧SA)∧AB) C = T [0],(C∧SA)∧AB(C).

This is a map over C if we endow the left-hand side with the augmentation

(C ∧̃C C) ∧̃((C∧SA)∧̃AB) (C ∧̃C C)→ (C ∧̃C C) ∧((C∧SA)∧̃AB) (C ∧̃C C)→ C ∧̃C C → C.

By Lemma 3.5, we have an equivalence

(C ∧̃C C) ∧̃((C∧SA)∧̃AB) (C ∧̃C C) ' (C ∧̃(C∧SA) C) ∧̃(C∧̃AC) (C ∧̃B C)

and the right-hand side is equal to T [0],C∧SA(C) ∧̃T [0],A(C) T
[0],B(C). The compatibility of the

equivalence with the isomorphism

(C∧CC)∧((C∧SA)∧AB)(C∧CC) ∼= (C∧(C∧SA)C)∧(C∧AC)(C∧BC)

implies that it is an equivalence over C.
We now assume that the claim is true for n. Set T ′ = T [n],C∧SA(C) ∧̃T [n],A(C) T

[n],B(C). By

the induction hypothesis we have

T [n+1],C∧SB(C) = C ∧̃T [n],C∧SB(C) C ' C ∧̃T ′ C.

via a zig-zag of weak equivalences over C. The weak equivalence

(C ∧̃C C) ∧̃T ′ (C ∧̃C C)
'−→ C ∧̃T ′ C

is a map over C if we endow the right-hand side with the augmentation

(C ∧̃C C) ∧̃T ′ (C ∧̃C C)→ (C ∧̃C C)∧T ′(C ∧̃C C)→ C ∧̃C C → C.

By Lemma 3.5 we have an equivalence

(C ∧̃C C) ∧̃T ′ (C ∧̃C C) ' (C ∧̃T [n],C∧SA(C) C) ∧̃(C∧̃
T [n],A(C)

C) (C ∧̃T [n],B(C) C)

and the right-hand side is equal to T [n+1],C∧SA(C) ∧̃T [n+1],A(C) T
[n+1],B(C). Because of the

compatibility with the isomorphism

(C ∧C C)∧(T [n],C∧SA(C)∧
T [n],A(C)

T [n],B(C))(C∧CC)

∼= (C∧T [n],C∧SA(C)C)∧(C∧
T [n],A(C)

C)(C∧T [n],B(C)C)

it is an equivalence over C. This shows the induction step. �
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4. Applications

4.1. Thom spectra.

Example 4.1. Schlichtkrull [Sch] gives a general formula for the Loday construction on Thom
spectra LX(T (f);M) where f : A → BFhI is an E∞-map, A is a grouplike E∞-space, and
BFhI is a model for BF = BGL1(S), the classifying space for stable spherical fibrations. The
commutative S-algebra T (f) is the associated Thom spectrum for f and M is any T (f)-module.

If we set B = C in Theorem 3.2, then we obtain

(4.1.1) THH[n],A(B) ' B ∧L
THH[n](A;B)

THH[n](B)

so if there is a factorization

A
f //

h
��

BFhI

B

g

<<

such that h is a map of grouplike E∞-spaces, then we get an induced map of commutative
S-algebras T (f)→ T (g).

For X a sphere and M = T (g), we obtain [Sch, Theorem 1]

THH[n](T (f);T (g)) ' T (g) ∧ Ω∞(Sn ∧ A)+

where A denotes the spectrum associated to A such that the map from A to the underlying
infinite loop space of A, Ω∞A, is a weak equivalence.

Our juggling formula (4.1.1) gives a formula for higher THH of T (g) as a commutative T (f)-
algebra:

THH[n],T (f)(T (g)) ' T (g) ∧L
THH[n](T (f);T (g))

THH[n](T (g))

' T (g) ∧LT (g)∧Ω∞(Sn∧A)+
T (g) ∧ Ω∞(Sn ∧ B)+.

Important examples of such factorizations are listed for instance in [Be, section 3]. For example

we can consider BSU → BU , BU → BSO or BString → BSpin to get THH[n],MSU (MU),

THH[n],MU (MSO) or THH[n],MString(MSpin). As these examples give rise to Hopf-Galois ex-
tensions (but not Galois extensions) of ring spectra (see [R]), the above relative THH-terms will
be non-trivial.

4.2. THH[n],HA(HFp) for commutative pointed Fp-monoid algebras A. Hesselholt and
Madsen [HM, Theorem 7.1] showed a splitting result for topological Hochschild homology of
pointed monoid rings. There is a straightforward generalization of this splitting result to higher
order topological Hochschild homology in the commutative case. Let Π be a discrete pointed
commutative monoid, i.e., a commutative monoid in the category of based spaces with smash
product. Assume moreover that Π is augmented, that is, admits a map of pointed monoids to
the pointed monoid {1, ∗}, where 1 is the unit and ∗ the base point. As long as 1 6= ∗ in Π,
there always is such a map: we can send all invertible elements in the monoid to 1 and all the
rest to ∗. In general, however, such an augmentation is not unique, so it needs to be part of the
data. For a commutative ring A, Hesselholt-Madsen define the monoid algebra A[Π] as the free
A-module on the elements of Π modulo A · ∗, with multiplication induced by Π’s multiplication.

The analogue of [HM, Theorem 7.1] is a splitting of augmented commutative HA-algebras,
for any commutative ring A:

(4.1.2) THH[n](HA[Π]) ∼= THH[n](HA) ∧HA THH[n],HA(HA[Π]).

Note that THH[n],HA(HA[Π]) is equivalent to the smash product over the sphere spectrum of

HA with the cyclic nerve of Π, and combining this with Remark 2.9, π∗(THH
[n],HA(HA[Π])) ∼=

HH
[n],A
∗ (A[Π]).
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Theorem 4.2. For any commutative algebra A and any augmented commutative pointed monoid
Π with ∗ 6= 1, for the monoid algebra A[Π] there is a weak equivalence

THH[n],HA[Π](HA) ' HA ∧L
THH[n],HA(HA[Π])

HA[Π]

of commutative augmented HA-algebras.

Proof. Theorem 3.2 applied to a model of the augmentation map HA[Π] → HA that is a
cofibration yields that

(4.2.1) THH[n],HA[Π](HA) ' THH[n](HA) ∧L
THH[n](HA[Π])

HA[Π].

We use the two-sided bar construction as model for the above derived smash product and use
the splittings in (4.1.2) and (4.2.1) to obtain

B(THH[n](HA),THH[n](HA[Π]),HA[Π])

'B(THH[n](HA),THH[n](HA) ∧HA THH[n],HA(HA[Π]),HA[Π])

'B(THH[n](HA),THH[n](HA),HA) ∧HA B(HA,THH[n],HA(HA[Π]),HA[Π])

'HA ∧HA B(HA,THH[n],HA(HA[Π]),HA[Π])

which is a model of HA ∧L
THH[n],HA(HA[Π])

HA[Π]. �

We apply the above result to special cases of pointed commutative monoids, where we can
identify the necessary ingredients for the above result.

Proposition 4.3.
(a) Consider the polynomial algebra Fp[x] over Fp (with |x| = 0, augmented by sending

x 7→ 0), and let B′1(x) = Fp[x] and B′n+1(x) = Tor
B′n(x)
∗,∗ (Fp,Fp) with total grading. Then

THH
[n],HFp[x]
∗ (HFp) ∼= B′n+2(x).

(b) Let m be a natural number such that p divides m, and let B′′1 (m) = ΛFp(εx)⊗ ΓFp(ϕ
0x)

with |εx| = 1 and |ϕ0x| = 2 and B′′n+1(m) = TorB
′′
n(m)(Fp,Fp). Then

THH
[n],HFp[x]/xm

∗ (HFp) ∼= B′′n+1(m).

(c) Let G be a finitely generated abelian group, so, G = Zm ⊕
⊕N

i=1 Z/q
`i
i for some primes

qi. Then THH
[n],HFp[G]
∗ (HFp) can be expressed in terms of a tensor product of factors

that are isomorphic to THH
[n],HFp[x]
∗ (HFp) or THH

[n],HFp[x]/(xp
`
)

∗ (HFp) for some `.

Proof. We can rewrite HFp ∧LTHH[n],HFp (HFp[Π])
HFp[Π] as

HFp ∧HFp[Π] HFp[Π] ∧L
THH[n],HFp (HFp[Π])

HFp[Π]

which is equivalent to

HFp ∧HFp[Π] THH
[n+1],HFp(HFp[Π]).

In [BLPRZ] π∗(THH
[n+1],HFp(HFp[Π])) ∼= HH

[n+1],Fp
∗ (Fp[Π]) is calculated in the cases of the

Proposition:
For (a) we consider the pointed monoid Π = {0, 1, x, x2, . . .} whose associated pointed monoid

ring Fp[Π] is the ring of polynomials over Fp. In [BLPRZ, Theorem 8.6], we show inductively
that

HH
[n],Fp
∗ (Fp[x]) ∼= Fp[x]⊗B′n+1(x).

We also get inductively that the augmentation on HH
[n]
∗ (Fp[x]) is the identity on the Fp[x] factor

and for degree reasons the obvious augmentation on B′n+1(x). Therefore the claim follows.
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Higher Hochschild homology of truncated polynomial algebras of the form Fp[x]/xm for m

divisible by p was calculated in [BLPRZ] (the case m = p`) and [BHLPRZ] (the general case).
The result in those cases is

HH
[n]
∗ (HFp[x]/xm) ∼= Fp[x]/xm ⊗B′′n(m)

where B′′1 (m) = ΛFp(εx) ⊗ ΓFp(ϕ
0x) with |εx| = 1 and |ϕ0x| = 2 and where B′′n+1(m) =

TorB
′′
n(m)(Fp,Fp). This implies (b).

For a finitely generated abelian group as in (c) the group ring splits as

Fp[Z]⊗m ⊗
N⊗
i=1

Fp[Z/q`ii ].

The torsion groups with torsion prime to p do not contribute to higher (topological) Hochschild
homology because they are étale over Fp (see [BLPRZ, Theorem 9.1] and [H, Theorem 7.9]).
For the free factors we use the fact that Fp[Z] = Fp[x±1] is étale over Fp[x]; for the factors with

torsion that is a power of p, we use the fact that Fp[Z/p`] ∼= Fp[y]/(yp
` − 1) ∼= Fp[x]/(xp

`
) by

taking x = y − 1. �

Remark 4.4. Let k be a commutative ring and let A be a commutative k-algebra. In [BHLPRZ]
we define higher order Shukla homology of A over k as

Shukla
[n],k
∗ (A) := THH

[n],Hk
∗ (HA).

Thus the calculations above determine higher order Shukla homology for commutative pointed

monoid algebras over Fp, Shukla
[n],Fp[Π]
∗ (Fp).

4.3. The examples ko, ku, ` and tmf . Angeltveit and Rognes calculate in [AR, 5.13, 6.2]
H∗(THH(ko);HF2), H∗(THH(tmf );HF2), H∗(THH(ku);HF2). In addition, for any odd prime p
they determine H∗(THH(`);HFp) where `→ ku(p) is the Adams summand of p-local connective
topological complex K-theory.

The following lemma collects some immediate consequences of their work, which were already
noticed in [G]. These will be the basis of the calculations in the results that follow the lemma.
The index of a generator denotes its degree.

Lemma 4.5.
(a)

THH∗(ko;HF2) ∼= Λ(x5, x7)⊗ F2[µ8].

(b)

THH∗(tmf ;HF2) ∼= Λ(x9, x13, x15)⊗ F2[µ16].

(c)

THH∗(ku;HF2) ∼= Λ(x3, x7)⊗ F2[µ8].

(d) At any odd prime:

THH∗(`;HFp) ∼= Λ(x2p−1, x2p2−1)⊗ Fp[y2p2 ].

Proof. In all four cases Angeltveit and Rognes show that H∗(THH(E);HFp) is of the form
H∗(E;Fp)⊗AE with AE as follows:

(4.5.1) AE =



ΛF2(σξ̄4
1 , σξ̄

2
2)⊗ F2[σξ̄3], E = ko,

ΛF2(σξ̄8
1 , σξ̄

4
2 , σξ̄

2
3)⊗ F2[σξ̄4], E = tmf ,

ΛF2(σξ̄2
1 , σξ̄

2
2)⊗ F2[σξ̄3], E = ku, and

ΛFp(σξ̄1, σξ̄2)⊗ Fp[στ̄2], E = `.

Here, p = 2 for E = ko, tmf , ku and p is odd for E = `. The degrees are the usual degrees in the
dual of the Steenrod algebra, hence at 2 we have |ξi| = 2i − 1 and at odd primes |ξi| = 2pi − 2
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and |τi| = 2pi − 1. We also have |σy| = |y|+ 1. The (̄.) denotes conjugation in the dual of the
Steenrod algebra.

We rewrite π∗(THH(E;HFp)) as

π∗(THH(E;HFp)) ∼= π∗(THH(E) ∧LE HFp)
∼= π∗((THH(E) ∧HFp) ∧LE∧HFp HFp)

and thus we get a spectral sequence

E2
s,t = Tor

H∗(E;Fp)
s,t (H∗(THH(E);Fp),Fp)

converging to the homotopy groups of THH(E;HFp). As H∗(THH(E);Fp) ∼= H∗(E;Fp) ⊗ AE
in all four cases, the E2-term above is concentrated in the s = 0 column with

E2
0,∗
∼= AE .

Counting degrees gives the claim. �

We can use the equivalence THHA(B) ' B ∧LTHH(A;B) THH(B) from Theorem 3.2 to deduce

the following result.

Theorem 4.6. There are additive isomorphisms

(a) THHko∗ (HF2) ∼= ΓF2(ρ0x5)⊗ ΓF2(ρ0x7)⊗ F2[µ2]/µ4
2,

(b) THHtmf
∗ (HF2) ∼= ΓF2(ρ0x9)⊗ ΓF2(ρ0x13)⊗ ΓF2(ρ0x15)⊗ F2[µ2]/µ8

2,

(c) THHku∗ (HF2) ∼= ΓF2(ρ0x3)⊗ ΓF2(ρ0x7)⊗ F2[µ2]/µ4
2, and

(d) THH`∗(HFp) ∼= ΓFp(ρ
0x2p−1)⊗ ΓFp(ρ

0x2p2−1)⊗ Fp[µ2]/µp
2

2 when p is odd.

Here ρ0 raises degree by one.

Proof. We use Theorem 3.2 in the case whereB = HFp. In [B], Bökstedt shows that THH∗(HFp) ∼=
Fp[µ2] for all primes p. We give the details for the case ko; the arguments for the other examples
are completely analogous.

The E2-term of the spectral sequence is

Tor
Λ(x5,x7)⊗F2[µ8]
∗ (F2,F2[µ2]) =⇒ THHko∗ (HF2).

Since both x5 and x7 have odd degrees, they cannot act on µ2 other than trivially. Thus we
can rewrite the left-hand side as

Tor
Λ(x5,x7)
∗ (F2,F2)⊗ Tor

F2[µ8]
∗ (F2,F2[µ2]).

The explicit description of the generators in [AR, Theorem 6.2] implies that the map F2[µ8]→
F2[µ2] takes µ8 to µ4

2, because µ8 corresponds to σξ̄3 and Angeltveit and Rognes show [AR,
proof of 5.12] that the σξ̄k satisfy

(σξ̄k)
2 = σξ̄k+1

for p = 2 and µ2 in Bökstedt’s calculation corresponds to σξ̄1.
Therefore the right-hand Tor is isomorphic to F2[µ2]/µ4

2. Hence the E2-term is isomorphic to

ΓF2(ρ0x5)⊗ ΓF2(ρ0x7)⊗ F2[µ2]/µ4
2.

Since all the nonzero classes in this E2-term have even total degree, the spectral sequence
must collapse at E2.

In the case of the Adams summand, `, we work at odd primes and here in [AR, proof of 5.12]
the relation

(στ̄k)
p = στ̄k+1

is shown. Hence στ̄2 in THH∗(`;HFp) corresponds to (στ̄0)p
2

and στ̄0 is the element that
represents µ2 at odd primes. �
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Remark 4.7. In order to determine for instance THHko(HF2) multiplicatively we would also need
to control possible multiplicative extensions. Using the notation ρka to denote the generator

(ρ0a)(2k) ∈ ΓF2(ρ0a), we can show by degree considerations that (ρkx7)2 = 0, but not whether
(ρkx5)2 must vanish.

As a general warning we discuss the case of the bar spectral sequence in the case THH∗(ku;HF2).
Here, we know the answer from Lemma 4.5:

THH∗(ku;HF2) ∼= Λ(x3, x7)⊗ F2[µ8].

However, if we use the bar spectral sequence we get as the E2-term

Tor
THH

[0]
∗ (ku;HF2)

∗,∗ (F2,F2) ∼= Tor
F2[ξ̄2

1 ,ξ̄
2
2 ,ξ̄k,k>3]

∗,∗ (F2,F2)

because
THH

[0]
∗ (ku;HF2) ∼= H∗(ku;F2) ∼= F2[ξ̄2

1 , ξ̄
2
2 , ξ̄k, k > 3]

(see for instance [AR, 6.1]). Hence the spectral sequence collapses because

E2
∗,∗
∼= ΛF2(σξ̄2

1 , σξ̄
2
2 , σξ̄k, k > 3)

and all generators are concentrated on the 1-line. But we know that the exterior generators in
ΛF2(σξ̄k, k > 3) extend to form F2[µ8], so there are highly non-trivial multiplicative extensions
in this spectral sequence.

Remark 4.8. Veen established a Hopf-structure on the bar spectral sequence [V, §7] for higher
order THH of HFp. His argument generalizes: The pinch maps Sn → Sn ∨ Sn give rise to a
comultiplication

THH[n](A;C)→ THH[n](A;C) ∧C THH[n](A;C)

and as the multiplication on THH[n](A;C) is induced by the fold map, both structures are
compatible. For THH(A) this structure is heavily used in [AR].

If A is connective, then we can consider A→ H(π0A). For C = HFp this multiplication and

comultiplication turns THH
[n]
∗ (A;HFp) into an Fp-Hopf algebra. Veen’s arguments also transfer

to yield that the bar spectral sequence

Tor
THH

[n]
∗ (A;HFp)

∗,∗ (Fp,Fp)⇒ THH
[n+1]
∗ (A;HFp)

is a spectral sequence of Hopf-algebras; in particular, the differentials satisfy a Leibniz and a
co-Leibniz rule and these facts let us determine the differentials in certain cases.

Theorem 4.9. Additively,

THH[2](ko;HF2) ∼= ΓF2(ρ0x5)⊗ ΓF2(ρ0x7)⊗ ΛF2(εµ8).

Here, the degrees are |ρ0x5| = 6, |ρ0x7| = 8 and |εµ8| = 9.

Proof. Using the Tor spectral sequence we get

Tor
Λ(x5)⊗Λ(x7)⊗F2[µ8]
∗,∗ (F2,F2) =⇒ THH

[2]
∗ (ko,HF2).

The E2 page of the spectral sequence is of the form ΓF2(ρ0x5)⊗ΓF2(ρ0x7)⊗ΛF2(εµ8). This, in
turn, is isomorphic to

∞⊗
k=0

F2(ρkx5)/(ρkx5)2︸ ︷︷ ︸
ΛF2

(ρkx5)

⊗
∞⊗
`=0

F2(ρkx7)/(ρkx7)2︸ ︷︷ ︸
ΛF2

(ρkx7)

⊗ΛF2(εµ8),

with bidegrees ||εµ8|| = (1, 8), and ||ρkxi|| = (2k, 2ki). The claim is that the spectral sequence
collapses at E2.

As the spectral sequence above is a spectral sequence of Hopf algebras, the smallest nonzero
differential must go from an indecomposable element to a primitive element. As the only
primitive element in ΓF2(ρ0xi) is ρ0xi we just need to check that no differentials hit ρ0xi,
i = 5, 7, or εµ8. These have bidegrees (1, i) and (1, 8), respectively, and thus if they are hit by
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dr of an indecomposable dr(ρkxj), which would have bidegree (2k−r, 2kj+r−1), we must have

2k − r = 1 and 2kj + r − 1 = 5, 7, or 8. Substituting r = 2k − 1 into the second expression, it
becomes 2k(j + 1)− 2, where clearly k > 1 and j = 5 or 7, making 2k(j + 1)− 2 > 10. So the
spectral sequence collapses at E2.

�

So far, we cannot rule out non-trivial multiplicative extensions. These could be nontrivial only

if there is a multiplicative generator ρkxi or εµ8 with whose square is not zero in THH
[2]
∗ (ko,HF2)

(although it is zero in the E∞ term). This is possible only if (ρkxi)
2 has filtration degree less

than 2k+1, or (εµ8)2 has filtration degree less than 2. The latter is clearly impossible, since
there is nothing in total degree 18 in filtration degrees 0 or 1. If i = 7, by similar arguments we
cannot have anything in total degree 2k+1 · 8 in filtration degree less than 2k+1: it would have
to be constructed out of elements in bidegrees (a, 5a), (b, 7b) and possibly also one occurrence
of the element of bidegree (1, 8), but then the first coordinates would have to add up to at least
2k+1 to have the total degree equal to 2k+1 · 8. However, for the cases (ρkx5)2 one cannot rule
out extensions just for degree reasons.

In a similar manner as above, we can exclude non-trivial differentials in the other three cases:

Proposition 4.10. There are additive isomorphisms

(a) THH
[2]
∗ (ku;HF2) ∼= ΓF2(ρ0x3)⊗ ΓF2(ρ0x7)⊗ ΛF2(εµ8),

(b) THH
[2]
∗ (tmf ;HF2) ∼= ΓF2(ρ0x9)⊗ ΓF2(ρ0x13)⊗ ΓF2(ρ0x15)⊗ ΛF2(εµ16),

(c) and for any odd prime p we get an additive isomorphism

THH
[2]
∗ (`;HFp) ∼= ΓFp(ρ

0x2p−1)⊗ ΓFp(ρ
0x2p2−1)⊗ ΛFp(εµ2p2).

Proof.
(a) In the case of ku at the even prime we get a degree constraint for a differential dr(ρkxi)

of the form

(2k − r, 2ki+ r − 1) = (1, j)

where j is 3, 7 or 8. Since r > 2 and 2k − r = 1, we get k > 2, but that would make
the internal degree at least 4(i+ 1)− 2 and this is bigger or equal to 14, hence doesn’t
occur.

(b) For tmf the degree constraint is

(2k − r, 2ki+ r − 1) = (1, j)

where j is 9, 13, 15 or 16. Again r > 2 and 2k − r = 1 imply that k > 2, which makes
the internal degree at least 38.

(c) For the Adams summand ` the degree condition is

(pk − r, pki+ r − 1) = (1, j)

where j = 2p − 1, 2p2 − 1 or 2p2. As before, we get that k > 2 and therefore we get
an internal degree of at least 2p3 − 2 which is too big to be the degree of a primitive
element.

In all cases the differentials dr, r > 2, all have to be trivial and we get the result. �

4.4. A splitting for THH[n],Hk (HA) for commutative k-algebras A. We apply Theorem
3.6 for a sequence of cofibrations of commutative S-algebras of the form S → A→ B = C. As
THH[n−1],B(B) ' B we obtain a weak equivalence

(4.10.1) THH[n](B) ' THH[n](A;B) ∧L
THH[n−1],A(B)

B.

In the special case of a sequence S → Hk → HA = HA where A is a commutative k-algebra the
formula in (4.10.1) specializes to the following result.
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Proposition 4.11. For all commutative rings k and all commutative k-algebras A the higher
topological Hochschild homology of HA splits as

THH[n](HA) ' THH[n](Hk ; HA) ∧L
Shukla[n−1],k(A)

HA.

If A is flat as a k-module, then higher Shukla homology reduces to higher Hochschild homology
and we obtain

THH[n](HA) ' THH[n](Hk ; HA) ∧L
HH[n−1],k(A)

HA.

In particular, this gives splitting results for number rings: For k = Z and A = OK a ring of
integers in a number field we get

THH[n](HOK) ' THH[n](HZ;HOK) ∧L
HH[n−1],Z(OK)

HOK .

The (topological) Hochschild homology of OK is known (see [LL, LM]). However, the additive
and multiplicative structure of these is complicated enough that we cannot use the iteration
methods of [BLPRZ, DLR] and so we do not know the higher order topological Hochschild
homology of OK with unreduced coefficients so far, nor its higher Shukla homology.

Remark 4.12. Beware that the splitting

THH[n](HA) ' THH[n](Hk ; HA) ∧L
Shukla[n−1],k(A)

HA

' (THH[n](Hk) ∧Hk HA) ∧L
Shukla[n−1],k(A)

HA

cannot be rearranged to

THH[n](Hk) ∧Hk (HA ∧L
Shukla[n−1],k(A)

HA) = THH[n](Hk) ∧Hk Shukla
[n],k(A)

because the Shukla[n−1],k(A)-action on THH[n](Hk ; HA) does not usually factor through an ac-

tion on the coefficients HA. If we could rearrange it that way, it would imply that Shukla[n],k(A)

splits off THH[n](HA), which is not true even for n = 1: for example, if we take k = Z and
A = Z[i], since THH(HZ) as the topological Hochschild homology of a ring is equivalent to a
product of Eilenberg Mac Lane spectra, which Bökstedt [B] identified to be

THH(HZ) ' HZ×
∞∏
a=2

Σ2a−1H(Z/aZ),

then we get the formula

π∗(THH(HZ) ∧HZ Shukla(Z[i]))

∼= π∗(Shukla(Z[i]))⊕
∞⊕
a=2

π∗(Σ
2a−1H(Z/aZ) ∧HZ Shukla(Z[i]))

∼= HH∗(Z[i])⊕
∞⊕
a=2

(
HH∗−2a+1(Z[i])⊗ Z/aZ⊕ Tor(HH∗−2a(Z[i]),Z/aZ)

)
where HH∗(Z[i]) = 0 when ∗ < 0. We also know that HH0(Z[i]) ∼= Z[i], HH2a−1(Z[i]) ∼=
Z[i]/2Z[i], and the positive even groups vanish. Thus the number of copies of Z/2Z’s in
πn(THH(HZ)∧HZ Shukla(Z[i])) grows linearly with n. On the other hand, by [L], THH0(Z[i]) ∼=
Z[i], THH2a−1(Z[i]) ∼= Z[i]/2aZ[i], and the positive even groups vanish.

Such a splitting of Shukla[n],k(A) off THH[n](HA) does hold under additional assumptions, for
instance in the case of commutative pointed monoid rings (see (4.1.2) above).
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