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CHAPTER 1

Homology theory

1. Chain complexes

DEFINITION 1.1. A chain complez is a sequence of abelian groups, (Cy,)nez, together with homomor-
phisms d,,: C,, — C,_1 for n € Z, such that d,,_1 od,, = 0.

Let R be an associative ring with unit 1g. A chain complex of R-modules can analoguously be defined
as a sequence of R-modules (C,)nez with R-linear maps d,,: Cp, = C,,—1 with d,,_1 od,, = 0.

DEFINITION 1.2.
e The d, are differentials or boundary operators.
e The x € C,, are called n-chains.
e Isz € C, and d,x = 0, then x is an n-cycle.

Zn(C) = {zx € Cpldpz = 0}.
o If x € C, is of the form x = d,, 41y for some y € Cp, 41, then z is an n-boundary.
Bn(C) = Im(dpy1) = {dny1y,y € Cryr}

Note that the cycles and boundaries form subgroups of the chains. As d,, o d,,41 = 0, we know that the
image of d, 11 is a subgroup of the kernel of d,, and thus

B,(C) C Z,(C).
We'll often drop the subscript n from the boundary maps and we’ll just write C, for the chain complex.

DEFINITION 1.3. The abelian group H,,(C) := Z,(C)/B,(C) is the nth homology group of the complex
C..

Notation: We denote by [c] the equivalence class of a ¢ € Z,,(C).
If ¢, ¢ € C, satisfy that ¢ — ¢’ is a boundary, then ¢ is homologous to ¢/. That’s an equivalence relation.

Ezxamples:

1) Consider

C, = Z n= O,%
0 otherwise
and let d; be the multiplication with V € N, then

{Z/NZ n=0

H,(C)=
©) 0 otherwise.

2) Take C,, = Z for all n € Z and

d - idz n odd
"o n even.

What is the homology of this chain complex?

3) Consider C,, = Z for all n € Z again, but let all boundary maps be trivial. What is the homology of this
chain complex?



DEFINITION 1.4. Let C, and D, be two chain complexes. A chain map f: C, — D, is a sequence of
homomorphisms f,,: C,, — D,, such that d2 o f,, = f,,_1 0 d¢ for all n, i.c., the diagram

dC
Cp——Chy

fnJ{ J/fn—l
)

Dn *n> anl
commutes for all n.

Such an f sends cycles to cycles and boundaries to boundaries. We therefore obtain an induced map
Hy(f): Ho(C) = Hn(D)
via Hy, (f)«[c] = [fne]-

There is a chain map from the chain complex mentioned in Example 1) to the chain complex D, that is
concentrated in degree zero and has Dy = Z/NZ. Note, that Hy(f) is an isomorphism on zeroth homology
groups.

Are there chain maps between the complexes from Examples 2) and 3)?

LEMMA 1.5. If f: C. = D, and g: D, — E, are two chain maps, then H,(g) o H,(f) = Hn(g o f) for
all n.

When do two chain maps induce the same map on homology?

DEFINITION 1.6. A chain homotopy H between two chain maps f,g: C, — D, is a sequence of homo-
morphisms (H,)nez with H,: C,, = D, such that for all n

df(?_i,_l oH,+H, 10 dg = fn— gn.

s Ay s g,
e o C Cos
Hpa H, Hp_1
frt1 In+1 fn n fn-1 gn—1
d7?+2 d5+1 D dP D db
s n+1 n n—1

If such an H exists, then f and g are (chain) homotopic: f ~ g.
We will later see geometrically defined examples of chain homotopies.

PRrROPOSITION 1.7.

(a) Being chain homotopic is an equivalence relation.
(b) If f and g are homotopic, then Hy,(f) = H,(g) for all n.

PRrROOF. (a) If H is a homotopy from f to g, then —H is a homotopy from g to f. Each f is homotopic
to itself with H = 0. If f is homotopic to g via H and g is homotopic to h via K, then f is homotopic to h
via H + K.

(b) We have for every cycle ¢ € Z,(C,):

Hn(f)[c] - Hn(g)[c] = [fnc - gnc] = [di)-i-l © Hn(c)] + [Hn—l © dg(c)] =0.
O

DEFINITION 1.8. Let f: Cy — D, be a chain map. We call f a chain homotopy equivalence, if there is
a chain map ¢g: D, — C, such that go f ~id¢, and fog ~idp,. The chain complexes C, and D, are then
chain homotopically equivalent.

Note, that such chain complexes have isomorphic homology. However, chain complexes with isomorphic
homology do not have to be chain homotopically equivalent. (Can you find a counterexample?)
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DEFINITION 1.9. If C, and C? are chain complexes, then their direct sum, C ® C., is the chain complex
with
Ci®Cl)y=C,dCl,=C,xCl
with differential d = dg given by
dg(c,c') = (de,dcd).

Similarly, if (Cij ), d)) jes is a family of chain complexes, then we can define their direct sum as follows:
(@ Cij))n — @ C7(1j)
jed jeJ
as abelian groups and the differential dg is defined via the property that its restriction to the jth summand
is d\@).
2. Singular homology

Let vy, ..., v, be n+ 1 points in R™*!. Consider the convex hull

K(’Uo,...,’l}n) = {Ztivi\ Zti = 1,ti > O}
=0 =0

DEFINITION 2.1. If the vectors v; — vy, ..., v, — vo are linearly independent, then K (vp,...,v,) is the
simplex generated by vy, . ..,v,. We denote such a simplex by simp(vg, ..., v,).
Ezample. The standard topological n-simplex is A™ := simp(eq, ..., e,). Here, e; is the vector in R**! that

has a 1 in coordinate i + 1 and is zero in all other coordinates. The first examples are: A is the point e,
A' is the line segment between e and e;, A2 is a triangle in R?* and A2 is homeomorphic to a tetrahedron.
The coordinate description of the n-simplex is

A" ={(to,...,tn) R[> t; = 1,t; > 0}.

We consider A as A" C R*Tt c R*+2 C ...

The boundary of A! consists of two copies of A%, the boundary of A? consists of three copies of A'. In
general, the boundary of A™ consists of n + 1 copies of A"1.

We need the following face maps for 0 < i < n

d; = d?_ll AL — An, (to7 - 7tn—1) — (to, oy ti1,00t, . ,tn_l).

The image of d?fl in A™ is the face that is opposite to e;. It is the simplex generated by eg,...,e;_1,
€itls---,Cn-
Draw the examples of the faces in Al and A?!

LEMMA 2.2. Concerning the composition of face maps, the following rule holds:
A tod! P =ditod! P, 0<j<i<n
Example: face maps for A and composition into A2: dy o dy = dy o dy.
PRrROOF. Both expressions yield
AP o d! P (to, . tn—2) = (to, .- tj-1,0, . ti2,0, o) = df N (o, tn2).

Let X be an arbitrary topological space, X # &.
DEFINITION 2.3. A singular n-simplex in X is a continuous map «: A™ — X.
Note, that a just has to be continuous, not smooth or anything!

DEFINITION 2.4. Let S,,(X) be the free abelian group generated by all singular n-simplices in X. We
call S, (X) the nth singular chain module of X.



Elements of S,,(X) are finite sums Ziel Aia; with A; = 0 for almost all ¢ € I and «;: A™ — X.

For all n > 0 there are non-trivial elements in S, (X), because we assumed that X # @&: we can always
take an o € X and the constant map ,,: A™ — X as a. By convention, we define S,,(@) = 0 for all n > 0.

If we want to define maps from S, (X) to some abelian group then it suffices to define such a map on
generators.

Ezample. What is So(X)? A continuous a: A® — X is determined by its value a(eg) =: ¥, € X, which is a
point in X. A singular O-simplex ;. ; A\;a; can thus be identified with the formal sum of points } 7, ; X\izq, -
For instance if you count the zeroes and poles of a meromorphic function with multiplicities then this gives
an element in So(X). In algebraic geometry a divisor is an element in Sp(X).

DEFINITION 2.5. We define 9;: S,,(X) — S,—1(X) on generators
di(@) =aod!!
and call it the ith face of a.
On S, (X) we therefore get 0;(3_, A\ja;) =375 Aj(aj 0 drh).
LEMMA 2.6. The face maps on S, (X) satisfy
0j00;=0;-100;, 0<j<i<n.
PrRoOOF. The proof follows from the one of Lemma (2.2 O

DEFINITION 2.7. We define the boundary operator on singular chains as 9: S, (X) = Sn,—1(X), 0 =
Yo o(—1)to;.
LEMMA 2.8. The map 0 is a boundary operator, i.e., 3o d = 0.

PRrROOF. We calculate

n—1 n

900=(>_(-1)9;)) 0 O _(-1)'9;) =>_ > (-1)"9; 00,

j=0 i=0
= Y. ()00, + DY (-1)M9;00
0<j<isn oi<y<n—1
= Z (=1)""70;_109; + Z (=1)"79; 0 0; = 0.
0<j<i<n 0<i<j<n—1
O

We therefore obtain the singular chain complex, S.(X),
S (X)—25 8, (X)L 256 (X)— 2550 (X) 0.
We abbreviate Z,,(S«(X)) by Z,(X), Bn(S«(X)) by B, (X) and H,(S.(X)) by H,(X).

DEFINITION 2.9. For a space X, H,(X) is the nth singular homology group of X.

Note that Zy(X) = So(X).

As an example of a 1-cycle consider a 1-chain ¢ = o+ 8 + v where a, 3,7: A' — X such that a(e;) =
B(eo), Ble1) = v(ep) and y(e1) = a(eg) and calculate that dec = 0.

We need to understand how continuous maps of topological spaces interact with singular chains and
singular homology.

Let f: X — Y be a continuous map.

DEFINITION 2.10. The map f,, = Sp(f): Sp(X) — S,(Y) is defined on generators a: A™ — X as

fola) = foa: Ar—e L x Ty
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LEMMA 2.11. For any continuous f: X — Y we have

S (X) — s 5, ()

8% lay
fn-1

Snfl(X) E— Snfl(Y),
i.e., (fn)n is a chain map and hence induces a map H,(f): Hpo(X) — H,(Y).

PROOF. By definition
O (fal@)) =D (~D(foa)odi =Y (~1)'f o (aodi) = fu1(0¥a).
i=0 i=0
|

Of course, the identity map on X induces the identity map on H,(X) for all n > 0 and if we have a
composition of continuous maps

x— iy 9,7

then S, (go f) = Sn(g) o Sn(f) and Hy,(go f) = H,(g) o H,(f). In categorical language, this says precisely
that S, (—) and H,(—) are functors from the category of topological spaces and continuous maps into the
category of abelian groups. Taking all S,,(—) together turns S,(—) into a functor from topological spaces
and continuous maps into the category of chain complexes with chain maps as morphisms.

One implication of Lemma is that homeomorphic spaces have isomorphic homology groups:

X=2Y=H,(X)=2 H,(Y) for all n > 0.
Our first (not too exciting) calculation is the following:

PROPOSITION 2.12. The homology groups of a one-point space pt are trivial but in degree zero,

0, ifn>0,

Hu(pt) = {Z ifn =0.

PROOF. For every n > 0 there is precisely one continuous map «: A™ — pt, namely the constant map.
We denote this map by k,. Then the boundary of k,, is

a"<5n = Z(_l)ll‘ﬁn @) di = Z(_l)i:‘infl = {Hn—h n evel,

= = 0, n odd.
For all n we have S,,(pt) = Z generated by k,, and therefore the singular chain complex looks as follows:

O=idy 0=0

9= Z

Z.

3. HO and H1
Before we calculate anything, we define a map.

PROPOSITION 3.1. For any topological space X there is a homomorphism e: Hyo(X) — Z with € # 0 for
X #o.

PROOF. If X # @, then we define e(a) = 1 for any a: A? — X, thus e(3,.; hias) = ;07 A on Sp(X).
As only finitely many \; are non-trivial, this is in fact a finite sum.

We have to show that this map is well-defined on homology, i.e., that it vanishes on boundaries. One
possibility is to see that € can be interpreted as the map on singular chains that is induced by the projection
map of X to a one-point space.



One can also show the claim directly: Let So(X) > ¢ = 9b be a boundary and write b =), ; v;; with
Bi: A — X. Then we get

Ob=0Y vifi=> vi(Biodo—Biod) =Y viBiody— > vifiod

iel iel iel iel
and hence
e(c) = e(0b) = ZVZ' - Zui = 0.
iel iel

O

We said that Sy(@) is zero, so Ho(&) = 0 and in this case we define € to be the zero map.
If X # @, then any a: A° — X can be identified with its image point, so the map € on Sp(X) counts
points in X with multiplicities.

PROPOSITION 3.2. If X is a path-connected, non-empty space, then e: Ho(X) = Z.

PROOF. As X is non-empty, there is a point € X and the constant map x, with value x is an element
in So(X) with €(k;) = 1. Therefore ¢ is surjective. For any other point y € X there is a continuous path
w: [0,1] = X with w(0) = z and w(1) = y. We define ay,: A = X as

(o, t1) = w(l — o).
Then
8(aw) = 30(Oéw) - al(aw) = aw(el) - aw(eO) = OLW(O, 1) - OZW(LO) = Ky = KRg,

and the two generators kg, K, are homologous. This shows that ¢ is injective. |

From now on we will identify paths w and their associated 1-simplices a.

COROLLARY 3.3. If X is of the form X = | |,.; X; such that the X; are non-empty and path-connected,
then

Hy(X) =Pz

icl
In this case, the zeroth homology group of X is the free abelian group generated by the path-components.

PROOF. The singular chain complex of X splits as the direct sum of chain complexes of the Xj;:
Sn(X) = € Sn(X3)
il
for all n. Boundary summands 9; stay in a component, in particular,
0: S1(X) = @D S1(X:) = €P So(Xi) = So(X)
il il
is the direct sum of the boundary operators 9: S1(X;) — So(X;) and the claim follows. O

Next, we want to relate H; to the fundamental group. Let X be path-connected and x € X.

LEMMA 3.4. Let wy,ws,w be paths in X.

(a) Constant paths are null-homologous.

(b) If wi(1) = wa(0), then wy * we — wy — wo is a boundary. Here wy x wy is the concatenation of wq
followed by ws.

(¢) If w1(0) = wa(0),w1(1) = wa(1l) and if wy is homotopic to we relative to {0,1}, then wy and we are
homologous as singular 1-chains.

(d) Any 1-chain of the form @ * w is a boundary. Here, &(t) := w(l —t).
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Proor. For a), consider the constant singular 2-simplex «(tg, t1,t2) = = and ¢,, the constant path on
z. Then da = ¢, — ¢p + ¢z = €.
For b), we define a singular 2-simplex 3: A2 — X as follows.

€2

W1 * W2 w2

€0 w1 €1

We define 3 on the boundary components of A? as indicated and prolong it constantly along the sloped
inner lines. Then

0f=podyg—Bod +Pody=wy—wy*xwy+wr.
For c): Let H: [0,1] x [0,1] — X a homotopy from wy to ws. As we have that H(0,t) = w1(0) = w2(0),
we can factor H through the quotient [0,1] x [0,1]/{0} x [0,1] =2 A% with induced map h: A? — X. Then
Oh=hody—hod;+ hods.

The first summand is null-homologous, because it’s constant (with value wq(1) = ws(1)), the second one is
wo and the last is wq, thus w; — ws is null-homologous.
For d): Consider v: A? — X as indicated below.

€2

€o w €1

]

DEFINITION 3.5. Let h: m1(X,2) — Hi(X) be the map, that sends the homotopy class of a closed path
w, [w]x,, to its homology class [w] = [w]g,. This map is called the Hurewicz-homomorphism.

Witold Hurewicz: 1904-1956 https://en.wikipedia.org/wiki/Witold_Hurewicz (Mayan pyramids
are dangerous, at least for mathematicians.)
Lemma [3.4] ensures that h is well-defined and

h([wr]fwa]) = A([wr * wa]) = [wi] + [wo] = A([wr]) + A([w]);

thus h is a homomorphism.
Note that for a closed path w we have that [0] = —[w] in Hy(X).

DEFINITION 3.6. Let G be an arbitrary group, then its abelianization, Gap, is G/|G, GJ.

Recall that [G, G] is the commutator subgroup of G. That is the smallest subgroup of G containing all
commutators ghg~'h~!, g, h € G. It is a normal subgroup of G: If ¢ € [G, G|, then for any g € G the element
gcg~ e is a commutator and also by the closure property of subgroups the element gcg~'c™'c = geg™! is

in the commutator subgroup.
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PROPOSITION 3.7. The Hurewicz homomorphism factors through the abelianization of m (X, xz) and
induces an isomorphism
7T1(X,£L')ab = Hl(X)

for all path-connected X .
: Hy(X)

7Tl(*va)

pl hab
11 (X, 2)ap = m (X, 2) /[ (X, 2), 71 (X, 2)]

Proor. We will construct an inverse to h,p. For any y € X we choose a path u, from z toy. Fory =2
we take u, to be the constant path on x. Let a be an arbitrary singular 1-simplex and y; = «a(e;). Define
¢: S1(X) — 71 (X, z)ap on generators as ¢(a) = [uy, * a* Uy, | and extend ¢ linearly to all of Sy (X), keeping

in mind that the composition in 7y is written multiplicatively.
We have to show that ¢ is trivial on boundaries, so let 8: A? — X. Then

$(0B) = ¢p(Body—Bodi+ Body)=¢(Body)p(Bodi) (B ody).
Abbreviating 8 o d; with «; we get as a result
[Uyy * Q) * gy | [Uyy * Q1 % Uy ] [Uyy % Q2 % Uy, | = [Uyy * Qo % Ty, * Uy, * 0 * Uy, * Uy, * Q1 * Uy, |.

Here, we've used that the image of ¢ is abelian. We can reduce u,, * uy, and , * u,, and are left with
[Uyo * Qug k Qg % Qrp * ﬂyo] but as * ag * @y is the closed path tracing the boundary of 8 and therefore it is

null-homotopic in X. Thus ¢(98) = 0 and ¢ passes to a map
QZSI Hl(X) — 7T'1(X,J?)ab.

The composition ¢ o h,, evaluated on the class of a closed path w gives
@0 hap|w]r, = dw|H, = [tz * W * Ug ], -

But we chose u; to be constant, thus ¢ o h,;, = id.
If ¢ = > Ay is a cycle, then h,p o ¢(c) is of the form [¢ + Dy.| where the Dy.-part comes from the
contributions of the u,,. The fact that d(c) = 0 implies that the summands in Dp. cancel off and thus
O

hap o ¢ = id g, (x)-
Note, that abelianization doesn’t change anything for abelian groups, i.e., whenever we have an abelian

fundamental group, we know that Hy(X) = 7 (X, z).

COROLLARY 3.8. Knowledge of w1 gives
H{(S") =0, forn>1,

H(S'VSY 2 (Z+Z)a 2 ZDZ,

Z, n=1,
Z/2Z, n>1,

Hy(Fy) = 7%, forg>1,
H\(K)=Z&Z/2Z.

~

Hy(RP") =

In the last case, K denotes the Klein bottle.
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4. Homotopy invariance

We want to show that two continuous maps that are homotopic induce identical maps on the level of
homology groups.

Heuristics: If a: A™ — X is a singular n-simplex and if f, g are homotopic maps from X to Y, then
the homotopy from f o a to g o« starts on A™ x [0,1]. We want to translate this geometric homotopy into
a chain homotopy on the singular chain complex. To that end we have to cut the prism A™ x [0,1] into
(n + 1)-simplices. In low dimensions this is easy:

A® x [0, 1] is homeomorphic to A!, A! x [0,1] = [0,1]? and this can be cut into two copies of A% and
A% x [0,1] is a 3-dimensional prism and that can be glued together from three tetrahedrons, e.g., like

As you might guess now, we use n + 1 copies of A" to build A™ x [0, 1].
DEFINITION 4.1. For i = 0,...,n define p;: A"Tt — A" x [0,1] as
pilto . stns1) = (s s tic ti + vty tigzs - oo tns1)stigr + o+ tng1) € A" x [0, 1].
On the standard basis vectors e, we obtain
<k<:
R PR
We obtain maps P;: S, (X) = Sp+1(X x [0,1]) via P;(a) = (a x id) o p;:

AP P AR 5 10,1125 X % [0, 1.

For k =0,1 let ji: X — X x [0,1] be the inclusion = — (z, k).
LEMMA 4.2. The maps P; satisfy the following relations

(a) 9o o Py = Sn(j1),
(b) Ony10 Py = Sn(jo),
(C) 8ioH:8ioH_1 fOT’ngg’ﬂ
(d)
) . P < g

90 P, — P;o0;_1, fO’I“’L\j' 2

Pi_100;, forizj+1.
Proor. Note that it suffices to check the corresponding claims for the p;’s and d;’s.

For the first two points, we note that on A™ we have

poodo(to.. . tn) =po(0,to, ... tn) = ((to, - tn), D _t:) = ((to, - tn), 1) = ji(to,- .- tn)
and
Pn OdnJrl(tO; cee atn) :pn(t07 s 7tn70) = ((th v ,tn),O) :jO(t07' .- ;tn)~
For ¢), one checks that p; o d; = p;—1 o d; on A™: both give ((to,...,t

13



For d) in the case ¢ > j + 1, consider the following diagram
An+1
x [0, 1]
\ %
1'% [0,1]

Checking coordinates one sees that this diagram commutes. The remaining case follows from a similar
observation. 0O

DEFINITION 4.3. We define P: S, (X) = Spt1(X x [0,1]) as P =1 (—=1)'P,.

LEMMA 4.4. The map P is a chain homotopy between (S, (jo))n and (Sn(j1))n, i-e., o P+ Pod =
Sn(j1) = Snljo)-

PrOOF. We take an v: A™ — X and calculate

n n+l n—1 n
8PO[ —+ P@a = Z Z(—l)iJrjajPiOé + Z Z(—1)1+]P18]0[
=0 j=0 =0 j=0

If we single out the terms involving the pairs of indices (0,0) and (n,n+ 1) in the first sum, we are left with

Su(1)(@) — Sn(Go) (@) + > (1) 0, Pior + Z > (1) Pdja.

(4,5)#(0,0),(n,n+1) i=0 j=0

Using Lemma [4:2) we see that only the first two summands survive. O

So, finally we can prove the main result of this section:

THEOREM 4.5. (Homotopy invariance)
If f,g: X =Y are homotopic maps, then they induce the same map on homology.

PRrROOF. Let H: X x [0,1] — Y be a homotopy from f to g, i.e., Hojo = f and Ho j; = g. Set
K, = Sp41(H) o P. We claim that (K,,), is a chain homotopy between (S, (f))n and (S,(g)).. Note that
H induces a chain map (S, (H)),. Therefore we get

0o Spt1(H)oP+ Sp(H)oPod=S,(H)odoP+ S,(H)oPod

(H)o (0o P+ Pod)

(H) © (Sn(j1) = Sn(do)) = Su(H © j1) = Su(H © jo)
(9) = Sn(f)-

Hence these two maps are chain homotopic and H,(g) = H,(f) for all n. O

Sh
Sn
Sh

COROLLARY 4.6. If two spaces X,Y are homotopy equivalent, then H.(X) = H.(Y). In particular, if
X is contractible, then

Z, forx=0,

0, otherwise.

Ho(X) {

Examples. As R™ is contractible for all n, the above corollary gives that its homology is trivial but in
degree zero where it consists of the integers.

As the Mébius strip is homotopy equivalent to S', we know that their homology groups are isomorphic.

If you know about vector bundles: the zero section of a vector bundle induces a homotopy equivalence
between the base and the total space, hence these two have isomorphic homology groups.
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5. The long exact sequence in homology

A typical situation is that there is a subspace A of a topological space X and you might know something
about A or X and want to calculate the homology of the other space using that partial information.

But before we can move on to topological applications we need some techniques about chain complexes.
We need to know that a short exact sequence of chain complexes gives rise to a long exact sequence in
homology.

DEFINITION 5.1. Let A, B, C be abelian groups and
f g
A——B——C
a sequence of homomorphisms. Then this sequence is ezact, if the image of f is the kernel of g.

DEFINITION 5.2. If

fi
A,

is a sequence of homomorphisms of abelian groups (indexed over the integers), then this sequence is called
(long) ezxact, if it is exact at every A;, i.e., the image of f;y; is the kernel of f; for all i.
An exact sequence of the form

is called a short exact sequence.

FEzamples. The sequence

2.

0 Z 7—7.)27 0

is a short exact sequence.
If t: U — A is a monomorphism, then 0——U—-—A is exact. Similarly, an epimorphism o: B — Q

. . 0 . . o
gives rise to an exact sequence B——@Q——0 and an isomorphism ¢: A = A’ sits in an exact sequence

0— A2 A — 0.
A sequence

is exact iff f is injective, the image of f is the kernel of g and ¢ is an epimorphism. Another equivalent
description is to view a sequence as above as a chain complex with vanishing homology groups. Homology
measures the deviation from exactness.

DEFINITION 5.3. If A,, B,, C, are chain complexes and f,: A, — B, g: B, — C, are chain maps, then
we call the sequence

AL B % 0,

ezact, if the image of f, is the kernel of g, for all n € Z.
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Thus such an exact sequence of chain complexes is a commuting double ladder

d d d
frni1 Gn+1
A7L+1 B7L+1 Cn+1
d d d

d d d
fn—1 gn—1
An_l Bn—l 7 Cn+1
d d d
in which every row is exact.
Ezxample. Let p be a prime, then
0 0 0

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here, m denotes varying

canonical projection maps.

ProprosITION 5.4. If 0 A, ! B.— s, 0 is a short exact sequence of chain complexes,
then there exists a homomorphism 6: H,(Cy) = Hyp_1(As) for all n € Z which is natural, i.e., if
0—— A, —1sB 250, 0
O
0 AL g Lo 0

is a commutative diagram of chain maps in which the rows are exact then H,_1(a)od =60 Hy,(y),
H,(C) — Hoo1(AL)
Hn(7) Hp—1()
H,,(CL) —= Hy 1 (A))

The method of proof is an instance of a diagram chase. The homomorphism § is called connecting
homomorphism. The implicit claim in the proposition above is that  is not always the zero map.
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PRrROOF. We show the existence of a § first and then prove that the constructed map satisfies the natu-
rality condition.

a) Definition of §:

Is ¢ € C,, with d(¢) = 0, then we choose a b € B,, with g,b = c¢. This is possible because g, is surjective.
We know that dg,b = dc = 0 = g,,_1db thus db is in the kernel of g,,_1, hence it is in the image of f,,_1.
Thus there is an a € A,_; with f,_1a = db. We have that f, _oda = df,_1a = ddb = 0 and as f,_o is
injective, this shows that a is a cycle.

We define 4[] := [a].

B,ob—2sceC,

Anr3ar™Sdbe B,
In order to check that ¢§ is well-defined, we assume that there are b and ¥’ with g,b = g,b" = ¢. Then
gn(b—1b") =0 and thus there is an @ € A,, with f,a =b— V. Define o’ as a — da. Then
fr1a' = fao_1a — fn_1da = db —db+ db' = db’

because f,_1da = db—db'. As f,_1 is injective, we get that a’ is uniquely determined with this property.
As a is homologous to a’ we get that [a] = [a'] = d]c], thus the latter is independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary term to ¢, i.e.,
take ¢’ = ¢+ dé for some ¢ € C,, 1. Choose preimages of ¢, ¢ under g, and g,.1, %.€., b and b with gnb=c
and g,+1b = & Then the element b’ = b+ db has boundary db’ = db and thus both choices will result in the
same a.

Therefore 6: H,(C\) = Hp—1(As) is well-defined.

b) We have to show that ¢ is natural with respect to maps of short exact sequences.

Let ¢ € Z,(C.), then §[c] = [a] for a b € B,, with ¢,b = c and an a € A,,_; with f,,_1a = db. Therefore,
Ho1(2)(01e]) = [an-1(a)]:

On the other hand, we have

fr/L—l(O‘n—la) = Bn-1(fn-10) = Bp-1(db) = dB,b
and
g;(ﬁnb) = Yngnb = Ync
and we can conclude that by the construction of §

(5[’)%(0)] = [O‘n—l(a)]
and this shows ¢ o H,,(y) = H,—1(a) 0 6. O

With this auxiliary result at hand we can now prove the main result in this section:

PROPOSITION 5.5. For any short exact sequence

0— A, B2 s, 0

of chain complezes we obtain a long exact sequence of homology groups

H, H, H, _
D g B g (00—, (a0 )

L —5H, (A

PROOF. a) Exactness at the spot H,,(Bx):
We have H,(g) o H,(f)[a] = [gn(fn(a))] = 0 because the composition of g, and f,, is zero. This proves
that the image of H,,(f) is contained in the kernel of H,(g).

For the converse, let [b] € H,(B,) with [g,b] = 0. Then there is a ¢ € Cy,41 with dc = gpb. As gp41 is
surjective, we find a ' € B, 11 with g,1+1b" = ¢. Hence

gn(b—db') = gnb — dgp41b’ = dc — dc = 0.

Exactness gives an a € A, with f,a = b — db’' and da = 0 and therefore f,a is homologous to b and
H,(f)[a] = [b] thus the kernel of H,(g) is contained in the image of H,(f).
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b) Exactness at the spot H,(C\):
Let b € H,(Bx), then 6[g,b] = 0 because b is a cycle, so 0 is the only preimage under f,_1 of db = 0.
Therefore the image of H,(g) is contained in the kernel of J.

Now assume that d[c] = 0, thus in the construction of §, the a is a boundary, a = da’. Then for a
preimage of ¢ under g, b, we have by the definition of a
d(b— fna') =db—dfpa’ =db— f,_1a=0.

Thus b — fra’ is a cycle and ¢, (b — fna’) = gnb — gnfnad’ = gnb — 0 = g,b = ¢, so we found a preimage for
[c] and the kernel of § is contained in the image of H,(g).

¢) Exactness at H,_1(A,):
Let ¢ be a cycle in Z,,(C,). Again, we choose a preimage b of ¢ under g,, and an a with f,_1(a) = db.
Then H,_1(f)d[c] = [fn—1(a)] = [db] = 0. Thus the image of ¢ is contained in the kernel of H,_1(f).

If a € Z,_1(As) with H,_1(f)[a] = 0. Then f,_1a = db for some b € B,,. Take ¢ = g,b. Then by
definition d[c] = [a]. O

6. The long exact sequence of a pair of spaces

Let X be a topological space and A C X a subspace of X. Consider the inclusion map i: A — X,
i(a) = a. We obtain an induced map S, (i): Sp(4) — S,(X), but we know that the inclusion of spaces
doesn’t have to yield a monomorphism on homology groups. For instance, we can include A = S! into
X =D2

We consider pairs of spaces (X, A).

DEFINITION 6.1. The relative chain complex of (X, A) is

S (X, A) := 5.(X)/S«(4).

Alternatively, S, (X, A) is isomorphic to the free abelian group generated by all n-simplices 8: A™ — X
whose image is not completely contained in A, i.e., B(A") N (X \ A) # @.

DEFINITION 6.2.
e Elements in S, (X, A) are called relative chains in (X, A)
e Cycles in S,,(X, A) are chains ¢ with 9% (c) whose generators have image in A. These are relative
cycles.
e Boundaries in S, (X, A) are chains ¢ in X such that ¢ = 9¥b + a where a is a chain in A.

A continuous map f: X — Y with f(A) C B is denoted by f: (X, A4) — (Y, B). Such maps induce
chain maps S.(f): S«(X,A) — S.(Y, B).
The following facts are immediate from the definition:
(a) Sp(X,2) =S, (X).
(b) Sp(X,X)=0.
(¢) Sp(XUX', X" =S, (X).
DEFINITION 6.3. The relative homology groups of (X, A) are
H,(X,A):= H,(S.(X, A)).
THEOREM 6.4. For any pair of topological spaces A C X we obtain a long exact sequence

Hy (2) Hyp—1(3)

5 5
...——H,(A) H,(X) H,(X,A)——H, 1(4)
For a map f: (X, A) — (Y, B) we get an induced map of long exact sequences

e H (A O (X s H (X, A) — s 1y (A)

lHn(flA) J{Hn(f) lHn(f) lHnl(fIA)

o= Hy(B) —— Hy(Y) —— Ho(Y, B) —— H,_1(B)

5 H., () Hp1 (i)
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PROOF. By definition of S, (X, A) the sequence

S, (%)

S, (X)—"S, (X, A)——0

is an exact sequence of chain complexes and by Proposition we obtain the first claim. For a map f as
above the following diagram

Sn ()

0 Sn(A) Sp(X) —"= S, (X, A) ——0
an(flA) JSn(f) an(f)/sn(fA)
0 5,(B) 2 5, (Y) — " 5,(Y, B) —— 0
commutes. U

Ezample. Let A =S""! and X = D", then we know that H; (i) is trivial for j > 0. From the long exact
sequence we get that 6: H;(D",S""') = H; _{(S"7!) for j > 1 and n > 1.

ProroSITION 6.5. Ifi: A — X is a weak retract, i.e., if there is an r: X — A with r oi ~id 4, then
Hn(X)an(A)@Hn(XvA)v 0<n.
PROOF. From the assumption we get that H,,(r)o Hy,(i) = Hy,(id4) = idg, (4) for all n and hence H,,(7)

H'VL i
is injective for all n. This implies that 0 H,(A) © H,(X) is exact. Injectivity of H,_1(i) yields

that the image of §: H, (X, A) — H,,_1(A) is trivial. Therefore we get short exact sequences

0—— H,, (A) = H, (X)— H,, (X, A)——0
for all n. As H,(r) is a left-inverse for H, (i) we obtain a splitting
Hp(X) = Hn(A) ® Hn(X, A)
because we map [c] € H,(X) to ([rc], m«[c]) with inverse
H,(A) ® Hy(X, A) > ([a], [b]) = Hy(i)[a] + [a'] — Hp(ior)[d'] € Hu(X)

for any [a/] € H,(X) with m.[a’] = [b]. The second map is well-defined: if [a”] is another element with
me[a”] = [b] then [ " —a”] is of the form H,(i)[a] because this element is in the kernel of 7. and hence
[a" —a"] — H,(ir)[a’ — a"] is trivial. O

PROPOSITION 6.6. For any @ # A C X such that A C X is a deformation retract we get
H,(i): H,(A) 2 H,(X), H,(X,A) =0, 0<n.
PROOF. Recall, that i: A < X is a deformation retract, if there is a homotopy R: X x [0,1] — X such
that

(a) R(z,0) =z for all z € X,
(b) R(z,1) € Afor all x € X, and
(¢) R(a,1) =a for all a € A.

In particular, R is a homotopy from idx to i o r where r = R(—,1): X — A. Condition (c) can be
rewritten as r o = id 4, i.e., r is a retraction, and thus A and X are homotopically equivalent and H, () is
an isomorphism for all n > 0. O

DEFINITION 6.7. If X has two subspaces A, B C X, then (X, A, B) is called a triple, if BC A C X.

Any triple gives rise to three pairs of spaces , (X, B) and (A, B) and accordingly we have three
long exact sequences in homology. But there is another one.
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PROPOSITION 6.8. For any triple (X, A, B) there is a natural long exact sequence

..——H, (A, B——H,(X,B)——H, (X, A)—>+H,_1(A, B)——

This sequence is part of the following braided commutative diagram displaying four long exact sequences

/\B)/\/

n+1 X A) Hn(A; B)

T s
N TN
NS S

In particular, the connecting homomorphism §: H, (X, A) — H,_1(A, B) is the composite § =
§(XA)

S

(A,B)

Proor. Consider the sequence
0——5,,(A)/Sn(B)——5,(X)/Sn(B)——Sn(X) /S (A)——0.
This sequence is exact, because S, (B) C S, (A) C S, (X). O

7. Excision

The aim is to simplify relative homology groups. Let A C X be a subspace. Then it is easy to see that
H,.(X,A) is not isomorphic to H.(X \ A): Consider the figure eight as X and A as the point connecting the
two copies of S!, then Hy(X, A) is trivial, but Hyo(X \ A) 2 Z @ Z.

So if we want to simplify H,(X, A) by excising something, then we have to be more careful. The first
step towards that is to make singular simplices ’smaller’. The technique is called barycentric subdivision
and that is a tool that’s frequently used.

First, we construct cones. Let v € AP and let ac: A™ — AP be a singular n-simplex in AP.

DEFINITION 7.1. The cone of a with respect to v is K,(a): A"t — AP,

(1— tnﬂ)a(lf‘giﬂ,..., 1;;;“) Ftps1v, tpp1 <1,
v, tn+1 = 1.

(to,...,tn+1) — {

This map is well-defined and continuous. On the standard basis vectors K, gives K,(e;) = a(e;) for
0 <i<nbut Ky(e,t+1) =v. Extending K, linearly gives a map

Ky: Sp(AP) — S, 41(AP).
LEMMA 7.2. The map K, satisfies
o OK,(c) =¢&(c).ky — ¢ for ¢ € Sp(AP), ky(ep) = v and e the augmentation.
e Forn >0 we have that d o K, — K, 09 = (—1)"Hid.
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PROOF. For a singular O-simplex a: AY — AP we know that e(a) = 1 and we calculate
0K, (a)(eo) = (Ky(a) o do)(eo) — (Ku(a) o di)(eo) = Ky(a)(e1) — Ky(a)(eo) = v — afeo).
For n > 0 we have to calculate 9;,K,(a) and it is straightforward to see that d,+1K,(a) = « and

0;(Ky(@)) = Ky(0;a) for all i <n+ 1. O

DEFINITION 7.3. For a: A" — AP let v(a) = v = %HZ?:O a(e;). The barycentric subdivision
B: S, (Ap) = Sp(4Ap) is defined inductively as B(a) = o for a € So(A,) and B(a) = (—1)"K,(B(0a)) for
n > 0.

For n > 1 this yields B(a) = Y. ,(-1)"" K, (B(8;a)).

1
If we take n = p and a = idan, then for small n this looks as follows: You cannot subdivide a point any

further. For n =1 we get \

N

And for n = 2 we get (up to tilting)

LEMMA 7.4. The barycentric subdivision is a chain map.

PROOF. We have to show that 0B = BJ. If « is a singular zero chain, then 0Ba = da = 0 and
Bda = B(0) = 0.
Let n = 1. Then
0Ba = —0K,B(0ya) + 0K, B(01x).

But the boundary terms are zero chains and there B is the identity so we get
—0K,(0par) + 0K, (01cx) = —Ky + Opx + Ky — O1x = v = BOav.

(Note, that the v is v(«), not a v(9;a).)
We prove the claim inductively, so let a € S, (AP). Then

0Ba =(—1)"0K,(Bda)
=(-1)"((-1)"Bda + K,0Bd«)
=Boa + (-1)"K,B00a = Boa.

Here, the first equality is by definition, the second one follows by Lemma and then we use the induction
hypothesis and the fact that 90 = 0. (]

Our aim is to show that B doesn’t change anything on the level of homology groups and to that end we
prove that it is chain homotopic to the identity.
We construct ¢, : S, (AP) = S, 41(AP) again inductively as

Yo(a) =0, Yp(a):=(-1)""K,(Ba—a —1,_10a)
with v = %—H S g aled).
LEMMA 7.5. The sequence (n)n s a chain homotopy from B to the identity.
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PROOF. For n =0 we have 0v¢y = 0 and this agrees with B — id in that degree.
For n =1, we get

1 + 1900 = Oy = O(KoB — K, — Kyihod) = 0K, B — 0K,.

With Lemma we can transform the latter to B + K,0B — 0K, and as B is a chain map, this is B +
K,B0 — 0K,. In chain degree one B9 agrees with J, thus this reduces to

B+ K,0 - 0K, = B— (0K, — K,0) = B —id.
So, finally we can do the inductive step:
M =(—1)"TOK (B —id — ¢,_10)

=(-1)""9K,B — (-1)"" 0K, — (—1)"" 0K 1,10

=(-1)"**((-1)"*"'B + K,0B)
— (1) (1) + K,0)
= (D)™ (=) 10 + Ky Otpn—10)

=B —id — 9,10 + remaining terms

The equation
K010 + Kythy_20* = K,BO — K,0

from the inductive assumption ensures that these remaining terms give zero. O

DEFINITION 7.6. A singular n-simplex a: A™ — AP is called affine, if

n

Oé(z tiei) = Z tia(ei).
i=0

i=0
We abbreviate a(e;) with v;, so a(X 1 tie;) = Y i tiv; and we call the v;’s the vertices of a.
DEFINITION 7.7. Let A be a subset of a metric space (X,d). The diameter of A is
sup{d(z, y)|z,y € A}

and we denote it by diam(A).
Accordingly, the diameter of an affine n-simplex « in AP is the diameter of its image, and we abbreviate
that with diam(a).

LEMMA 7.8. For any affine o every simplez in the chain Ba has diameter < nLHdiam(oz).

Either you believe this lemma, or you prove it, or you check Bredon, Proof of Lemma 13.7 (p. 226).
Each simplex in Ba is again affine; this allows us to iterate the application of B and get smaller and

k
smaller diameter. Thus, the k-fold iteration, B*(a), has diameter at most (nLH) diam(«).
In the following we use the easy but powerful trick to express « as
a=aoidan = S, (a)(idan).
This allows us to use the barycentric subdivision for general spaces.

DEFINITION 7.9.
(a) We define B;X: S,,(X) — S,(X) as

BX(a) := Sp(a) o B(idan).
(b) Similarly, ;X : S, (X) = Sp11(X) is
(@) = Spa1(a) 0 Pn(idan).
LEMMA 7.10. The maps BX are natural in X and are homotopic to the identity on S, (X).
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PROOF. Let f: X — Y be a continuous map. We have
Su(f) By (@) =Su(f) 0 Sn(a) o B(idan)
=S,(f o) o B(idan)
=BY(foa).
The calculation for 9y:X + X 0 = BX — idg, (x) uses that o induces a chain map and thus we get

X (@) = 90 S1(@) 0 Yulidan) = Su(@) 0 0 Yalidan).
Hence

X+ 10 = Sp(a) o (90v,(idan) +Pn_108(idan)) = Sp(a) o (B —id)(idan) = B (@) — .

Now we consider singular n-chains that are spanned by ’small’ singular n-simplices.

DEFINITION 7.11. Let 4 = {U;,i € I} be an open covering of X. Then S(X) is the free abelian group
generated by all a: A" — X such that the image of A™ under « is contained in one of the U; € 4.

Note that S¥(X) is an abelian subgroup of S,(X). As we will see now, these chains suffice to detect
everything in singular homology.

LEMMA 7.12. Every chain in S,(X) is homologous to a chain in S2(X).
PROOF. Let a = Z;nzl Aja; € Sp(X) and let Lj for 1 < j < m be the Lebesgue numbers for the

k
coverings {a;l(Ui),i € I} of A™. Choose a k, such that (ﬁrl) < Ly,...,L,. Then B*a; up to B*ay,,
are all in S¥(X). Therefore

B*a) =) X\B¥(a;) =1 a’ € S}(X).
j=1
As B is homotopic to the identity we have

a~Ban~...~Bfa=d

With this we get the main result of this section:

THEOREM 7.13. Let W C A C X such that W C A. Then the inclusion i: (X \ W,A\ W) = (X, A)
induces an isomorphism
H,(i): H (X \W,A\W) > H,(X,A)
for allm > 0.

ProoOF. We first prove that H, (i) is surjective, so let ¢ € S,,(X, A) be a relative cycle, i.e., let dc €
S,_1(A). There is a k such that ¢ := B¥¢ is a chain in S¥(X) for the open covering = {A, X \ W} =
{U,V}. We decompose ¢’ as ¢/ = ¢V +¢" with ¢V and ¢V being elements in the corresponding chain complex.
(This decomposition is not unique.)

We know that the boundary of ¢’ is ¢’ = dB¥c = B¥dc and by assumption this is a chain in S,,_;(A4).
But d¢’ = dcY + dc with ocV € S,,_1(U) C S,,_1(A). Thus, dc¢¥ € S,,_1(A), in fact, dc¥ € S,,_1(A\ W)
and therefore ¢V is a relative cycle in S, (X \ W, A\ W). This shows that H, (i)[c"] = [¢] € H,(X, A) because
[c] =[cV + Y] =[c"] in H,(X, A).

The injectivity of H,, () is shown as follows. Assume that thereisa c € S, (X \W) with dc € S,_1(A\W)
and assume H,(i)[c] = 0, i.e., ¢ is of the form ¢ = 0b+ o with b € S,,11(X) and @’ € S,,(A) and write b as
bU + bv with bU € Sn+1(U) C Sn+1(A) and bv S Sn+1(V) C Sn+1(X \ W) Then

c=0bY + oY +d.
But 9bY and a’ are elements in S,,(A\ W) and hence ¢ = 9bY € S,,(X \ W, A\ W). O
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8. Mayer-Vietoris sequence

We consider the following situation: Assume that there are subspaces X;, Xo C X such that X; and
X are open in X and such that X = X; U X5. We consider the open covering 4 = {X;, X>}. We need the

following maps:
X
>
i2
X

X1 NXs

N

(11,i2)

is exact. Here, the second map is

1
X
X.
e
2
Note that by definition, the sequence

(a1,a2) = k1(aq) — Ka(ag).

THEOREM 8.1. (The Mayer-Vietoris sequence)
There is a long exact sequence

o — 5 H o (X0 N X)) —— Ho (X1) @ Hyy (Xo)—— Hyy (X)—2 Hyy 1 (X, N Xa)——. ..

Walther Mayer: 1887-1948 https://en.wikipedia.org/wiki/Walther_Mayer
Leopold Vietoris: 1891-2002 (!) https://en.wikipedia.org/wiki/Leopold_Vietoris

ProoFr. The proof follows from Lemma because HX(X) = H,(X). O

As an application, we calculate the homology groups of spheres. Let X = S™ and let X+ := S™ \
Tem+1}. The subspaces X+ and X~ are contractible and therefore H,(X*) = 0 for all positive *.
+
The Mayer-Vietoris sequence is as follows

S H (XN X)) Hy(XH) @ Hy (X ™) —— H (S™) — 2 Hpy 1 (XN X )——. .
For n > 1 we can deduce
H,(S™~H, ((XTnX")=H, (S™1).

The first map is the connecting homomorphism and the second map is H,,_1(i): H,_1(S™!) — H, (XN
X7) where i is the inclusion of S™~! into X N X~ and this inclusion is a homotopy equivalence. Thus
define D := H,,_1(i)"! 0 6. This D is an isomorphism for all n > 2.

We have to controll what is going on in small degrees and dimensions.

We know from the Hurewicz isomorphism that Hy(S™) is trivial for m > 1. If we want to see that via
the Mayer-Vietoris sequence, we have to understand the map

Z2Ho(XTNX" )= Hy(XT)oHy (X )2Z®Z
Let 1 be a base point of X N X ™. Then the map on Hy is
[1] = ((1], [1]).
This map is injective and therefore the connecting homomorphism §: Hy(S™) — Ho(X T N X ™) is trivial
and we obtain that
Hy(S™) =0, m>1

Next, we consider the case of n = 1 = m. In this case the intersection X+ N X~ splits into two
components. We choose a P, € Xt and a P_ € X~ such that P.,P_. € XT N X~ lie in different path
components. Then,

Ho(ir)([Py]) = [ea] = Ho(ir)([P-]) and Ho(iz)([P1]) = [~e2] = Ho(ia)([P-])
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and hence
(Ho(i1)([P+], =[P-]) = 0 = Ho(i2)([P4], —[P-]).
Therefore the kernel of (Hy(i1), Ho(i2)) is spanned by ([P4], —[P-]) and is isomorphic to Z. Considering the

exact sequence

5 (Ho(i1),Ho(i2))

0—H; St Ho(X+*NX™) Ho(XT) ® Ho(X~)—— H,S!

therefore yields H;(S!) = Z. (We already knew this from the Hurewicz isomorphism.)
For 0 < n <m we get

H,S™— =3 H, S 1= = 5|y (Smntl) o g (SmntL),

and the latter is trivial.
Similarly, for 0 < m < n we have

H,S™—=3H, S™ ' = s — =5 H, . 1(S') 0.

The last claim follows directly by another simple Mayer-Vietoris argument.
The remaining case 0 < m = n gives something non-trivial

H,S"—=H, S 1= . —SyH (SH 2 Z.
We can summarize the result as follows.

PROPOSITION 8.2.
Z®7Z, n=m=0,

H(S™) = Z, n=0,m>0,
" )z, n=m >0,
0, otherwise.

DEFINITION 8.3. Let pg := [Py] — [P_] € Ho(X+t N X7) = Hy(SY) and let u; € Hy(S') = 71(S!) be
given by the degree one map (aka the class of the identity on S, aka the class of the loop t — ™).
Define the higher u,s via Dy, = pr—1. Then p, is called the fundamental class in H,(S™).

In order to obtain a relative version of the Mayer-Vietoris sequence, we need a tool from homological
algebra.

LEMMA 8.4. (The five-lemma)
Let

[e% g as Qg

Al —— Ay As Ay As

RN

B; — 3By —2 3By —> s B, — Bsx

be a commutative diagram of exact sequences. If f1, fo, fa, f5 are isomorphisms, then so is fs.

PROOF. Again, we are chasing diagrams.

In order to prove that f3 is injective, assume that there is an a € Az with f3a = 0. Then fS3f3a =
faaza = 0, as well. But f; is injective, thus aza = 0. Exactness of the top row gives, that there is an a’ € As
with asa’ = a. This implies

faaaad' = fza =0=Pafad’.
Exactness of the bottom row gives us a b € By with $1b = faa’, but fi is an isomorphism so we can lift b to
ay € A1 with f1a1 =b.

Thus foaia; = B1b = fea’ and as fy is injective, this implies that aja; = a’. So finally we get that
a = asa’ = asaqar, but the latter is zero, thus a = 0.

For the surjectivity of f3 assume b € Bgy is given. Move b over to By via 83 and set a := f4_153b.
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Consider fsaga. This is equal to B4/3b and hence trivial. Therefore asa = 0 and thus there is an a’ € A3
with aga’ = a. Then b — f3a’ is in the kernel of 33 because

Ba(b— fza') = B3b— faaza’ = Bzb — faa = 0.
Hence we get a by € By with S2bs = b — f3a’. Define as as f;l(bg), so a’ + anas is in A3 and
fa(a' + azag) = fza' + Bafoaz = fza' + Baby = fza' +b — fza' =b.
O
We now consider a relative situation, so let X be a topological space with A, B C X open in AU B and

set 4 := {A, B}. This is an open covering of AU B. The following diagram of exact sequences combines
absolute chains with relative ones:

Here, 9 is induced by the inclusion ¢: S*(A U B) — S, (A U B), A denotes the diagonal map and diff the
difference map. It is clear that the first two rows are exact. That the third row is exact follows by the
nine-lemma or a direct diagram chase.

Consider the two right-most non-trivial columns in this diagram. Each gives a long exact sequence in
homology and we focus on five terms.

—— Hp(8.(X)/SH(AUB)) — Ho1(SHAU B)) —— Hy_1(X)

Ho(SH(AU B)) —— H,(X)
H,Lw{ Hnw
(X)

H'ﬂ(%")l

Hy(AUB) —— H,

— SV H,(X,AUB)— 3 H, {(AUB) —— H,_,(X)

Then by the five-lemma, as H,(¢) and H,_1(¢) are isomorphisms, so is H,(1)). This observation together
with the bottom non-trivial exact row proves the following.

THEOREM 8.5. (Relative Mayer-Vietoris sequence)
If A, B C X are open in AU B, then the following sequence is exact:

2 H, (X, AN B)——H,(X,A) & H,(X, B)——H,(X, AU B)——

9. Reduced homology and suspension

For any path-connected space we have that the zeroth homology group is isomorphic to the integers, so
somehow this copy of Z is superfluous information and we want to get rid of it in a civilized manner. Let P
denote the one-point topological space. Then for any space X there is a continuous map €: X — P.
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DEFINITION 9.1. We define H, (X) := ker(H,(e): H,(X) — H,(P)) and call it the reduced nth homology
group of the space X.

e Note that H,(X) 2 H,(X) for all positive n.
e If X is path-connected, then Hy(X) = 0.
e For any choice of a base point z € X we get

H,(X) ® Hy({z}) = Ha(X)
because H,(P) = H,({z}) and the composition
{z} = X — {z}

is the identity. Therefore, H, (X) = H, (X, {z}) because the retraction r: X — {2} splits the exact
sequence

H,({z}) - H(X) —» H, (X, {z}) —

e We can prolong the singular chain complex S,(X) and consider S, (X):

S1(X) So(X)—=——7 0.
where e(a)) = 1 for every singular 0-simplex «. This is precisely the augmentation we considered
before. Then for all n > 0,
H.(X) = H.(S.(X)).
As every continuous map f: X — Y induces a chain map S.(f): S«(X) — S.(Y) and as e¥ oSy (f) = ¢
we obtain the following result.

X

LEMMA 9.2. The assignment X +— H, (S*(X)) is a functor, i.e., for a continuous f: X — Y we get
an induced map H,(S,(f)): H.(S.(X)) = H,(5,(Y)) such that the identity on X induces the identity and
composition of maps is respected.

Similarly, H, (=) is a functor.
DEFINITION 9.3. For @ # A C X we define
H,(X,A):= H,(X, A).

As we identified reduced homology groups with relative homology groups we obtain a reduced version
of the Mayer-Vietoris sequence. A similar remark applies to the long exact sequence for a pair of spaces.

PROPOSITION 9.4. For each pair of spaces, there is a long exact sequence

o —— Hy(A) —— Hy(X) —— Hpy (X, A) —— Hy 1 (A) — ...
and a reduced Mayer-Vietoris sequence.

Ezxamples.
1) Recall that we can express RP? as the quotient space of S? modulo antipodal points or as a quotient
of D?:
RP? =2 $S?/4+id =2 D?/z ~ —2z for z € S.
We use the latter definition and set X = RP?, X; = X \ {[0,0]} (which is an open Mébius strip and hence
homotopically equivalent to S') and X, = D?. Then
X1 N X, =D2\ {[0,0]} ~S".

Thus we know that Hy(X1) 2 Z, Hi1(X3) 2 0 and HyX; = Hy X5 = 0. We choose generators for Hy (X))
and H; (X7 N X5) as follows.
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Let a be the path that runs along the outer circle in mathematical positive direction half around starting
from the point (1,0). Let v be the loop that runs along the inner circle in mathematical positive direction.
Then the inclusion i: X7 N X9 — X7 induces

This suffices to compute H,(RP?) up to degree two because the long exact sequence is
Hy(X1) @ Hy(X2) = 0= Hy(X) = Hy (X1 N Xo) 2 Z — H (X)) 2 Z — H(X) = Ho(X1 N X;) = 0.
On the two copies of the integers, the map is given as above and thus we obtain:
Hy(RP?) = ker(2-: Z — Z) = 0,
H,(RP?) = coker(2-: Z — 7) = 7./27,
Hy(RP?) = Z.

1%

The higher homology groups are trivial, because there H,,(RP?) is located in a long exact sequence between
trivial groups.

2) We can now calculate the homology groups of bouquets of spaces in terms of the homology groups of
the single spaces, at least in good cases. Let (X;);cs be a family of topological spaces with chosen basepoints
z; € X;. Consider

X:V&.

iel
If the inclusion of z; into X; is pathological, then we cannot apply the Mayer-Vietoris sequence. However,
we get the following;:

PROPOSITION 9.5. If there are open neighbourhoods U; of x; € X; together with a deformation of U; to
{z;}, then we have for any finite E C T

Hy(\/ Xi) = @ Ha(X5).
i€l i€l

In the situation above we say that the X; are well-pointed with respect to x;.

PROOF. First we consider the case of two bouquet summands. We have X; V Uy UU; V X5 as an open
covering of X; V X5. The Mayer-Vietoris sequence then gives that H,,(X) = H, (X, V Us) @ H,(U; V X5)
for n > 0. For Hy we get the exact sequence

0— _ﬁo(Xl \Y UQ) &) ﬁo(Ul \Y XQ) — f‘jo(X) — 0.

By induction we obtain the case of finitely many bouquet summands. O

We also get
il iel
but for this one needs a colimit argument. We postpone that for a while.
We can extend such results to the full relative case. Let A C X be a closed subspace and assume that

A is a deformation retract of an open neighbourhood A C U. Let m: X — X/A be the canonical projection
and b = {A} the image of A. Then X/A is well-pointed with respect to b.
PRrROPOSITION 9.6. In the situation above

Ho(X,A) = Hy(X/A), 0<n.
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PROOF. The canonical projection, 7, induces a homeomorphism (X \ A, U\ A) = (X/A\{b}, 7(U)\ {b}).
Consider the following diagram:

Hy(X,A) — 5 Hy (X, U) ¢———— H, (X \ A, U\ A)

Hn(Tr)J EJ{Hn(Tr)

H,(X/A,b) —— Hy(X/A,7(U)) ¢ Hy(X/A\ {b},7(U) \ {b})

The upper and lower left arrows are isomorphisms because A is a deformation retract of U, the isomorphism
in the upper right is a consequence of excision, because A = A C U and the lower right one follows from
excision as well. O

THEOREM 9.7. (Suspension isomorphism) If A C X is as above, then

H,XX,XA)=H, 1(X,A), foralln>D0.
PRrOOF. Consider the inclusion of pairs (X,A4) C (CX,CA) C (¥X,XA) and the triple (CX,X U
CA,CA). We obtain the corresponding long exact sequence on homology groups
. ——H,(CX,CA)——H,(CX,CAUX)—25H, (X UCA,CA)—...
By Propositionwe get that H,(CX, CAUX) = H,(CX/CAUX) and H,_1(XUCA,CA)~ H,_1(XU

CA/CA) and the latter is isomorphic to H,_1(X/A) = H,_,(X, A). Similarly, as CX/CAU X ~ ©X/SA,
we get

H,(CX,CAUX)~H,(CX/CAUX) = H,(2X/SA) ~ H,(X,TA).

XUCA/CA= X/A:

CA

CX/CAUX = $X/TA:

YA

O

Note, that the corresponding statement is terribly wrong for homotopy groups. We have ¥£S? = S3, but
73(S?) = Z, whereas m4(S%) = Z/27Z, so homotopy groups (unlike homology groups) don’t satisfy such an
easy form of a suspension isomorphism. There is a Freundenthal suspension theorem for homotopy groups,
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but that’s more complicated (https://en.wikipedia.org/wiki/Freudenthal_suspension_theorem). For
the above case it yields:

Z/QZ = 7714,_3(83) = 7T1+4(S4) = ... = 7Tf
where 77 denotes the first stable homotopy group.
Freudenthal: 1905-1990 https://en.wikipedia.org/wiki/Hans_Freudenthal

10. Mapping degree

Recall that we defined fundamental classes j,, € H,(S") for alln > 0. Let f: S” — S™ be any continuous
map.

DEFINITION 10.1. The map f induces a homomorphism
H,(f): H,(S") — H,(S")
and therefore we get

Hy(f)pin = deg(f)pin
with deg(f) € Z. We call this integer the degree of f.

In the case n = 1 we can relate this notion of a mapping degree to the one defined via the fundamental
group of the 1-sphere: if we represent the generator of m1(S!, 1) as the class given by the loop

w: [0,1] = S, t s 2™
then the abelianized Hurewicz, hap: (St 1) — Hi(S'), sends the class of w precisely to u; and therefore

the naturality of hap

m1(f)
—_—

71—1(8171) 71—1(8171)

hab hab

Hi(f)
—

Hy(SY) Hy(SY)

shows that
deg(f)p1 = Hi(f)pa = han(m1 (f)[w]) = hab (k[w]) = kp.
where k is the degree of f defined via the fundamental group. Thus both notions coincide for n = 1.

As we know that the connecting homomorphism induces an isomorphism between H, (D",S"~!) and
H,_1(S* '), we can consider degrees of maps f: (D", S"1) — (D", S" 1) by defining fi, :== 0~ 1. Then
H,(f)(jin) := deg(f)jin gives a well-defined integer deg(f) € Z.

The degree of self-maps of S™ satisfies the following properties:

ProrosITION 10.2.

(a) If f is homotopic to g, then deg(f) = deg(g).

(b) The degree of the identity on S™ is one.

(¢) The degree is multiplicative, i.e., deg(g o f) = deg(g)deg(f).
(d) If f is not surjective, then deg(f) = 0.

PROOF. The first three properties follow directly from the definition of the degree. If f is not surjective,
then it is homotopic to a constant map and this has degree zero. O

It is true that the group of (pointed) homotopy classes of self-maps of S™ is isomorphic to Z and thus
the first property can be upgraded to an ’if and only if’, but we won’t prove that here.

Recall that ¥S™ = S**HL If f: S® — S™ is continuous, then X(f): £S™ — XS is given as ¥S"™ > [x,t] —
[f (), 1].

LEMMA 10.3. Suspensions leave the degree invariant, i.e., for f: S® — S™ we have

deg(3(f)) = deg(f).
In particular, for every k € Z there is an f: S™ — S™ with deg(f) = k.
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PROOF. The suspension isomorphism of Theorem [0.7]is induced by a connecting homomorphism. Using
the isomorphism H,,1(S"*1) = H, 1(XS"), the connecting homomorphism sends fi,+1 € Hy,41(S" ) to
+pn € Hy(S™). But then the commutativity of

=3 H, (Ef) >~
Hn+1(Sn+1) E— Hn+1(ESn) = H7z+1(ZSn) A— Hn+1(Sn+1)

| Js
) — 2D s
ensures that +deg(f)u, = tdeg(Xf)un, with the same sign. a

For the degree of a self-map of S! one has an additivity relation. We can generalize this to higher
dimensions. Consider the pinch map T: S* — S"/S"~! ~ §" v S™ and the fold map F: S*VS"™ — S". Here,
F is induced by the identity of S™.

Note that we can replace every continuous f: S™ — S™ by a basepoint-preserving map by composing
with a rotation. That doesn’t change the degree.

ProrosiTION 10.4. For f,g: S™ — S™ we have
deg(F o (fVg)oT) = deg(f)+ deg(g).
PROOF. The map H,,(T') sends i, t0 (fin, i) € H,S"® H,S" =~ ﬁn(S" VS™). Under this isomorphism,

the map Hy(f V g) corresponds to (fn, pin) + (Hn(f)pin, Hu(g)pn) and this yields (deg(f)pn,deg(g)pn)
which under the fold map is sent to the sum. O

We use the mapping degree to show some geometric properties of self-maps of spheres.

PROPOSITION 10.5. Let f(™): S" — S™ be the map

(0, T15 .-, XTn) = (—T0, T1, -, Tn)-
Then f™ has degree —1.
PROOF. We prove the claim by induction. o was the difference class [+1] — [-1], and
FO) - [1]) = (1) ~ [+1] =~

We defined p,, in such a way that Dy, = pn—1. Therefore, as D is natural,
Hoy(f" g = Hy(f™) D s = D Hy y (f ) ptm1 = D™~ ptn—1) = —ptan-

O

COROLLARY 10.6. The antipodal map A: S® — S", A(x) = —x, has degree (—1)"+1.
PRrROOF. Let fi(") : S® — S™ be the map (zo,...,zn) — (To,- .., Ti—1, —Ti, Tit1,---,Tpn). As in Proposi-
tion one shows that the degree of fi(") is —1. As A= fé") 0...0 é"), the claim follows. a

In particular, the antipodal map cannot be homotopic to the identity as long as n is even!
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PROPOSITION 10.7. Let f,g: S™ — S™ with f(z) # g(x) for all x € S™, then f is homotopic to Aog. In
particular,

deg(f) = (=1)"*deg(9)-
PROOF. By assumption the segment ¢ — (1—t)f(z) —tg(x) doesn’t pass through the origin for 0 < ¢ < 1.
Thus the homotopy
(1—-t)f(z) —tg(x)

(L =1)f(z) — tg()]|
connects f to —g=Aog. O

H(x,t) =

COROLLARY 10.8. For any f: S™ — S™ with deg(f) = 0 there is an x4 € S™ with f(xy) = x4 and an
x_ with f(z_) = —z_.

PrOOF. If f(x) # x for all z, then deg(f) = deg(A4) # 0. If f(z) # —=x for all z, then deg(f) =
(—1)"*ldeg(A) # 0. O

COROLLARY 10.9. Assume that n is even and let f: S™ — S™ be any continuous map. Then there is an
x € S™ with f(z) =x or f(z) = —=x.

Finally, we can say the following about hairstyles of hedgehogs of arbitrary even dimension:

PROPOSITION 10.10. Any tangential vector field on S** is trivial in at least one point.

PRrROOF. Recall that we can describe the tangent space at a point = € S?* as
T.(S*) = {y € R**!|(z,y) = 0}
Assume that V: S?* — T(S*) with V(z) € T.(S*) for all x is a tangential vector field which does not
vanish, i.e., V(z) # 0 for all x € S?*.
Define f(x) := % If f(x) = z, then V(z) = ||V (x)||x. But this means that V(x) points into the
direction of x and thus it cannot be tangential. Similarly, f(x) = —z yields the same contradiction. Thus
such a V' cannot exist. ]
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