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1. The Dennis trace map

We saw last time, that one can define the K-theory space of a ring with unit R as

K(R) := K0(R)×BGL(R)+.

Here, K0(R) is there in order to obtain the correct π0, so for higher n, πnK(R) = Kn(R) isn’t
affected by it. As K0(R) often can be determined by hand, it is important to understand
the homotopy groups of BGL(R)+, or at least to find approximations for them.

For any based space X and any n > 0 there is a canonical map

πn(X;x)→ Hn(X).

For a class [α] ∈ πn(X;x) with representative α : Sn → X we use a generator µn ∈ Hn(S;Z)
and the naturality of singular homology to obtain an element

Hn(α)[µn] ∈ Hn(X).

This map

πn(X;x)→ Hn(X), [α] 7→ Hn(α)[µn]

is called the Hurewicz map and we denote it by hn. You’ve probably seen the case n = 1
where we obtain

h1 : π1(X;x)→ H1(X) = π1(X;x)ab

and where h1 is the abelianization map.
We work with path-connected spaces, so we’ll drop the basepoint from the notation and

if we take singular homology with integral coefficients, we’ll also drop the Z.
We learned last time that the inclusion X ⊂ X+ induces an isomorphism on homology

groups. We can start the trace map for n ≥ 1 as the composite

Kn(R) = πn(BGL(R)+)
hn //Hn(BGL(R)+) Hn(BGL(R)).

∼=oo

Singular homology of classifying spaces can be identified with group homology. If G is any
discrete group, then

Hn(BG) ∼= Hn(G).

This can be seen by comparing a simplicial model of BG whose set of n-simplices is Gn with
the algebraic bar construction that we used to calculate H∗(G).

Thus we obtain

Hn(BGL(R)) ∼= Hn(GL(R)).

The next building block for the trace map is the so-called fusion map: In the group ring
Z[GLp(R)] you consider formal linear combinations

∑`
i=1 tiAi with ti ∈ Z and Ai ∈ GLp(R).

For the fusion map we evaluate this formal linear combination in Mp(R) using multiples and
sums of matrices. This induces a map of rings

f : Z[GLp(R)]→Mp(R).
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However, f is not compatible with the stabilization maps GLp(R) → GLp+1(R) where

we map A to

(
A 0
0 1

)
and the corresponding ones for Mp(R) → Mp+1(R) where we send a

B ∈Mp(R) to

(
B 0
0 0

)
.

We consider the composition

Z[GLp(R)]⊗n

gp

''t //Z[GLp(R)]⊗n+1 f //Mp(R)⊗n+1 tr //R⊗n+1

where t is the map that is induced by (A1, . . . , An) 7→ (A1 · . . . · An)−1, A1, . . . , An) and
where tr is the generalized trace map that you know from Morita invariance of Hochschild
homology. This composite does commute with the stabilization maps because the extra 1s
in the lower right corner just give something degenerate.

Everybody should check that gp is actually a chain map.
So in total we obtain the Dennis trace map Kn(R)→ HHn(R) as the composite

Kn(R)
πn(pr)// πn(BGL(R)+)

hn
��

Hn(BGL(R)+) Hn(BGL(R))
∼=oo

∼=
��

Hn(GL(R);Z)
g // HHn(R).

Here, pr : K(R) = K0(R)×BGL(R)+ → BGL(R)+ projects away K0(R).

1.1. Trace factors through HML∗(R). Recall that

HML∗(R;M) ∼= TorF(R)
∗ (I∗,M ⊗R (−))

so in particular,
HML∗(R) ∼= TorF(R)

∗ (I∗, I).

We also saw that this can be identified with H∗(F (R); Hom) where Hom denotes the
bifunctor (M,N) 7→ Hom(M,N).

We construct a map from H∗(GL(R);Z) to H∗(F (R); Hom). Composed with the canonical
map HML∗(R)→ HH∗(R) this gives the Dennis trace map.

First we consider the map of rings Z→ Mn(R) that sends 1 to the identity matrix. This
gives a map

H∗(GLn(R);Z)→ H∗(GLn(R);Mn(R))

where on the right-hand side Mn(R) carries the conjugation action of GLn(R). We compose
this with

H∗(GLn(R);Mn(R))→ H∗(F (R); Hom).

Here, we identify GLn(R) with the category that has one object ∗ and has the elements of
GLn(R) as morphisms. The homology of this category is the group homology of GLn(R).
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Then Mn(R) is a bifunctor on this category: You send (∗, ∗) to the abelian group (Mn(R),+)
and (A,B) ∈ GLn(R)2 to the morphism A(−)B−1.

There is a natural transformation GLn(R) → F (R), sending ∗ to Rn and Mn(R) corre-
sponds to Hom(Rn, Rn).

I omit the proof that this is compatible with stabilization. This needs an explicit chain
homotopy (see e. g. [L, p. 405]).

2. Stable K-theory

The canonical inclusion BGL(R) ⊂ BGL(R)+ will be far from being a fibration. However,
we can consider its homotopy fiber :

Let f : X → Y be an arbitrary continuous map with X and Y path connected. We can
replace f by a fibration as follows. Consider the space Pf of pairs (x, ω) with x ∈ X and
ω ∈ Y I such that ω(0) = f(x). So Pf is the pullback (aka fiber product)

Pf = X ×Y Y I //

��

Y I

ev0
��

X
f // Y

where ev0(ω) = ω(0). The space Y I carries the compact open topology. (For a fixed x ∈ X,
you could think of all the ω’s satisfying ω(0) = x as a replacement of a neighbourhood: The
paths start in x and end somewhere in Y .)

We can view X as a subspace of Pf by sending an x ∈ X to (x, cf(x)) where cx is the
constant path at x. This inclusion is actually a homotopy equivalence because you can
contract an arbitrary path back to where it started. This is compatible with the maps f and
p.

Then the map p : Pf → Y , p(x, ω) = ω(1) is a fibration. For a point y0 ∈ Y we consider
the fiber of p at y0 and call this the homotopy fiber of f , hfib(f). If we spell out what that
means then we get

hfib(f) = {(x, ω) ∈ X × Y I , ω(0) = x, ω(1) = y0}.

This homotopy fiber is only defined up to homotopy equivalence, because of the choice of
y0. It sits in the diagram

hfib(f)

''
Pf = X ×Y Y I //

∼
��

p

&&

Y I

ev0
��

X
f // Y

As Pf → Y is a fibration and as X ' Pf , we get a long exact sequence on homotopy groups

. . . //πn(hfib(f)) //πn(X)
πn(f) //πn(Y ) //πn−1(hfib(f)) // . . .
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If we apply this to the inclusion map i : BGL(R) ⊂ BGL(R)+ and if we denote the
homotopy fiber of i by Ψ(R) we get a long exact sequence on homotopy groups:

π2(BGL(R)+) //π1(Ψ(R)) //π1BGL(R) = GL(R)
π1(i)//π1BGL(R)+ = GL(R)/E(R) //1

As π2BGL(R)+ = K2(R) and as we identified this with the kernel of the canonical map
St(R)→ E(R), we obtain that π1(Ψ(R)) is the Steinberg group of R, St(R).

Definition Let R be a ring with unit and let N be an R-bimodule. The stable K-theory
of R with coefficients in N is defined as

Kst
n (R;N) := Hn(Ψ(R);M(N)).

On the right hand side we have the nth singular homology group of the space Ψ(R) with
local coefficients in M(N) =

⋃
Mn(N). So we have to know what local coefficients are and

how St(R) acts on M(N).

2.1. Local coefficients. We assume that a space X is path-connected and has a universal
covering X̃. You know that π1(X;x) acts on X̃ and hence it acts on the singular chains of
X̃, S∗(X̃), by sending a generator α : ∆n → X̃ to γ.α for γ ∈ π1(X, x). We can view Sn(X̃)
therefore as a module over Z[π1(X;x)]. We can shift this to a right module structure by
acting with inverses.

Let L be an abelian group and let f : π1(X;x) → Aut(L ) be a homomorphism. Then
L is a left Z[π1(X;x)]-module.

The nth singular chain group of X with local coefficients in L is then

Sn(X; L ) := Sn(X̃)⊗Z[π1(X;x)] L .

The boundary map d on S∗(X̃) induces a boundary map d⊗Z[π1(X;x)] id on Sn(X; L ), but
beware that the tensor product is taken over the group ring, so there is some twisting going
on. The homology of this complex is then the homology of X with local coefficients in L .

If X is a CW complex, you can do the same with cellular chains.
If the action of the fundamental group on L is trivial, then you just get the ordinary

(singular, cellular) homology of X with coefficients in L . But for instance if you consider
Z with the non-trivial Z/2Z-action, then the homology of RP 2 with these local coefficients
differs from ordinary singular homology.

Another important example is group homology. If M is a G-module, then the group
homology of G with coefficients in M , H∗(G;M), is isomorphic to the singular homology of
the classifying space BG with coefficients in the local system M . If you want to know more
about this, then [DK] is an excellent source.

2.2. The action of St(R) on M(N). First of all, GLn(R) acts by conjugation on Mn(N)
and this action is compatible with the stabilization mapsGLn(R) ↪→ GLn+1(R) andMn(N) ↪→
Mn+1(N), so we get an action of GL(R) on M(N). The Steinberg group of R then acts on
M(N) via the GL(R)-action.

So now

Kst
n (R;M) := Hn(Ψ(R);M(N))

syntactically makes sense. Why is this interesting?
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Theorem [Dundas-McCarthy 1994 [DM]]: For any ring with unit R and any R-bimodule
N there is a natural isomorphism

Kst
∗ (R;N) ∼= HML∗(R;N).

Why the heck should that be true? Tom Goodwillie introduced the concept of Taylor
towers for functors (like Taylor series for analytic functions). There is a different description
of stable K-theory as a first derivative of algebraic K-theory in a suitable sense. Goodwillie
conjectured that topological Hochschild homology should agree with stable K-theory because
it also behaves like a first derivative. For background and way more details on this see
[DM, DGM].
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