The Dennis trace map and stable K-theory

Birgit Richter, December 7, 2021

1. The Dennis trace map

We saw last time, that one can define the K-theory space of a ring with unit R as

$$
K(R):=K_{0}(R) \times B G L(R)^{+} .
$$

Here, $K_{0}(R)$ is there in order to obtain the correct π_{0}, so for higher $n, \pi_{n} K(R)=K_{n}(R)$ isn't affected by it. As $K_{0}(R)$ often can be determined by hand, it is important to understand the homotopy groups of $B G L(R)^{+}$, or at least to find approximations for them.

For any based space X and any $n>0$ there is a canonical map

$$
\pi_{n}(X ; x) \rightarrow H_{n}(X)
$$

For a class $[\alpha] \in \pi_{n}(X ; x)$ with representative $\alpha: \mathbb{S}^{n} \rightarrow X$ we use a generator $\mu_{n} \in H_{n}(\mathbb{S} ; \mathbb{Z})$ and the naturality of singular homology to obtain an element

$$
H_{n}(\alpha)\left[\mu_{n}\right] \in H_{n}(X)
$$

This map

$$
\pi_{n}(X ; x) \rightarrow H_{n}(X),[\alpha] \mapsto H_{n}(\alpha)\left[\mu_{n}\right]
$$

is called the Hurewicz map and we denote it by h_{n}. You've probably seen the case $n=1$ where we obtain

$$
h_{1}: \pi_{1}(X ; x) \rightarrow H_{1}(X)=\pi_{1}(X ; x)_{a b}
$$

and where h_{1} is the abelianization map.
We work with path-connected spaces, so we'll drop the basepoint from the notation and if we take singular homology with integral coefficients, we'll also drop the \mathbb{Z}.

We learned last time that the inclusion $X \subset X^{+}$induces an isomorphism on homology groups. We can start the trace map for $n \geq 1$ as the composite

$$
K_{n}(R)=\pi_{n}\left(B G L(R)^{+}\right) \xrightarrow{h_{n}} H_{n}\left(B G L(R)^{+}\right) \stackrel{\cong}{\oiiint} H_{n}(B G L(R)) .
$$

Singular homology of classifying spaces can be identified with group homology. If G is any discrete group, then

$$
H_{n}(B G) \cong H_{n}(G)
$$

This can be seen by comparing a simplicial model of $B G$ whose set of n-simplices is G^{n} with the algebraic bar construction that we used to calculate $H_{*}(G)$.

Thus we obtain

$$
H_{n}(B G L(R)) \cong H_{n}(G L(R))
$$

The next building block for the trace map is the so-called fusion map: In the group ring $\mathbb{Z}\left[G L_{p}(R)\right]$ you consider formal linear combinations $\sum_{i=1}^{\ell} t_{i} A_{i}$ with $t_{i} \in \mathbb{Z}$ and $A_{i} \in G L_{p}(R)$. For the fusion map we evaluate this formal linear combination in $M_{p}(R)$ using multiples and sums of matrices. This induces a map of rings

$$
f: \mathbb{Z}\left[G L_{p}(R)\right] \rightarrow M_{p}(R) .
$$

However, f is not compatible with the stabilization maps $G L_{p}(R) \rightarrow G L_{p+1}(R)$ where we map A to $\left(\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right)$ and the corresponding ones for $M_{p}(R) \rightarrow M_{p+1}(R)$ where we send a $B \in M_{p}(R)$ to $\left(\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right)$.

We consider the composition

where t is the map that is induced by $\left.\left(A_{1}, \ldots, A_{n}\right) \mapsto\left(A_{1} \cdot \ldots \cdot A_{n}\right)^{-1}, A_{1}, \ldots, A_{n}\right)$ and where $t r$ is the generalized trace map that you know from Morita invariance of Hochschild homology. This composite does commute with the stabilization maps because the extra 1s in the lower right corner just give something degenerate.

Everybody should check that g_{p} is actually a chain map.
So in total we obtain the Dennis trace map $K_{n}(R) \rightarrow \mathrm{HH}_{n}(R)$ as the composite

Here, pr: $K(R)=K_{0}(R) \times B G L(R)^{+} \rightarrow B G L(R)^{+}$projects away $K_{0}(R)$.

1.1. Trace factors through $\mathrm{HML}_{*}(R)$. Recall that

$$
\operatorname{HML}_{*}(R ; M) \cong \operatorname{Tor}_{*}^{\mathcal{F}(R)}\left(I^{*}, M \otimes_{R}(-)\right)
$$

so in particular,

$$
\operatorname{HML}_{*}(R) \cong \operatorname{Tor}_{*}^{\mathcal{F}(R)}\left(I^{*}, I\right)
$$

We also saw that this can be identified with $H_{*}(F(R)$; Hom) where Hom denotes the bifunctor $(M, N) \mapsto \operatorname{Hom}(M, N)$.

We construct a map from $H_{*}(G L(R) ; \mathbb{Z})$ to $H_{*}(F(R) ;$ Hom $)$. Composed with the canonical map $\mathrm{HML}_{*}(R) \rightarrow \mathrm{HH}_{*}(R)$ this gives the Dennis trace map.

First we consider the map of rings $\mathbb{Z} \rightarrow M_{n}(R)$ that sends 1 to the identity matrix. This gives a map

$$
H_{*}\left(G L_{n}(R) ; \mathbb{Z}\right) \rightarrow H_{*}\left(G L_{n}(R) ; M_{n}(R)\right)
$$

where on the right-hand side $M_{n}(R)$ carries the conjugation action of $G L_{n}(R)$. We compose this with

$$
H_{*}\left(G L_{n}(R) ; M_{n}(R)\right) \rightarrow H_{*}(F(R) ; \text { Hom }) .
$$

Here, we identify $G L_{n}(R)$ with the category that has one object $*$ and has the elements of $G L_{n}(R)$ as morphisms. The homology of this category is the group homology of $G L_{n}(R)$.

Then $M_{n}(R)$ is a bifunctor on this category: You send $(*, *)$ to the abelian group $\left(M_{n}(R),+\right)$ and $(A, B) \in G L_{n}(R)^{2}$ to the morphism $A(-) B^{-1}$.

There is a natural transformation $G L_{n}(R) \rightarrow F(R)$, sending $*$ to R^{n} and $M_{n}(R)$ corresponds to $\operatorname{Hom}\left(R^{n}, R^{n}\right)$.

I omit the proof that this is compatible with stabilization. This needs an explicit chain homotopy (see e. g. [L, p. 405]).

2. Stable K-theory

The canonical inclusion $B G L(R) \subset B G L(R)^{+}$will be far from being a fibration. However, we can consider its homotopy fiber:

Let $f: X \rightarrow Y$ be an arbitrary continuous map with X and Y path connected. We can replace f by a fibration as follows. Consider the space P_{f} of pairs (x, ω) with $x \in X$ and $\omega \in Y^{I}$ such that $\omega(0)=f(x)$. So P_{f} is the pullback (aka fiber product)

where $\operatorname{ev}_{0}(\omega)=\omega(0)$. The space Y^{I} carries the compact open topology. (For a fixed $x \in X$, you could think of all the ω 's satisfying $\omega(0)=x$ as a replacement of a neighbourhood: The paths start in x and end somewhere in Y.)

We can view X as a subspace of P_{f} by sending an $x \in X$ to $\left(x, c_{f(x)}\right)$ where c_{x} is the constant path at x. This inclusion is actually a homotopy equivalence because you can contract an arbitrary path back to where it started. This is compatible with the maps f and p.

Then the map $p: P_{f} \rightarrow Y, p(x, \omega)=\omega(1)$ is a fibration. For a point $y_{0} \in Y$ we consider the fiber of p at y_{0} and call this the homotopy fiber of $f, \operatorname{hfib}(f)$. If we spell out what that means then we get

$$
\operatorname{hfib}(f)=\left\{(x, \omega) \in X \times Y^{I}, \omega(0)=x, \omega(1)=y_{0}\right\}
$$

This homotopy fiber is only defined up to homotopy equivalence, because of the choice of y_{0}. It sits in the diagram

As $P_{f} \rightarrow Y$ is a fibration and as $X \simeq P_{f}$, we get a long exact sequence on homotopy groups

$$
\ldots \longrightarrow \pi_{n}(\mathrm{hfib}(f)) \longrightarrow \pi_{n}(X) \xrightarrow[3]{\pi_{n}(f)} \pi_{n}(Y) \longrightarrow \pi_{n-1}(\mathrm{hfib}(f)) \longrightarrow \ldots
$$

If we apply this to the inclusion map $i: B G L(R) \subset B G L(R)^{+}$and if we denote the homotopy fiber of i by $\Psi(R)$ we get a long exact sequence on homotopy groups:
$\pi_{2}\left(B G L(R)^{+}\right) \longrightarrow \pi_{1}(\Psi(R)) \longrightarrow \pi_{1} B G L(R)=G L(R) \xrightarrow{\pi_{1}(i)} \pi_{1} B G L(R)^{+}=G L(R) / E(R) \longrightarrow 1$
As $\pi_{2} B G L(R)^{+}=K_{2}(R)$ and as we identified this with the kernel of the canonical map $S t(R) \rightarrow E(R)$, we obtain that $\pi_{1}(\Psi(R))$ is the Steinberg group of $R, S t(R)$.

Definition Let R be a ring with unit and let N be an R-bimodule. The stable K-theory of R with coefficients in N is defined as

$$
K_{n}^{s t}(R ; N):=H_{n}(\Psi(R) ; M(N)) .
$$

On the right hand side we have the nth singular homology group of the space $\Psi(R)$ with local coefficients in $M(N)=\bigcup M_{n}(N)$. So we have to know what local coefficients are and how $S t(R)$ acts on $M(N)$.
2.1. Local coefficients. We assume that a space X is path-connected and has a universal covering \tilde{X}. You know that $\pi_{1}(X ; x)$ acts on \tilde{X} and hence it acts on the singular chains of $\tilde{X}, S_{*}(\tilde{X})$, by sending a generator $\alpha: \Delta^{n} \rightarrow \tilde{X}$ to $\gamma . \alpha$ for $\gamma \in \pi_{1}(X, x)$. We can view $S_{n}(\tilde{X})$ therefore as a module over $\mathbb{Z}\left[\pi_{1}(X ; x)\right]$. We can shift this to a right module structure by acting with inverses.

Let \mathscr{L} be an abelian group and let $f: \pi_{1}(X ; x) \rightarrow \operatorname{Aut}(\mathscr{L})$ be a homomorphism. Then \mathscr{L} is a left $\mathbb{Z}\left[\pi_{1}(X ; x)\right]$-module.

The nth singular chain group of X with local coefficients in \mathscr{L} is then

$$
S_{n}(X ; \mathscr{L}):=S_{n}(\tilde{X}) \otimes_{\mathbb{Z}\left[\pi_{1}(X ; x)\right]} \mathscr{L} .
$$

The boundary map d on $S_{*}(\tilde{X})$ induces a boundary map $d \otimes_{\mathbb{Z}\left[\pi_{1}(X ; x)\right]}$ id on $S_{n}(X ; \mathscr{L})$, but beware that the tensor product is taken over the group ring, so there is some twisting going on. The homology of this complex is then the homology of X with local coefficients in \mathscr{L}.

If X is a CW complex, you can do the same with cellular chains.
If the action of the fundamental group on \mathscr{L} is trivial, then you just get the ordinary (singular, cellular) homology of X with coefficients in \mathscr{L}. But for instance if you consider \mathbb{Z} with the non-trivial $\mathbb{Z} / 2 \mathbb{Z}$-action, then the homology of $\mathbb{R} P^{2}$ with these local coefficients differs from ordinary singular homology.

Another important example is group homology. If M is a G-module, then the group homology of G with coefficients in $M, H_{*}(G ; M)$, is isomorphic to the singular homology of the classifying space $B G$ with coefficients in the local system M. If you want to know more about this, then [DK] is an excellent source.
2.2. The action of $S t(R)$ on $M(N)$. First of all, $G L_{n}(R)$ acts by conjugation on $M_{n}(N)$ and this action is compatible with the stabilization maps $G L_{n}(R) \hookrightarrow G L_{n+1}(R)$ and $M_{n}(N) \hookrightarrow$ $M_{n+1}(N)$, so we get an action of $G L(R)$ on $M(N)$. The Steinberg group of R then acts on $M(N)$ via the $G L(R)$-action.

So now

$$
K_{n}^{s t}(R ; M):=H_{n}(\Psi(R) ; M(N))
$$

syntactically makes sense. Why is this interesting?

Theorem [Dundas-McCarthy 1994 [DM]]: For any ring with unit R and any R-bimodule N there is a natural isomorphism

$$
K_{*}^{s t}(R ; N) \cong \operatorname{HML}_{*}(R ; N)
$$

Why the heck should that be true? Tom Goodwillie introduced the concept of Taylor towers for functors (like Taylor series for analytic functions). There is a different description of stable K-theory as a first derivative of algebraic K-theory in a suitable sense. Goodwillie conjectured that topological Hochschild homology should agree with stable K-theory because it also behaves like a first derivative. For background and way more details on this see [DM, DGM].

References

[DK] James F. Davis, Paul Kirk, Lecture notes in algebraic topology. Graduate Studies in Mathematics, 35. American Mathematical Society, Providence, RI, 2001. xvi+367 pp.
[DM] Bjørn Ian Dundas, Randy McCarthy, Stable K-theory and topological Hochschild homology. Ann. of Math. (2) 140 (1994), no. 3, 685-701.
[DGM] Bjørn Ian Dundas, Thomas G. Goodwillie, Randy McCarthy, The local structure of algebraic K-theory. Algebra and Applications, 18. Springer-Verlag London, Ltd., London, 2013. xvi +435 pp.
[L] Jean-Louis Loday. Cyclic homology. Appendix E by María O. Ronco. Second edition. Chapter 13 by the author in collaboration with Teimuraz Pirashvili. Grundlehren der Mathematischen Wissenschaften, 301. Springer-Verlag, Berlin, 1998. xx+513 pp.
[Ro] Jonathan Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Mathematics, 147. Springer-Verlag, New York, 1994. x+392 pp.

