The Dennis trace map and stable K-theory

Birgit Richter, December 7, 2021

1. The Dennis trace map

We saw last time, that one can define the K-theory space of a ring with unit R as

$$K(R) := K_0(R) \times BGL(R)^+$$

Here, $K_0(R)$ is there in order to obtain the correct π_0 , so for higher n, $\pi_n K(R) = K_n(R)$ isn't affected by it. As $K_0(R)$ often can be determined by hand, it is important to understand the homotopy groups of $BGL(R)^+$, or at least to find approximations for them.

For any based space X and any n > 0 there is a canonical map

$$\pi_n(X; x) \to H_n(X)$$

For a class $[\alpha] \in \pi_n(X; x)$ with representative $\alpha \colon \mathbb{S}^n \to X$ we use a generator $\mu_n \in H_n(\mathbb{S}; \mathbb{Z})$ and the naturality of singular homology to obtain an element

$$H_n(\alpha)[\mu_n] \in H_n(X)$$

This map

$$\pi_n(X; x) \to H_n(X), \ [\alpha] \mapsto H_n(\alpha)[\mu_n]$$

is called the Hurewicz map and we denote it by h_n . You've probably seen the case n = 1 where we obtain

$$h_1: \pi_1(X; x) \to H_1(X) = \pi_1(X; x)_{ab}$$

and where h_1 is the abelianization map.

We work with path-connected spaces, so we'll drop the basepoint from the notation and if we take singular homology with integral coefficients, we'll also drop the \mathbb{Z} .

We learned last time that the inclusion $X \subset X^+$ induces an isomorphism on homology groups. We can start the trace map for $n \ge 1$ as the composite

$$K_n(R) = \pi_n(BGL(R)^+) \xrightarrow{h_n} H_n(BGL(R)^+) \xleftarrow{\cong} H_n(BGL(R)).$$

Singular homology of classifying spaces can be identified with group homology. If G is any discrete group, then

$$H_n(BG) \cong H_n(G).$$

This can be seen by comparing a simplicial model of BG whose set of *n*-simplices is G^n with the algebraic bar construction that we used to calculate $H_*(G)$.

Thus we obtain

$$H_n(BGL(R)) \cong H_n(GL(R))$$

The next building block for the trace map is the so-called fusion map: In the group ring $\mathbb{Z}[GL_p(R)]$ you consider formal linear combinations $\sum_{i=1}^{\ell} t_i A_i$ with $t_i \in \mathbb{Z}$ and $A_i \in GL_p(R)$. For the fusion map we evaluate this formal linear combination in $M_p(R)$ using multiples and sums of matrices. This induces a map of rings

$$f: \mathbb{Z}[GL_p(R)] \to M_p(R).$$

However, f is not compatible with the stabilization maps $GL_p(R) \to GL_{p+1}(R)$ where we map A to $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ and the corresponding ones for $M_p(R) \to M_{p+1}(R)$ where we send a $B \in M_p(R)$ to $\begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$.

We consider the composition

$$\mathbb{Z}[GL_p(R)]^{\otimes n} \xrightarrow{t} \mathbb{Z}[GL_p(R)]^{\otimes n+1} \xrightarrow{f} M_p(R)^{\otimes n+1} \xrightarrow{tr} R^{\otimes n+1}$$

where t is the map that is induced by $(A_1, \ldots, A_n) \mapsto (A_1 \cdot \ldots \cdot A_n)^{-1}, A_1, \ldots, A_n)$ and where tr is the generalized trace map that you know from Morita invariance of Hochschild homology. This composite *does* commute with the stabilization maps because the extra 1s in the lower right corner just give something degenerate.

Everybody should check that g_p is actually a chain map.

So in total we obtain the Dennis trace map $K_n(R) \to HH_n(R)$ as the composite

$$K_{n}(R) \xrightarrow{\pi_{n}(pr)} \pi_{n}(BGL(R)^{+})$$

$$\downarrow^{h_{n}}$$

$$H_{n}(BGL(R)^{+}) \xleftarrow{\cong} H_{n}(BGL(R))$$

$$\downarrow^{\cong}$$

$$H_{n}(GL(R); \mathbb{Z}) \xrightarrow{g} \mathsf{HH}_{n}(R)$$

Here, $pr: K(R) = K_0(R) \times BGL(R)^+ \to BGL(R)^+$ projects away $K_0(R)$.

1.1. Trace factors through $HML_*(R)$. Recall that

$$\mathsf{HML}_*(R;M) \cong \mathsf{Tor}_*^{\mathcal{F}(R)}(I^*, M \otimes_R (-))$$

so in particular,

$$\mathsf{HML}_*(R) \cong \mathsf{Tor}_*^{\mathcal{F}(R)}(I^*, I).$$

We also saw that this can be identified with $H_*(F(R); \text{Hom})$ where Hom denotes the bifunctor $(M, N) \mapsto \text{Hom}(M, N)$.

We construct a map from $H_*(GL(R); \mathbb{Z})$ to $H_*(F(R); \text{Hom})$. Composed with the canonical map $\mathsf{HML}_*(R) \to \mathsf{HH}_*(R)$ this gives the Dennis trace map.

First we consider the map of rings $\mathbb{Z} \to M_n(R)$ that sends 1 to the identity matrix. This gives a map

$$H_*(GL_n(R);\mathbb{Z}) \to H_*(GL_n(R);M_n(R))$$

where on the right-hand side $M_n(R)$ carries the conjugation action of $GL_n(R)$. We compose this with

$$H_*(GL_n(R); M_n(R)) \to H_*(F(R); \operatorname{Hom}).$$

Here, we identify $GL_n(R)$ with the category that has one object * and has the elements of $GL_n(R)$ as morphisms. The homology of this category is the group homology of $GL_n(R)$.

Then $M_n(R)$ is a bifunctor on this category: You send (*, *) to the abelian group $(M_n(R), +)$ and $(A, B) \in GL_n(R)^2$ to the morphism $A(-)B^{-1}$.

There is a natural transformation $GL_n(R) \to F(R)$, sending * to R^n and $M_n(R)$ corresponds to $Hom(R^n, R^n)$.

I omit the proof that this is compatible with stabilization. This needs an explicit chain homotopy (see e. g. [L, p. 405]).

2. Stable K-theory

The canonical inclusion $BGL(R) \subset BGL(R)^+$ will be far from being a fibration. However, we can consider its homotopy fiber:

Let $f: X \to Y$ be an arbitrary continuous map with X and Y path connected. We can replace f by a fibration as follows. Consider the space P_f of pairs (x, ω) with $x \in X$ and $\omega \in Y^I$ such that $\omega(0) = f(x)$. So P_f is the pullback (aka fiber product)

where $ev_0(\omega) = \omega(0)$. The space Y^I carries the compact open topology. (For a fixed $x \in X$, you could think of all the ω 's satisfying $\omega(0) = x$ as a replacement of a neighbourhood: The paths start in x and end somewhere in Y.)

We can view X as a subspace of P_f by sending an $x \in X$ to $(x, c_{f(x)})$ where c_x is the constant path at x. This inclusion is actually a homotopy equivalence because you can contract an arbitrary path back to where it started. This is compatible with the maps f and p.

Then the map $p: P_f \to Y$, $p(x, \omega) = \omega(1)$ is a fibration. For a point $y_0 \in Y$ we consider the fiber of p at y_0 and call this the homotopy fiber of f, hfib(f). If we spell out what that means then we get

$$\operatorname{hfib}(f) = \{(x,\omega) \in X \times Y^{I}, \omega(0) = x, \omega(1) = y_{0}\}.$$

This homotopy fiber is only defined up to homotopy equivalence, because of the *choice* of y_0 . It sits in the diagram

As $P_f \to Y$ is a fibration and as $X \simeq P_f$, we get a long exact sequence on homotopy groups

$$\dots \longrightarrow \pi_n(\operatorname{hfib}(f)) \longrightarrow \pi_n(X) \xrightarrow{\pi_n(f)} \pi_n(Y) \longrightarrow \pi_{n-1}(\operatorname{hfib}(f)) \longrightarrow \dots$$

If we apply this to the inclusion map $i: BGL(R) \subset BGL(R)^+$ and if we denote the homotopy fiber of i by $\Psi(R)$ we get a long exact sequence on homotopy groups:

$$\pi_2(BGL(R)^+) \longrightarrow \pi_1(\Psi(R)) \longrightarrow \pi_1BGL(R) = GL(R) \xrightarrow{\pi_1(i)} \pi_1BGL(R)^+ = GL(R)/E(R) \longrightarrow \pi_1BGL(R)^+ = GL($$

As $\pi_2 BGL(R)^+ = K_2(R)$ and as we identified this with the kernel of the canonical map $St(R) \to E(R)$, we obtain that $\pi_1(\Psi(R))$ is the Steinberg group of R, St(R).

Definition Let R be a ring with unit and let N be an R-bimodule. The stable K-theory of R with coefficients in N is defined as

$$K_n^{st}(R;N) := H_n(\Psi(R);M(N)).$$

On the right hand side we have the *n*th singular homology group of the space $\Psi(R)$ with local coefficients in $M(N) = \bigcup M_n(N)$. So we have to know what local coefficients are and how St(R) acts on M(N).

2.1. Local coefficients. We assume that a space X is path-connected and has a universal covering \tilde{X} . You know that $\pi_1(X; x)$ acts on \tilde{X} and hence it acts on the singular chains of \tilde{X} , $S_*(\tilde{X})$, by sending a generator $\alpha \colon \Delta^n \to \tilde{X}$ to $\gamma . \alpha$ for $\gamma \in \pi_1(X, x)$. We can view $S_n(\tilde{X})$ therefore as a module over $\mathbb{Z}[\pi_1(X; x)]$. We can shift this to a right module structure by acting with inverses.

Let \mathscr{L} be an abelian group and let $f: \pi_1(X; x) \to \operatorname{Aut}(\mathscr{L})$ be a homomorphism. Then \mathscr{L} is a left $\mathbb{Z}[\pi_1(X; x)]$ -module.

The *n*th singular chain group of X with local coefficients in \mathscr{L} is then

$$S_n(X;\mathscr{L}) := S_n(X) \otimes_{\mathbb{Z}[\pi_1(X;x)]} \mathscr{L}.$$

The boundary map d on $S_*(\tilde{X})$ induces a boundary map $d \otimes_{\mathbb{Z}[\pi_1(X;x)]}$ id on $S_n(X; \mathscr{L})$, but beware that the tensor product is taken over the group ring, so there is some twisting going on. The homology of this complex is then the homology of X with local coefficients in \mathscr{L} .

If X is a CW complex, you can do the same with cellular chains.

If the action of the fundamental group on \mathscr{L} is trivial, then you just get the ordinary (singular, cellular) homology of X with coefficients in \mathscr{L} . But for instance if you consider \mathbb{Z} with the non-trivial $\mathbb{Z}/2\mathbb{Z}$ -action, then the homology of $\mathbb{R}P^2$ with these local coefficients differs from ordinary singular homology.

Another important example is group homology. If M is a G-module, then the group homology of G with coefficients in M, $H_*(G; M)$, is isomorphic to the singular homology of the classifying space BG with coefficients in the local system M. If you want to know more about this, then [DK] is an excellent source.

2.2. The action of St(R) on M(N). First of all, $GL_n(R)$ acts by conjugation on $M_n(N)$ and this action is compatible with the stabilization maps $GL_n(R) \hookrightarrow GL_{n+1}(R)$ and $M_n(N) \hookrightarrow M_{n+1}(N)$, so we get an action of GL(R) on M(N). The Steinberg group of R then acts on M(N) via the GL(R)-action.

So now

$$K_n^{st}(R;M) := H_n(\Psi(R);M(N))$$

syntactically makes sense. Why is this interesting?

Theorem [Dundas-McCarthy 1994 [DM]]: For any ring with unit R and any R-bimodule N there is a natural isomorphism

$$K^{st}_*(R;N) \cong \mathsf{HML}_*(R;N).$$

Why the heck should that be true? Tom Goodwillie introduced the concept of Taylor towers for functors (like Taylor series for analytic functions). There is a different description of stable K-theory as a first derivative of algebraic K-theory in a suitable sense. Goodwillie conjectured that topological Hochschild homology should agree with stable K-theory because it also behaves like a first derivative. For background and way more details on this see [DM, DGM].

References

- [DK] James F. Davis, Paul Kirk, Lecture notes in algebraic topology. Graduate Studies in Mathematics, 35. American Mathematical Society, Providence, RI, 2001. xvi+367 pp.
- [DM] Bjørn Ian Dundas, Randy McCarthy, Stable K-theory and topological Hochschild homology. Ann. of Math. (2) 140 (1994), no. 3, 685–701.
- [DGM] Bjørn Ian Dundas, Thomas G. Goodwillie, Randy McCarthy, The local structure of algebraic K-theory. Algebra and Applications, 18. Springer-Verlag London, Ltd., London, 2013. xvi+435 pp.
- [L] Jean-Louis Loday. Cyclic homology. Appendix E by María O. Ronco. Second edition. Chapter 13 by the author in collaboration with Teimuraz Pirashvili. Grundlehren der Mathematischen Wissenschaften, 301. Springer-Verlag, Berlin, 1998. xx+513 pp.
- [Ro] Jonathan Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Mathematics, 147. Springer-Verlag, New York, 1994. x+392 pp.