Algebraic Topology, summer term 2024

Birgit Richter

Fachbereich Mathematik der Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany

Email address: birgit.richter@uni-hamburg.de, May 2, 2024

CHAPTER 1

Homology theory

1. Chain complexes

Definition 1.1. A chain complex is a sequence of abelian groups, $\left(C_{n}\right)_{n \in \mathbb{Z}}$, together with homomorphisms $d_{n}: C_{n} \rightarrow C_{n-1}$ for $n \in \mathbb{Z}$, such that $d_{n-1} \circ d_{n}=0$.

Let R be an associative ring with unit 1_{R}. A chain complex of R-modules can analoguously be defined as a sequence of R-modules $\left(C_{n}\right)_{n \in \mathbb{Z}}$ with R-linear maps $d_{n}: C_{n} \rightarrow C_{n-1}$ with $d_{n-1} \circ d_{n}=0$.

Definition 1.2.

- The d_{n} are differentials or boundary operators.
- The $x \in C_{n}$ are called n-chains.
- Is $x \in C_{n}$ and $d_{n} x=0$, then x is an n-cycle.

$$
Z_{n}(C):=\left\{x \in C_{n} \mid d_{n} x=0\right\} .
$$

- If $x \in C_{n}$ is of the form $x=d_{n+1} y$ for some $y \in C_{n+1}$, then x is an n-boundary.

$$
B_{n}(C):=\operatorname{Im}\left(d_{n+1}\right)=\left\{d_{n+1} y, y \in C_{n+1}\right\}
$$

Note that the cycles and boundaries form subgroups of the chains. As $d_{n} \circ d_{n+1}=0$, we know that the image of d_{n+1} is a subgroup of the kernel of d_{n} and thus

$$
B_{n}(C) \subset Z_{n}(C)
$$

We'll often drop the subscript n from the boundary maps and we'll just write C_{*} for the chain complex.
Definition 1.3. The abelian group $H_{n}(C):=Z_{n}(C) / B_{n}(C)$ is the nth homology group of the complex C_{*}.

Notation: We denote by $[c]$ the equivalence class of a $c \in Z_{n}(C)$.
If $c, c^{\prime} \in C_{n}$ satisfy that $c-c^{\prime}$ is a boundary, then c is homologous to c^{\prime}. That's an equivalence relation.

Examples:

1) Consider

$$
C_{n}= \begin{cases}\mathbb{Z} & n=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

and let d_{1} be the multiplication with $N \in \mathbb{N}$, then

$$
H_{n}(C)= \begin{cases}\mathbb{Z} / N \mathbb{Z} & n=0 \\ 0 & \text { otherwise }\end{cases}
$$

2) Take $C_{n}=\mathbb{Z}$ for all $n \in \mathbb{Z}$ and

$$
d_{n}= \begin{cases}\mathrm{id}_{\mathbb{Z}} & n \text { odd } \\ 0 & n \text { even }\end{cases}
$$

What is the homology of this chain complex?
2^{\prime}) Consider $C_{n}=\mathbb{Z}$ for all $n \in \mathbb{Z}$ again, but let all boundary maps be trivial. What is the homology of this chain complex?

Definition 1.4. Let C_{*} and D_{*} be two chain complexes. A chain map $f: C_{*} \rightarrow D_{*}$ is a sequence of homomorphisms $f_{n}: C_{n} \rightarrow D_{n}$ such that $d_{n}^{D} \circ f_{n}=f_{n-1} \circ d_{n}^{C}$ for all n, i.e., the diagram

commutes for all n.
Such an f sends cycles to cycles and boundaries to boundaries. We therefore obtain an induced map

$$
H_{n}(f): H_{n}(C) \rightarrow H_{n}(D)
$$

via $H_{n}(f)_{*}[c]=\left[f_{n} c\right]$.
There is a chain map from the chain complex mentioned in Example 1) to the chain complex D_{*} that is concentrated in degree zero and has $D_{0}=\mathbb{Z} / N \mathbb{Z}$. Note, that $H_{0}(f)$ is an isomorphism on zeroth homology groups.

Are there chain maps between the complexes from Examples 2) and 2')?
Lemma 1.5. If $f: C_{*} \rightarrow D_{*}$ and $g: D_{*} \rightarrow E_{*}$ are two chain maps, then $H_{n}(g) \circ H_{n}(f)=H_{n}(g \circ f)$ for all n.

When do two chain maps induce the same map on homology?
Definition 1.6. A chain homotopy H between two chain maps $f, g: C_{*} \rightarrow D_{*}$ is a sequence of homomorphisms $\left(H_{n}\right)_{n \in \mathbb{Z}}$ with $H_{n}: C_{n} \rightarrow D_{n+1}$ such that for all n

If such an H exists, then f and g are (chain) homotopic: $f \simeq g$.
We will later see geometrically defined examples of chain homotopies.

Proposition 1.7.

(a) Being chain homotopic is an equivalence relation.
(b) If f and g are homotopic, then $H_{n}(f)=H_{n}(g)$ for all n.

Proof. (a) If H is a homotopy from f to g, then $-H$ is a homotopy from g to f. Each f is homotopic to itself with $H=0$. If f is homotopic to g via H and g is homotopic to h via K, then f is homotopic to h via $H+K$.
(b) We have for every cycle $c \in Z_{n}\left(C_{*}\right)$:

$$
H_{n}(f)[c]-H_{n}(g)[c]=\left[f_{n} c-g_{n} c\right]=\left[d_{n+1}^{D} \circ H_{n}(c)\right]+\left[H_{n-1} \circ d_{n}^{C}(c)\right]=0 .
$$

Definition 1.8. Let $f: C_{*} \rightarrow D_{*}$ be a chain map. We call f a chain homotopy equivalence, if there is a chain map $g: D_{*} \rightarrow C_{*}$ such that $g \circ f \simeq \operatorname{id}_{C_{*}}$ and $f \circ g \simeq \operatorname{id}_{D_{*}}$. The chain complexes C_{*} and D_{*} are then chain homotopically equivalent.

Note, that such chain complexes have isomorphic homology. However, chain complexes with isomorphic homology do not have to be chain homotopically equivalent. (Can you find a counterexample?)

Definition 1.9. If C_{*} and C_{*}^{\prime} are chain complexes, then their direct sum, $C_{*} \oplus C_{*}^{\prime}$, is the chain complex with

$$
\left(C_{*} \oplus C_{*}^{\prime}\right)_{n}=C_{n} \oplus C_{n}^{\prime}=C_{n} \times C_{n}^{\prime}
$$

with differential $d=d_{\oplus}$ given by

$$
d_{\oplus}\left(c, c^{\prime}\right)=\left(d c, d c^{\prime}\right)
$$

Similarly, if $\left(C_{*}^{(j)}, d^{(j)}\right)_{j \in J}$ is a family of chain complexes, then we can define their direct sum as follows:

$$
\left(\bigoplus_{j \in J} C_{*}^{(j)}\right)_{n}:=\bigoplus_{j \in J} C_{n}^{(j)}
$$

as abelian groups and the differential d_{\oplus} is defined via the property that its restriction to the j th summand is $d^{(j)}$.

2. Singular homology

Let v_{0}, \ldots, v_{n} be $n+1$ points in \mathbb{R}^{n+1}. Consider the convex hull

$$
K\left(v_{0}, \ldots, v_{n}\right):=\left\{\sum_{i=0}^{n} t_{i} v_{i} \mid \sum_{i=0}^{n} t_{i}=1, t_{i} \geqslant 0\right\}
$$

DEFINITION 2.1. If the vectors $v_{1}-v_{0}, \ldots, v_{n}-v_{0}$ are linearly independent, then $K\left(v_{0}, \ldots, v_{n}\right)$ is the simplex generated by v_{0}, \ldots, v_{n}. We denote such a simplex by $\operatorname{simp}\left(v_{0}, \ldots, v_{n}\right)$.

Example. The standard topological n-simplex is $\Delta^{n}:=\operatorname{simp}\left(e_{0}, \ldots, e_{n}\right)$. Here, e_{i} is the vector in \mathbb{R}^{n+1} that has a 1 in coordinate $i+1$ and is zero in all other coordinates. The first examples are: Δ^{0} is the point e_{0}, Δ^{1} is the line segment between e_{0} and e_{1}, Δ^{2} is a triangle in \mathbb{R}^{3} and Δ^{3} is homeomorphic to a tetrahedron.

The coordinate description of the n-simplex is

$$
\Delta^{n}=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid \sum t_{i}=1, t_{i} \geqslant 0\right\}
$$

We consider Δ^{n} as $\Delta^{n} \subset \mathbb{R}^{n+1} \subset \mathbb{R}^{n+2} \subset \ldots$.
The boundary of Δ^{1} consists of two copies of Δ^{0}, the boundary of Δ^{2} consists of three copies of Δ^{1}. In general, the boundary of Δ^{n} consists of $n+1$ copies of Δ^{n-1}.

We need the following face maps for $0 \leqslant i \leqslant n$

$$
d_{i}=d_{i}^{n-1}: \Delta^{n-1} \hookrightarrow \Delta^{n} ;\left(t_{0}, \ldots, t_{n-1}\right) \mapsto\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n-1}\right) .
$$

The image of d_{i}^{n-1} in Δ^{n} is the face that is opposite to e_{i}. It is the simplex generated by e_{0}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}.

Draw the examples of the faces in Δ^{1} and Δ^{2} !
Lemma 2.2. Concerning the composition of face maps, the following rule holds:

$$
d_{i}^{n-1} \circ d_{j}^{n-2}=d_{j}^{n-1} \circ d_{i-1}^{n-2}, \quad 0 \leqslant j<i \leqslant n
$$

Example: face maps for Δ^{0} and composition into $\Delta^{2}: d_{2} \circ d_{0}=d_{0} \circ d_{1}$.
Proof. Both expressions yield

$$
d_{i}^{n-1} \circ d_{j}^{n-2}\left(t_{0}, \ldots, t_{n-2}\right)=\left(t_{0}, \ldots, t_{j-1}, 0, \ldots, t_{i-2}, 0, \ldots, t_{n-2}\right)=d_{j}^{n-1} d_{i-1}^{n-2}\left(t_{0}, \ldots, t_{n-2}\right)
$$

Let X be an arbitrary topological space, $X \neq \varnothing$.
Definition 2.3. A singular n-simplex in X is a continuous map $\alpha: \Delta^{n} \rightarrow X$.
Note, that α just has to be continuous, not smooth or anything!
Definition 2.4. Let $S_{n}(X)$ be the free abelian group generated by all singular n-simplices in X. We call $S_{n}(X)$ the $n t h$ singular chain module of X.

Elements of $S_{n}(X)$ are finite sums $\sum_{i \in I} \lambda_{i} \alpha_{i}$ with $\lambda_{i}=0$ for almost all $i \in I$ and $\alpha_{i}: \Delta^{n} \rightarrow X$.
For all $n \geqslant 0$ there are non-trivial elements in $S_{n}(X)$, because we assumed that $X \neq \varnothing$: we can always take an $x_{0} \in X$ and the constant map $\kappa_{x_{0}}: \Delta^{n} \rightarrow X$ as α. By convention, we define $S_{n}(\varnothing)=0$ for all $n \geqslant 0$.

If we want to define maps from $S_{n}(X)$ to some abelian group then it suffices to define such a map on generators.
Example. What is $S_{0}(X)$? A continuous $\alpha: \Delta^{0} \rightarrow X$ is determined by its value $\alpha\left(e_{0}\right)=: x_{\alpha} \in X$, which is a point in X. A singular 0-simplex $\sum_{i \in I} \lambda_{i} \alpha_{i}$ can thus be identified with the formal sum of points $\sum_{i \in I} \lambda_{i} x_{\alpha_{i}}$. For instance if you count the zeroes and poles of a meromorphic function with multiplicities then this gives an element in $S_{0}(X)$. In algebraic geometry a divisor is an element in $S_{0}(X)$.

Definition 2.5. We define $\partial_{i}: S_{n}(X) \rightarrow S_{n-1}(X)$ on generators

$$
\partial_{i}(\alpha)=\alpha \circ d_{i}^{n-1}
$$

and call it the ith face of α.
On $S_{n}(X)$ we therefore get $\partial_{i}\left(\sum_{j} \lambda_{j} \alpha_{j}\right)=\sum_{j} \lambda_{j}\left(\alpha_{j} \circ d_{i}^{n-1}\right)$.
Lemma 2.6. The face maps on $S_{n}(X)$ satisfy

$$
\partial_{j} \circ \partial_{i}=\partial_{i-1} \circ \partial_{j}, \quad 0 \leqslant j<i \leqslant n
$$

Proof. The proof follows from the one of Lemma 2.2 .
Definition 2.7. We define the boundary operator on singular chains as $\partial: S_{n}(X) \rightarrow S_{n-1}(X), \partial=$ $\sum_{i=0}^{n}(-1)^{i} \partial_{i}$.

Lemma 2.8. The map ∂ is a boundary operator, i.e., $\partial \circ \partial=0$.
Proof. We calculate

$$
\begin{aligned}
& \partial \circ \partial=\left(\sum_{j=0}^{n-1}(-1)^{j} \partial_{j}\right) \circ\left(\sum_{i=0}^{n}(-1)^{i} \partial_{i}\right)=\sum \sum(-1)^{i+j} \partial_{j} \circ \partial_{i} \\
&=\sum_{0 \leqslant j<i \leqslant n}(-1)^{i+j} \partial_{j} \circ \partial_{i}+\sum_{0 \leqslant i \leqslant j \leqslant n-1}(-1)^{i+j} \partial_{j} \circ \partial_{i} \\
&=\sum_{0 \leqslant j<i \leqslant n}(-1)^{i+j} \partial_{i-1} \circ \partial_{j}+\sum_{0 \leqslant i \leqslant j \leqslant n-1}(-1)^{i+j} \partial_{j} \circ \partial_{i}=0 .
\end{aligned}
$$

We therefore obtain the singular chain complex, $S_{*}(X)$,

$$
\ldots \longrightarrow S_{n}(X) \xrightarrow{\partial} S_{n-1}(X) \xrightarrow{\partial} \ldots \xrightarrow{\partial} S_{1}(X) \xrightarrow{\partial} S_{0}(X) \longrightarrow 0 .
$$

We abbreviate $Z_{n}\left(S_{*}(X)\right)$ by $Z_{n}(X), B_{n}\left(S_{*}(X)\right)$ by $B_{n}(X)$ and $H_{n}\left(S_{*}(X)\right)$ by $H_{n}(X)$.
Definition 2.9. For a space $X, H_{n}(X)$ is the nth singular homology group of X.
Note that $Z_{0}(X)=S_{0}(X)$.
As an example of a 1-cycle consider a 1-chain $c=\alpha+\beta+\gamma$ where $\alpha, \beta, \gamma: \Delta^{1} \rightarrow X$ such that $\alpha\left(e_{1}\right)=$ $\beta\left(e_{0}\right), \beta\left(e_{1}\right)=\gamma\left(e_{0}\right)$ and $\gamma\left(e_{1}\right)=\alpha\left(e_{0}\right)$ and calculate that $\partial c=0$.

We need to understand how continuous maps of topological spaces interact with singular chains and singular homology.

Let $f: X \rightarrow Y$ be a continuous map.
Definition 2.10. The map $f_{n}=S_{n}(f): S_{n}(X) \rightarrow S_{n}(Y)$ is defined on generators $\alpha: \Delta^{n} \rightarrow X$ as

$$
f_{n}(\alpha)=f \circ \alpha: \Delta^{n} \xrightarrow{\alpha} X \xrightarrow{f} Y .
$$

Lemma 2.11. For any continuous $f: X \rightarrow Y$ we have

i.e., $\left(f_{n}\right)_{n}$ is a chain map and hence induces a map $H_{n}(f): H_{n}(X) \rightarrow H_{n}(Y)$.

Proof. By definition

$$
\partial^{Y}\left(f_{n}(\alpha)\right)=\sum_{i=0}^{n}(-1)^{i}(f \circ \alpha) \circ d_{i}=\sum_{i=0}^{n}(-1)^{i} f \circ\left(\alpha \circ d_{i}\right)=f_{n-1}\left(\partial^{X} \alpha\right)
$$

Of course, the identity map on X induces the identity map on $H_{n}(X)$ for all $n \geqslant 0$ and if we have a composition of continuous maps

$$
X \xrightarrow{f} Y \xrightarrow{g} Z,
$$

then $S_{n}(g \circ f)=S_{n}(g) \circ S_{n}(f)$ and $H_{n}(g \circ f)=H_{n}(g) \circ H_{n}(f)$. In categorical language, this says precisely that $S_{n}(-)$ and $H_{n}(-)$ are functors from the category of topological spaces and continuous maps into the category of abelian groups. Taking all $S_{n}(-)$ together turns $S_{*}(-)$ into a functor from topological spaces and continuous maps into the category of chain complexes with chain maps as morphisms.

One implication of Lemma 2.11 is that homeomorphic spaces have isomorphic homology groups:

$$
X \cong Y \Rightarrow H_{n}(X) \cong H_{n}(Y) \text { for all } n \geqslant 0
$$

Our first (not too exciting) calculation is the following:
Proposition 2.12. The homology groups of a one-point space pt are trivial but in degree zero,

$$
H_{n}(\mathrm{pt}) \cong \begin{cases}0, & \text { if } n>0 \\ \mathbb{Z}, & \text { if } n=0\end{cases}
$$

Proof. For every $n \geqslant 0$ there is precisely one continuous map $\alpha: \Delta^{n} \rightarrow \mathrm{pt}$, namely the constant map. We denote this map by κ_{n}. Then the boundary of κ_{n} is

$$
\partial \kappa_{n}=\sum_{i=0}^{n}(-1)^{i} \kappa_{n} \circ d_{i}=\sum_{i=0}^{n}(-1)^{i} \kappa_{n-1}= \begin{cases}\kappa_{n-1}, & n \text { even } \\ 0, & n \text { odd }\end{cases}
$$

For all n we have $S_{n}(\mathrm{pt}) \cong \mathbb{Z}$ generated by κ_{n} and therefore the singular chain complex looks as follows:

$$
\ldots \xrightarrow{\partial=0} \mathbb{Z} \xrightarrow{\partial=\mathrm{id}_{\mathbb{Z}}} \mathbb{Z} \xrightarrow{\partial=0} \mathbb{Z}
$$

3. H_{0} and H_{1}

Before we calculate anything, we define a map.
Proposition 3.1. For any topological space X there is a homomorphism $\varepsilon: H_{0}(X) \rightarrow \mathbb{Z}$ with $\varepsilon \neq 0$ for $X \neq \varnothing$.

Proof. If $X \neq \varnothing$, then we define $\varepsilon(\alpha)=1$ for any $\alpha: \Delta^{0} \rightarrow X$, thus $\varepsilon\left(\sum_{i \in I} \lambda_{i} \alpha_{i}\right)=\sum_{i \in I} \lambda_{i}$ on $S_{0}(X)$. As only finitely many λ_{i} are non-trivial, this is in fact a finite sum.

We have to show that this map is well-defined on homology, i.e., that it vanishes on boundaries. One possibility is to see that ε can be interpreted as the map on singular chains that is induced by the projection map of X to a one-point space.

One can also show the claim directly: Let $S_{0}(X) \ni c=\partial b$ be a boundary and write $b=\sum_{i \in I} \nu_{i} \beta_{i}$ with $\beta_{i}: \Delta^{1} \rightarrow X$. Then we get

$$
\partial b=\partial \sum_{i \in I} \nu_{i} \beta_{i}=\sum_{i \in I} \nu_{i}\left(\beta_{i} \circ d_{0}-\beta_{i} \circ d_{1}\right)=\sum_{i \in I} \nu_{i} \beta_{i} \circ d_{0}-\sum_{i \in I} \nu_{i} \beta_{i} \circ d_{1}
$$

and hence

$$
\varepsilon(c)=\varepsilon(\partial b)=\sum_{i \in I} \nu_{i}-\sum_{i \in I} \nu_{i}=0 .
$$

We said that $S_{0}(\varnothing)$ is zero, so $H_{0}(\varnothing)=0$ and in this case we define ε to be the zero map.
If $X \neq \varnothing$, then any $\alpha: \Delta^{0} \rightarrow X$ can be identified with its image point, so the map ε on $S_{0}(X)$ counts points in X with multiplicities.

Proposition 3.2. If X is a path-connected, non-empty space, then ε : $H_{0}(X) \cong \mathbb{Z}$.
Proof. As X is non-empty, there is a point $x \in X$ and the constant map κ_{x} with value x is an element in $S_{0}(X)$ with $\varepsilon\left(\kappa_{x}\right)=1$. Therefore ε is surjective. For any other point $y \in X$ there is a continuous path $\omega:[0,1] \rightarrow X$ with $\omega(0)=x$ and $\omega(1)=y$. We define $\alpha_{\omega}: \Delta^{1} \rightarrow X$ as

$$
\alpha_{\omega}\left(t_{0}, t_{1}\right)=\omega\left(1-t_{0}\right) .
$$

Then

$$
\partial\left(\alpha_{\omega}\right)=\partial_{0}\left(\alpha_{\omega}\right)-\partial_{1}\left(\alpha_{\omega}\right)=\alpha_{\omega}\left(e_{1}\right)-\alpha_{\omega}\left(e_{0}\right)=\alpha_{\omega}(0,1)-\alpha_{\omega}(1,0)=\kappa_{y}-\kappa_{x}
$$

and the two generators κ_{x}, κ_{y} are homologous. This shows that ε is injective.
From now on we will identify paths w and their associated 1 -simplices α_{w}.
Corollary 3.3. If X is of the form $X=\bigsqcup_{i \in I} X_{i}$ such that the X_{i} are non-empty and path-connected, then

$$
H_{0}(X) \cong \bigoplus_{i \in I} \mathbb{Z}
$$

In this case, the zeroth homology group of X is the free abelian group generated by the path-components.
Proof. The singular chain complex of X splits as the direct sum of chain complexes of the X_{i} :

$$
S_{n}(X) \cong \bigoplus_{i \in I} S_{n}\left(X_{i}\right)
$$

for all n. Boundary summands ∂_{i} stay in a component, in particular,

$$
\partial: S_{1}(X) \cong \bigoplus_{i \in I} S_{1}\left(X_{i}\right) \rightarrow \bigoplus_{i \in I} S_{0}\left(X_{i}\right) \cong S_{0}(X)
$$

is the direct sum of the boundary operators $\partial: S_{1}\left(X_{i}\right) \rightarrow S_{0}\left(X_{i}\right)$ and the claim follows.
Next, we want to relate H_{1} to the fundamental group. Let X be path-connected and $x \in X$.
Lemma 3.4. Let $\omega_{1}, \omega_{2}, \omega$ be paths in X.
(a) Constant paths are null-homologous.
(b) If $\omega_{1}(1)=\omega_{2}(0)$, then $\omega_{1} * \omega_{2}-\omega_{1}-\omega_{2}$ is a boundary. Here $\omega_{1} * \omega_{2}$ is the concatenation of ω_{1} followed by ω_{2}.
(c) If $\omega_{1}(0)=\omega_{2}(0), \omega_{1}(1)=\omega_{2}(1)$ and if ω_{1} is homotopic to ω_{2} relative to $\{0,1\}$, then ω_{1} and ω_{2} are homologous as singular 1-chains.
(d) Any 1-chain of the form $\bar{\omega} * \omega$ is a boundary. Here, $\bar{\omega}(t):=\omega(1-t)$.

Proof. For a), consider the constant singular 2 -simplex $\alpha\left(t_{0}, t_{1}, t_{2}\right)=x$ and c_{x}, the constant path on x. Then $\partial \alpha=c_{x}-c_{x}+c_{x}=c_{x}$.

For b), we define a singular 2-simplex $\beta: \Delta^{2} \rightarrow X$ as follows.

We define β on the boundary components of Δ^{2} as indicated and prolong it constantly along the sloped inner lines. Then

$$
\partial \beta=\beta \circ d_{0}-\beta \circ d_{1}+\beta \circ d_{2}=\omega_{2}-\omega_{1} * \omega_{2}+\omega_{1}
$$

For c): Let $H:[0,1] \times[0,1] \rightarrow X$ a homotopy from ω_{1} to ω_{2}. As we have that $H(0, t)=\omega_{1}(0)=\omega_{2}(0)$, we can factor H through the quotient $[0,1] \times[0,1] /\{0\} \times[0,1] \cong \Delta^{2}$ with induced map $h: \Delta^{2} \rightarrow X$. Then

$$
\partial h=h \circ d_{0}-h \circ d_{1}+h \circ d_{2} .
$$

The first summand is null-homologous, because it's constant (with value $\omega_{1}(1)=\omega_{2}(1)$), the second one is ω_{2} and the last is ω_{1}, thus $\omega_{1}-\omega_{2}$ is null-homologous.

For d): Consider $\gamma: \Delta^{2} \rightarrow X$ as indicated below.

Definition 3.5. Let $h: \pi_{1}(X, x) \rightarrow H_{1}(X)$ be the map, that sends the homotopy class of a closed path $\omega,[\omega]_{\pi_{1}}$, to its homology class $[\omega]=[\omega]_{H_{1}}$. This map is called the Hurewicz-homomorphism.

Witold Hurewicz: 1904-1956 https://en.wikipedia.org/wiki/Witold_Hurewicz (Mayan pyramids are dangerous, at least for mathematicians.)

Lemma 3.4 ensures that h is well-defined and

$$
h\left(\left[\omega_{1}\right]\left[\omega_{2}\right]\right)=h\left(\left[\omega_{1} * \omega_{2}\right]\right)=\left[\omega_{1}\right]+\left[\omega_{2}\right]=h\left(\left[\omega_{1}\right]\right)+h\left(\left[\omega_{2}\right]\right) ;
$$

thus h is a homomorphism.
Note that for a closed path ω we have that $[\bar{\omega}]=-[\omega]$ in $H_{1}(X)$.
Definition 3.6. Let G be an arbitrary group, then its abelianization, G_{ab}, is $G /[G, G]$.
Recall that $[G, G]$ is the commutator subgroup of G. That is the smallest subgroup of G containing all commutators $g h g^{-1} h^{-1}, g, h \in G$. It is a normal subgroup of G : If $c \in[G, G]$, then for any $g \in G$ the element $g c g^{-1} c^{-1}$ is a commutator and also by the closure property of subgroups the element $g c g^{-1} c^{-1} c=g c g^{-1}$ is in the commutator subgroup.

Proposition 3.7. The Hurewicz homomorphism factors through the abelianization of $\pi_{1}(X, x)$ and induces an isomorphism

$$
\pi_{1}(X, x)_{\mathrm{ab}} \cong H_{1}(X)
$$

for all path-connected X.

Proof. We will construct an inverse to h_{ab}. For any $y \in X$ we choose a path u_{y} from x to y. For $y=x$ we take u_{x} to be the constant path on x. Let α be an arbitrary singular 1 -simplex and $y_{i}=\alpha\left(e_{i}\right)$. Define $\phi: S_{1}(X) \rightarrow \pi_{1}(X, x)_{\mathrm{ab}}$ on generators as $\phi(\alpha)=\left[u_{y_{0}} * \alpha * \bar{u}_{y_{1}}\right]$ and extend ϕ linearly to all of $S_{1}(X)$, keeping in mind that the composition in π_{1} is written multiplicatively.

We have to show that ϕ is trivial on boundaries, so let $\beta: \Delta^{2} \rightarrow X$. Then

$$
\phi(\partial \beta)=\phi\left(\beta \circ d_{0}-\beta \circ d_{1}+\beta \circ d_{2}\right)=\phi\left(\beta \circ d_{0}\right) \phi\left(\beta \circ d_{1}\right)^{-1} \phi\left(\beta \circ d_{2}\right) .
$$

Abbreviating $\beta \circ d_{i}$ with α_{i} we get as a result

$$
\left[u_{y_{1}} * \alpha_{0} * \bar{u}_{y_{2}}\right]\left[u_{y_{0}} * \alpha_{1} * \bar{u}_{y_{2}}\right]^{-1}\left[u_{y_{0}} * \alpha_{2} * \bar{u}_{y_{1}}\right]=\left[u_{y_{0}} * \alpha_{2} * \bar{u}_{y_{1}} * u_{y_{1}} * \alpha_{0} * \bar{u}_{y_{2}} * u_{y_{2}} * \overline{\alpha_{1}} * \bar{u}_{y_{0}}\right] .
$$

Here, we've used that the image of ϕ is abelian. We can reduce $\bar{u}_{y_{1}} * u_{y_{1}}$ and $\bar{u}_{y_{2}} * u_{y_{2}}$ and are left with [$u_{y_{0}} * \alpha_{2} * \alpha_{0} * \overline{\alpha_{1}} * \bar{u}_{y_{0}}$] but $\alpha_{2} * \alpha_{0} * \overline{\alpha_{1}}$ is the closed path tracing the boundary of β and therefore it is null-homotopic in X. Thus $\phi(\partial \beta)=0$ and ϕ passes to a map

$$
\phi: H_{1}(X) \rightarrow \pi_{1}(X, x)_{\mathrm{ab}} .
$$

The composition $\phi \circ h_{\mathrm{ab}}$ evaluated on the class of a closed path ω gives

$$
\phi \circ h_{\mathrm{ab}}[\omega]_{\pi_{1}}=\phi[\omega]_{H_{1}}=\left[u_{x} * \omega * \bar{u}_{x}\right]_{\pi_{1}} .
$$

But we chose u_{x} to be constant, thus $\phi \circ h_{\mathrm{ab}}=\mathrm{id}$.
If $c=\sum \lambda_{i} \alpha_{i}$ is a cycle, then $h_{\mathrm{ab}} \circ \phi(c)$ is of the form $\left[c+D_{\partial c}\right]$ where the $D_{\partial c}$-part comes from the contributions of the $u_{y_{i}}$. The fact that $\partial(c)=0$ implies that the summands in $D_{\partial c}$ cancel off and thus $h_{\mathrm{ab}} \circ \phi=\operatorname{id}_{H_{1}(X)}$.

Note, that abelianization doesn't change anything for abelian groups, i.e., whenever we have an abelian fundamental group, we know that $H_{1}(X) \cong \pi_{1}(X, x)$.

Corollary 3.8. Knowledge of π_{1} gives

$$
\begin{gathered}
H_{1}\left(\mathbb{S}^{n}\right)=0, \text { for } n>1, \quad H_{1}\left(\mathbb{S}^{1}\right) \cong \mathbb{Z}, \\
H_{1}(\underbrace{\mathbb{S}^{1} \times \ldots \times \mathbb{S}^{1}}_{n}) \cong \mathbb{Z}^{n}, \\
H_{1}\left(\mathbb{S}^{1} \vee \mathbb{S}^{1}\right) \cong(\mathbb{Z} * \mathbb{Z})_{\mathrm{ab}} \cong \mathbb{Z} \oplus \mathbb{Z}, \\
H_{1}\left(\mathbb{R} P^{n}\right) \cong \begin{cases}\mathbb{Z}, & n=1, \\
\mathbb{Z} / 2 \mathbb{Z}, & n>1 .\end{cases}
\end{gathered}
$$

4. Homotopy invariance

We want to show that two continuous maps that are homotopic induce identical maps on the level of homology groups.

Heuristics: If $\alpha: \Delta^{n} \rightarrow X$ is a singular n-simplex and if f, g are homotopic maps from X to Y, then the homotopy from $f \circ \alpha$ to $g \circ \alpha$ starts on $\Delta^{n} \times[0,1]$. We want to translate this geometric homotopy into a chain homotopy on the singular chain complex. To that end we have to cut the prism $\Delta^{n} \times[0,1]$ into $(n+1)$-simplices. In low dimensions this is easy:
$\Delta^{0} \times[0,1]$ is homeomorphic to $\Delta^{1}, \Delta^{1} \times[0,1] \cong[0,1]^{2}$ and this can be cut into two copies of Δ^{2} and $\Delta^{2} \times[0,1]$ is a 3 -dimensional prism and that can be glued together from three tetrahedrons, e.g., like

As you might guess now, we use $n+1$ copies of Δ^{n+1} to build $\Delta^{n} \times[0,1]$.
Definition 4.1. For $i=0, \ldots, n$ define $p_{i}: \Delta^{n+1} \rightarrow \Delta^{n} \times[0,1]$ as

$$
p_{i}\left(t_{0}, \ldots, t_{n+1}\right)=\left(\left(t_{0}, \ldots, t_{i-1}, t_{i}+t_{i+1}, t_{i+2}, \ldots, t_{n+1}\right), t_{i+1}+\ldots+t_{n+1}\right) \in \Delta^{n} \times[0,1]
$$

On the standard basis vectors e_{k} we obtain

$$
p_{i}\left(e_{k}\right)= \begin{cases}\left(e_{k}, 0\right), & \text { for } 0 \leqslant k \leqslant i \\ \left(e_{k-1}, 1\right), & \text { for } k>i\end{cases}
$$

We obtain maps $P_{i}: S_{n}(X) \rightarrow S_{n+1}(X \times[0,1])$ via $P_{i}(\alpha)=(\alpha \times \mathrm{id}) \circ p_{i}$:

$$
\Delta^{n+1} \xrightarrow{p_{i}} \Delta^{n} \times[0,1] \xrightarrow{\alpha \times \mathrm{id}} X \times[0,1] .
$$

For $k=0,1$ let $j_{k}: X \rightarrow X \times[0,1]$ be the inclusion $x \mapsto(x, k)$.
Lemma 4.2. The maps P_{i} satisfy the following relations
(a) $\partial_{0} \circ P_{0}=S_{n}\left(j_{1}\right)$,
(b) $\partial_{n+1} \circ P_{n}=S_{n}\left(j_{0}\right)$,
(c) $\partial_{i} \circ P_{i}=\partial_{i} \circ P_{i-1}$ for $1 \leqslant i \leqslant n$.
(d)

$$
\partial_{j} \circ P_{i}= \begin{cases}P_{i} \circ \partial_{j-1}, & \text { for } i \leqslant j-2 \\ P_{i-1} \circ \partial_{j}, & \text { for } i \geqslant j+1\end{cases}
$$

Proof. Note that it suffices to check the corresponding claims for the p_{i} 's and d_{j} 's.
For the first two points, we note that on Δ^{n} we have

$$
p_{0} \circ d_{0}\left(t_{0}, \ldots, t_{n}\right)=p_{0}\left(0, t_{0}, \ldots, t_{n}\right)=\left(\left(t_{0}, \ldots, t_{n}\right), \sum t_{i}\right)=\left(\left(t_{0}, \ldots, t_{n}\right), 1\right)=j_{1}\left(t_{0}, \ldots, t_{n}\right)
$$

and

$$
p_{n} \circ d_{n+1}\left(t_{0}, \ldots, t_{n}\right)=p_{n}\left(t_{0}, \ldots, t_{n}, 0\right)=\left(\left(t_{0}, \ldots, t_{n}\right), 0\right)=j_{0}\left(t_{0}, \ldots, t_{n}\right)
$$

For c), one checks that $p_{i} \circ d_{i}=p_{i-1} \circ d_{i}$ on Δ^{n} : both give $\left(\left(t_{0}, \ldots, t_{n}\right), \sum_{j=i}^{n} t_{j}\right)$ on $\left(t_{0}, \ldots, t_{n}\right)$. For d) in the case $i \geqslant j+1$, consider the following diagram

Checking coordinates one sees that this diagram commutes. The remaining case follows from a similar observation.

Definition 4.3. We define $P: S_{n}(X) \rightarrow S_{n+1}(X \times[0,1])$ as $P=\sum_{i=0}^{n}(-1)^{i} P_{i}$.
Lemma 4.4. The map P is a chain homotopy between $\left(S_{n}\left(j_{0}\right)\right)_{n}$ and $\left(S_{n}\left(j_{1}\right)\right)_{n}$, i.e., $\partial \circ P+P \circ \partial=$ $S_{n}\left(j_{1}\right)-S_{n}\left(j_{0}\right)$.

Proof. We take an $\alpha: \Delta^{n} \rightarrow X$ and calculate

$$
\partial P \alpha+P \partial \alpha=\sum_{i=0}^{n} \sum_{j=0}^{n+1}(-1)^{i+j} \partial_{j} P_{i} \alpha+\sum_{i=0}^{n-1} \sum_{j=0}^{n}(-1)^{i+j} P_{i} \partial_{j} \alpha
$$

If we single out the terms involving the pairs of indices $(0,0)$ and $(n, n+1)$ in the first sum, we are left with

$$
S_{n}\left(j_{1}\right)(\alpha)-S_{n}\left(j_{0}\right)(\alpha)+\sum_{(i, j) \neq(0,0),(n, n+1)}(-1)^{i+j} \partial_{j} P_{i} \alpha+\sum_{i=0}^{n-1} \sum_{j=0}^{n}(-1)^{i+j} P_{i} \partial_{j} \alpha
$$

Using Lemma 4.2 we see that only the first two summands survive.
So, finally we can prove the main result of this section:
Theorem 4.5. (Homotopy invariance)
If $f, g: X \rightarrow Y$ are homotopic maps, then they induce the same map on homology.
Proof. Let $H: X \times[0,1] \rightarrow Y$ be a homotopy from f to g, i.e., $H \circ j_{0}=f$ and $H \circ j_{1}=g$. Set $K_{n}:=S_{n+1}(H) \circ P$. We claim that $\left(K_{n}\right)_{n}$ is a chain homotopy between $\left(S_{n}(f)\right)_{n}$ and $\left(S_{n}(g)\right)_{n}$. Note that H induces a chain map $\left(S_{n}(H)\right)_{n}$. Therefore we get

$$
\begin{aligned}
\partial \circ S_{n+1}(H) \circ P+S_{n}(H) \circ P \circ \partial & =S_{n}(H) \circ \partial \circ P+S_{n}(H) \circ P \circ \partial \\
& =S_{n}(H) \circ(\partial \circ P+P \circ \partial) \\
& =S_{n}(H) \circ\left(S_{n}\left(j_{1}\right)-S_{n}\left(j_{0}\right)\right)=S_{n}\left(H \circ j_{1}\right)-S_{n}\left(H \circ j_{0}\right) \\
& =S_{n}(g)-S_{n}(f) .
\end{aligned}
$$

Hence these two maps are chain homotopic and $H_{n}(g)=H_{n}(f)$ for all n.
Corollary 4.6. If two spaces X, Y are homotopy equivalent, then $H_{*}(X) \cong H_{*}(Y)$. In particular, if X is contractible, then

$$
H_{*}(X) \cong \begin{cases}\mathbb{Z}, & \text { for } *=0 \\ 0, & \text { otherwise }\end{cases}
$$

Examples. As \mathbb{R}^{n} is contractible for all n, the above corollary gives that its homology is trivial but in degree zero where it consists of the integers.

As the Möbius strip is homotopy equivalent to \mathbb{S}^{1}, we know that their homology groups are isomorphic.
If you know about vector bundles: the zero section of a vector bundle induces a homotopy equivalence between the base and the total space, hence these two have isomorphic homology groups.

5. The long exact sequence in homology

A typical situation is that there is a subspace A of a topological space X and you might know something about A or X and want to calculate the homology of the other space using that partial information.

But before we can move on to topological applications we need some techniques about chain complexes. We need to know that a short exact sequence of chain complexes gives rise to a long exact sequence in homology.

Definition 5.1. Let A, B, C be abelian groups and

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

a sequence of homomorphisms. Then this sequence is exact, if the image of f is the kernel of g.
Definition 5.2. If

$$
\ldots \xrightarrow{f_{i+1}} A_{i} \xrightarrow{f_{i}} A_{i-1} \xrightarrow{f_{i-1}} \ldots
$$

is a sequence of homomorphisms of abelian groups (indexed over the integers), then this sequence is called (long) exact, if it is exact at every A_{i}, i.e., the image of f_{i+1} is the kernel of f_{i} for all i.

An exact sequence of the form

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is called a short exact sequence.

Examples. The sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{2 \cdot} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 0
$$

is a short exact sequence.
If $\iota: U \rightarrow A$ is a monomorphism, then $0 \longrightarrow U \longrightarrow \longrightarrow A$ is exact. Similarly, an epimorphism $\varrho: B \rightarrow Q$ gives rise to an exact sequence $B \xrightarrow{\varrho} Q \longrightarrow 0$ and an isomorphism $\phi: A \cong A^{\prime}$ sits in an exact sequence $0 \longrightarrow A \xrightarrow{\phi} A^{\prime} \longrightarrow 0$.

A sequence

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is exact iff f is injective, the image of f is the kernel of g and g is an epimorphism. Another equivalent description is to view a sequence as above as a chain complex with vanishing homology groups. Homology measures the deviation from exactness.

DEFINITION 5.3. If A_{*}, B_{*}, C_{*} are chain complexes and $f_{*}: A_{*} \rightarrow B_{*}, g: B_{*} \rightarrow C_{*}$ are chain maps, then we call the sequence

$$
A_{*} \xrightarrow{f_{*}} B_{*} \xrightarrow{g_{*}} C_{*}
$$

exact, if the image of f_{n} is the kernel of g_{n} for all $n \in \mathbb{Z}$.

Thus such an exact sequence of chain complexes is a commuting double ladder

in which every row is exact.

Example. Let p be a prime, then

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here, π denotes varying canonical projection maps.

Proposition 5.4. If $0 \longrightarrow A_{*} \xrightarrow{f} B_{*} \xrightarrow{g} C_{*} \longrightarrow 0$ is a short exact sequence of chain complexes, then there exists a homomorphism $\delta: H_{n}\left(C_{*}\right) \rightarrow H_{n-1}\left(A_{*}\right)$ for all $n \in \mathbb{Z}$ which is natural, i.e., if

is a commutative diagram of chain maps in which the rows are exact then $H_{n-1}(\alpha) \circ \delta=\delta \circ H_{n}(\gamma)$,

The method of proof is an instance of a diagram chase. The homomorphism δ is called connecting homomorphism. The implicit claim in the proposition above is that δ is not always the zero map.

Proof. We show the existence of a δ first and then prove that the constructed map satisfies the naturality condition.
a) Definition of δ :

Is $c \in C_{n}$ with $d(c)=0$, then we choose a $b \in B_{n}$ with $g_{n} b=c$. This is possible because g_{n} is surjective. We know that $d g_{n} b=d c=0=g_{n-1} d b$ thus $d b$ is in the kernel of g_{n-1}, hence it is in the image of f_{n-1}. Thus there is an $a \in A_{n-1}$ with $f_{n-1} a=d b$. We have that $f_{n-2} d a=d f_{n-1} a=d d b=0$ and as f_{n-2} is injective, this shows that a is a cycle.

We define $\delta[c]:=[a]$.

$$
\begin{gathered}
B_{n} \ni b \stackrel{g_{n}}{\longmapsto} c \in C_{n} \\
A_{n-1} \ni a \stackrel{f_{n-1}}{\longmapsto} d b \in B_{n-1}
\end{gathered}
$$

In order to check that δ is well-defined, we assume that there are b and b^{\prime} with $g_{n} b=g_{n} b^{\prime}=c$. Then $g_{n}\left(b-b^{\prime}\right)=0$ and thus there is an $\tilde{a} \in A_{n}$ with $f_{n} \tilde{a}=b-b^{\prime}$. Define a^{\prime} as $a-d \tilde{a}$. Then

$$
f_{n-1} a^{\prime}=f_{n-1} a-f_{n-1} d \tilde{a}=d b-d b+d b^{\prime}=d b^{\prime}
$$

because $f_{n-1} d \tilde{a}=d b-d b^{\prime}$. As f_{n-1} is injective, we get that a^{\prime} is uniquely determined with this property. As a is homologous to a^{\prime} we get that $[a]=\left[a^{\prime}\right]=\delta[c]$, thus the latter is independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary term to c, i.e., take $c^{\prime}=c+d \tilde{c}$ for some $\tilde{c} \in C_{n+1}$. Choose preimages of c, \tilde{c} under g_{n} and g_{n+1}, i.e., b and \tilde{b} with $g_{n} b=c$ and $g_{n+1} \tilde{b}=\tilde{c}$. Then the element $b^{\prime}=b+d \tilde{b}$ has boundary $d b^{\prime}=d b$ and thus both choices will result in the same a.

Therefore $\delta: H_{n}\left(C_{*}\right) \rightarrow H_{n-1}\left(A_{*}\right)$ is well-defined.
b) We have to show that δ is natural with respect to maps of short exact sequences.

Let $c \in Z_{n}\left(C_{*}\right)$, then $\delta[c]=[a]$ for a $b \in B_{n}$ with $g_{n} b=c$ and an $a \in A_{n-1}$ with $f_{n-1} a=d b$. Therefore, $H_{n-1}(\alpha)(\delta[c])=\left[\alpha_{n-1}(a)\right]$.

On the other hand, we have

$$
f_{n-1}^{\prime}\left(\alpha_{n-1} a\right)=\beta_{n-1}\left(f_{n-1} a\right)=\beta_{n-1}(d b)=d \beta_{n} b
$$

and

$$
g_{n}^{\prime}\left(\beta_{n} b\right)=\gamma_{n} g_{n} b=\gamma_{n} c
$$

and we can conclude that by the construction of δ

$$
\delta\left[\gamma_{n}(c)\right]=\left[\alpha_{n-1}(a)\right]
$$

and this shows $\delta \circ H_{n}(\gamma)=H_{n-1}(\alpha) \circ \delta$.
With this auxiliary result at hand we can now prove the main result in this section:
Proposition 5.5. For any short exact sequence

$$
0 \longrightarrow A_{*} \xrightarrow{f} B_{*} \xrightarrow{g} C_{*} \longrightarrow 0
$$

of chain complexes we obtain a long exact sequence of homology groups

$$
\ldots \xrightarrow{\delta} H_{n}\left(A_{*}\right) \xrightarrow{H_{n}(f)} H_{n}\left(B_{*}\right) \xrightarrow{H_{n}(g)} H_{n}\left(C_{*}\right) \xrightarrow{\delta} H_{n-1}\left(A_{*}\right) \xrightarrow{H_{n-1}(f)} \ldots
$$

Proof. a) Exactness at the spot $H_{n}\left(B_{*}\right)$:
We have $H_{n}(g) \circ H_{n}(f)[a]=\left[g_{n}\left(f_{n}(a)\right)\right]=0$ because the composition of g_{n} and f_{n} is zero. This proves that the image of $H_{n}(f)$ is contained in the kernel of $H_{n}(g)$.

For the converse, let $[b] \in H_{n}\left(B_{*}\right)$ with $\left[g_{n} b\right]=0$. Then there is a $c \in C_{n+1}$ with $d c=g_{n} b$. As g_{n+1} is surjective, we find a $b^{\prime} \in B_{n+1}$ with $g_{n+1} b^{\prime}=c$. Hence

$$
g_{n}\left(b-d b^{\prime}\right)=g_{n} b-d g_{n+1} b^{\prime}=d c-d c=0
$$

Exactness gives an $a \in A_{n}$ with $f_{n} a=b-d b^{\prime}$ and $d a=0$ and therefore $f_{n} a$ is homologous to b and $H_{n}(f)[a]=[b]$ thus the kernel of $H_{n}(g)$ is contained in the image of $H_{n}(f)$.
b) Exactness at the spot $H_{n}\left(C_{*}\right)$:

Let $b \in H_{n}\left(B_{*}\right)$, then $\delta\left[g_{n} b\right]=0$ because b is a cycle, so 0 is the only preimage under f_{n-1} of $d b=0$. Therefore the image of $H_{n}(g)$ is contained in the kernel of δ.

Now assume that $\delta[c]=0$, thus in the construction of δ, the a is a boundary, $a=d a^{\prime}$. Then for a preimage of c under g_{n}, b, we have by the definition of a

$$
d\left(b-f_{n} a^{\prime}\right)=d b-d f_{n} a^{\prime}=d b-f_{n-1} a=0 .
$$

Thus $b-f_{n} a^{\prime}$ is a cycle and $g_{n}\left(b-f_{n} a^{\prime}\right)=g_{n} b-g_{n} f_{n} a^{\prime}=g_{n} b-0=g_{n} b=c$, so we found a preimage for [c] and the kernel of δ is contained in the image of $H_{n}(g)$.
c) Exactness at $H_{n-1}\left(A_{*}\right)$:

Let c be a cycle in $Z_{n}\left(C_{*}\right)$. Again, we choose a preimage b of c under g_{n} and an a with $f_{n-1}(a)=d b$. Then $H_{n-1}(f) \delta[c]=\left[f_{n-1}(a)\right]=[d b]=0$. Thus the image of δ is contained in the kernel of $H_{n-1}(f)$.

If $a \in Z_{n-1}\left(A_{*}\right)$ with $H_{n-1}(f)[a]=0$. Then $f_{n-1} a=d b$ for some $b \in B_{n}$. Take $c=g_{n} b$. Then by definition $\delta[c]=[a]$.

6. The long exact sequence of a pair of spaces

Let X be a topological space and $A \subset X$ a subspace of X. Consider the inclusion map $i: A \rightarrow X$, $i(a)=a$. We obtain an induced map $S_{n}(i): S_{n}(A) \rightarrow S_{n}(X)$, but we know that the inclusion of spaces doesn't have to yield a monomorphism on homology groups. For instance, we can include $A=\mathbb{S}^{1}$ into $X=\mathbb{D}^{2}$.

We consider pairs of spaces (X, A).
Definition 6.1. The relative chain complex of (X, A) is

$$
S_{*}(X, A):=S_{*}(X) / S_{*}(A) .
$$

Alternatively, $S_{n}(X, A)$ is isomorphic to the free abelian group generated by all n-simplices $\beta: \Delta^{n} \rightarrow X$ whose image is not completely contained in A, i.e., $\beta\left(\Delta^{n}\right) \cap(X \backslash A) \neq \varnothing$.

Definition 6.2.

- Elements in $S_{n}(X, A)$ are called relative chains in (X, A)
- Cycles in $S_{n}(X, A)$ are chains c with $\partial^{X}(c)$ whose generators have image in A. These are relative cycles.
- Boundaries in $S_{n}(X, A)$ are chains c in X such that $c=\partial^{X} b+a$ where a is a chain in A.

A continuous map $f: X \rightarrow Y$ with $f(A) \subset B$ is denoted by $f:(X, A) \rightarrow(Y, B)$. Such maps induce chain maps $S_{*}(f): S_{*}(X, A) \rightarrow S_{*}(Y, B)$.

The following facts are immediate from the definition:
(a) $S_{n}(X, \varnothing) \cong S_{n}(X)$.
(b) $S_{n}(X, X)=0$.
(c) $S_{n}\left(X \sqcup X^{\prime}, X^{\prime}\right) \cong S_{n}(X)$.

DEFINITION 6.3. The relative homology groups of (X, A) are

$$
H_{n}(X, A):=H_{n}\left(S_{*}(X, A)\right)
$$

Theorem 6.4. For any pair of topological spaces $A \subset X$ we obtain a long exact sequence

$$
\ldots \xrightarrow{\delta} H_{n}(A) \xrightarrow{H_{n}(i)} H_{n}(X) \longrightarrow H_{n}(X, A) \xrightarrow{\delta} H_{n-1}(A) \xrightarrow{H_{n-1}(i)} \ldots
$$

For a map $f:(X, A) \rightarrow(Y, B)$ we get an induced map of long exact sequences

$$
\begin{aligned}
& \ldots \xrightarrow{\delta} H_{n}(A) \xrightarrow{H_{n}(i)} H_{n}(X) \longrightarrow H_{n}(X, A) \xrightarrow{\delta} H_{n-1}(A) \xrightarrow{H_{n-1}(i)} \ldots \\
& \downarrow H_{n}\left(\left.f\right|_{A}\right) \downarrow H_{n}(f) \downarrow H_{n}(f) \quad \downarrow H_{n-1}\left(\left.f\right|_{A}\right) \\
& \ldots \longrightarrow H_{n}(B) \underset{H_{n}(i)}{\longrightarrow} H_{n}(Y) \longrightarrow H_{n}(Y, B) \xrightarrow[\delta]{\longrightarrow} H_{n-1}(B) \underset{H_{n-1}(i)}{ } .
\end{aligned}
$$

Proof. By definition of $S_{*}(X, A)$ the sequence

$$
0 \longrightarrow S_{*}(A) \xrightarrow{S_{*}(i)} S_{*}(X) \xrightarrow{\pi} S_{*}(X, A) \longrightarrow 0
$$

is an exact sequence of chain complexes and by Proposition 5.5 we obtain the first claim. For a map f as above the following diagram

commutes.
Example. Let $A=\mathbb{S}^{n-1}$ and $X=\mathbb{D}^{n}$, then we know that $H_{j}(i)$ is trivial for $j>0$. From the long exact sequence we get that $\delta: H_{j}\left(\mathbb{D}^{n}, \mathbb{S}^{n-1}\right) \cong H_{j-1}\left(\mathbb{S}^{n-1}\right)$ for $j>1$ and $n \geqslant 1$.

Proposition 6.5. If $i: A \hookrightarrow X$ is a weak retract, i.e., if there is an $r: X \rightarrow A$ with $r \circ i \simeq \operatorname{id}_{A}$, then

$$
H_{n}(X) \cong H_{n}(A) \oplus H_{n}(X, A), \quad 0 \leqslant n
$$

Proof. From the assumption we get that $H_{n}(r) \circ H_{n}(i)=H_{n}\left(\mathrm{id}_{A}\right)=\mathrm{id}_{H_{n}(A)}$ for all n and hence $H_{n}(i)$ is injective for all n. This implies that $0 \longrightarrow H_{n}(A) \xrightarrow{H_{n}(i)} H_{n}(X)$ is exact. Injectivity of $H_{n-1}(i)$ yields that the image of $\delta: H_{n}(X, A) \rightarrow H_{n-1}(A)$ is trivial. Therefore we get short exact sequences

$$
0 \longrightarrow H_{n}(A) \xrightarrow{H_{n}(i)} H_{n}(X) \xrightarrow{\pi_{*}} H_{n}(X, A) \longrightarrow 0
$$

for all n. As $H_{n}(r)$ is a left-inverse for $H_{n}(i)$ we obtain a splitting

$$
H_{n}(X) \cong H_{n}(A) \oplus H_{n}(X, A)
$$

because we map $[c] \in H_{n}(X)$ to ($[r c], \pi_{*}[c]$) with inverse

$$
H_{n}(A) \oplus H_{n}(X, A) \ni([a],[b]) \mapsto H_{n}(i)[a]+\left[a^{\prime}\right]-H_{n}(i \circ r)\left[a^{\prime}\right] \in H_{n}(X)
$$

for any $\left[a^{\prime}\right] \in H_{n}(X)$ with $\pi_{*}\left[a^{\prime}\right]=[b]$. The second map is well-defined: if [$a^{\prime \prime}$] is another element with $\pi_{*}\left[a^{\prime \prime}\right]=[b]$, then $\left[a^{\prime}-a^{\prime \prime}\right]$ is of the form $H_{n}(i)[\tilde{a}]$ because this element is in the kernel of π_{*} and hence $\left[a^{\prime}-a^{\prime \prime}\right]-H_{n}($ ir $)\left[a^{\prime}-a^{\prime \prime}\right]$ is trivial.

Proposition 6.6. For any $\varnothing \neq A \subset X$ such that $A \subset X$ is a deformation retract we get

$$
H_{n}(i): H_{n}(A) \cong H_{n}(X), \quad H_{n}(X, A) \cong 0, \quad 0 \leqslant n
$$

Proof. Recall, that $i: A \hookrightarrow X$ is a deformation retract, if there is a homotopy $R: X \times[0,1] \rightarrow X$ such that
(a) $R(x, 0)=x$ for all $x \in X$,
(b) $R(x, 1) \in A$ for all $x \in X$, and
(c) $R(a, 1)=a$ for all $a \in A$.

In particular, R is a homotopy from id_{X} to $i \circ r$ where $r=R(-, 1): X \rightarrow A$. Condition (c) can be rewritten as $r \circ i=\mathrm{id}_{A}$, i.e., r is a retraction, and thus A and X are homotopically equivalent and $H_{n}(i)$ is an isomorphism for all $n \geqslant 0$.

Definition 6.7. If X has two subspaces $A, B \subset X$, then (X, A, B) is called a triple, if $B \subset A \subset X$.
Any triple gives rise to three pairs of spaces $(X, A),(X, B)$ and (A, B) and accordingly we have three long exact sequences in homology. But there is another one.

Proposition 6.8. For any triple (X, A, B) there is a natural long exact sequence

$$
\ldots \longrightarrow H_{n}(A, B) \longrightarrow H_{n}(X, B) \longrightarrow H_{n}(X, A) \xrightarrow{\delta} H_{n-1}(A, B) \longrightarrow \ldots
$$

This sequence is part of the following braided commutative diagram displaying four long exact sequences

In particular, the connecting homomorphism $\delta: H_{n}(X, A) \rightarrow H_{n-1}(A, B)$ is the composite $\delta=\pi_{*}^{(A, B)} \circ$ $\delta^{(X, A)}$.

Proof. Consider the sequence

$$
0 \longrightarrow S_{n}(A) / S_{n}(B) \longrightarrow S_{n}(X) / S_{n}(B) \longrightarrow S_{n}(X) / S_{n}(A) \longrightarrow 0 .
$$

This sequence is exact, because $S_{n}(B) \subset S_{n}(A) \subset S_{n}(X)$.

7. Excision

The aim is to simplify relative homology groups. Let $A \subset X$ be a subspace. Then it is easy to see that $H_{*}(X, A)$ is not isomorphic to $H_{*}(X \backslash A)$: Consider the figure eight as X and A as the point connecting the two copies of \mathbb{S}^{1}, then $H_{0}(X, A)$ is trivial, but $H_{0}(X \backslash A) \cong \mathbb{Z} \oplus \mathbb{Z}$.

So if we want to simplify $H_{*}(X, A)$ by excising something, then we have to be more careful. The first step towards that is to make singular simplices 'smaller'. The technique is called barycentric subdivision and that is a tool that's frequently used.

First, we construct cones. Let $v \in \Delta^{p}$ and let $\alpha: \Delta^{n} \rightarrow \Delta^{p}$ be a singular n-simplex in Δ^{p}.
Definition 7.1. The cone of α with respect to v is $K_{v}(\alpha): \Delta^{n+1} \rightarrow \Delta^{p}$,

$$
\left(t_{0}, \ldots, t_{n+1}\right) \mapsto \begin{cases}\left(1-t_{n+1}\right) \alpha\left(\frac{t_{0}}{1-t_{n+1}}, \ldots, \frac{t_{n}}{1-t_{n+1}}\right)+t_{n+1} v, & t_{n+1}<1 \\ v, & t_{n+1}=1 .\end{cases}
$$

This map is well-defined and continuous. On the standard basis vectors K_{v} gives $K_{v}\left(e_{i}\right)=\alpha\left(e_{i}\right)$ for $0 \leqslant i \leqslant n$ but $K_{v}\left(e_{n+1}\right)=v$. Extending K_{v} linearly gives a map

$$
K_{v}: S_{n}\left(\Delta^{p}\right) \rightarrow S_{n+1}\left(\Delta^{p}\right) .
$$

Lemma 7.2. The map K_{v} satisfies

- $\partial K_{v}(c)=\varepsilon(c) . \kappa_{v}-c$ for $c \in S_{0}\left(\Delta^{p}\right), \kappa_{v}\left(e_{0}\right)=v$ and ε the augmentation.
- For $n>0$ we have that $\partial \circ K_{v}-K_{v} \circ \partial=(-1)^{n+1} \mathrm{id}$.

Proof. For a singular 0 -simplex $\alpha: \Delta^{0} \rightarrow \Delta^{p}$ we know that $\varepsilon(\alpha)=1$ and we calculate

$$
\partial K_{v}(\alpha)\left(e_{0}\right)=\left(K_{v}(\alpha) \circ d_{0}\right)\left(e_{0}\right)-\left(K_{v}(\alpha) \circ d_{1}\right)\left(e_{0}\right)=K_{v}(\alpha)\left(e_{1}\right)-K_{v}(\alpha)\left(e_{0}\right)=v-\alpha\left(e_{0}\right) .
$$

For $n>0$ we have to calculate $\partial_{i} K_{v}(\alpha)$ and it is straightforward to see that $\partial_{n+1} K_{v}(\alpha)=\alpha$ and $\partial_{i}\left(K_{v}(\alpha)\right)=K_{v}\left(\partial_{i} \alpha\right)$ for all $i<n+1$.

Definition 7.3. For $\alpha: \Delta^{n} \rightarrow \Delta^{p}$ let $v(\alpha)=v:=\frac{1}{n+1} \sum_{i=0}^{n} \alpha\left(e_{i}\right)$. The barycentric subdivision $B: S_{n}\left(\Delta_{p}\right) \rightarrow S_{n}\left(\Delta_{p}\right)$ is defined inductively as $B(\alpha)=\alpha$ for $\alpha \in S_{0}\left(\Delta_{p}\right)$ and $B(\alpha)=(-1)^{n} K_{v}(B(\partial \alpha))$ for $n>0$.

For $n \geqslant 1$ this yields $B(\alpha)=\sum_{i=0}^{n}(-1)^{n+i} K_{v}\left(B\left(\partial_{i} \alpha\right)\right)$.
If we take $n=p$ and $\alpha=\operatorname{id}_{\Delta^{n}}$, then for small n this looks as follows: You cannot subdivide a point any further. For $n=1$ we get

And for $n=2$ we get (up to tilting)

Lemma 7.4. The barycentric subdivision is a chain map.
Proof. We have to show that $\partial B=B \partial$. If α is a singular zero chain, then $\partial B \alpha=\partial \alpha=0$ and $B \partial \alpha=B(0)=0$.

Let $n=1$. Then

$$
\partial B \alpha=-\partial K_{v} B\left(\partial_{0} \alpha\right)+\partial K_{v} B\left(\partial_{1} \alpha\right)
$$

But the boundary terms are zero chains and there B is the identity so we get

$$
-\partial K_{v}\left(\partial_{0} \alpha\right)+\partial K_{v}\left(\partial_{1} \alpha\right)=-\kappa_{v}+\partial_{0} \alpha+\kappa_{v}-\partial_{1} \alpha=\partial \alpha=B \partial \alpha
$$

(Note, that the v is $v(\alpha)$, not a $v\left(\partial_{i} \alpha\right)$.)
We prove the claim inductively, so let $\alpha \in S_{n}\left(\Delta^{p}\right)$. Then

$$
\begin{aligned}
\partial B \alpha & =(-1)^{n} \partial K_{v}(B \partial \alpha) \\
& =(-1)^{n}\left((-1)^{n} B \partial \alpha+K_{v} \partial B \partial \alpha\right) \\
& =B \partial \alpha+(-1)^{n} K_{v} B \partial \partial \alpha=B \partial \alpha
\end{aligned}
$$

Here, the first equality is by definition, the second one follows by Lemma 7.2 and then we use the induction hypothesis and the fact that $\partial \partial=0$.

Our aim is to show that B doesn't change anything on the level of homology groups and to that end we prove that it is chain homotopic to the identity.

We construct $\psi_{n}: S_{n}\left(\Delta^{p}\right) \rightarrow S_{n+1}\left(\Delta^{p}\right)$ again inductively as

$$
\psi_{0}(\alpha):=0, \quad \psi_{n}(\alpha):=(-1)^{n+1} K_{v}\left(B \alpha-\alpha-\psi_{n-1} \partial \alpha\right)
$$

with $v=\frac{1}{n+1} \sum_{i=0}^{n} \alpha\left(e_{i}\right)$.
Lemma 7.5. The sequence $\left(\psi_{n}\right)_{n}$ is a chain homotopy from B to the identity.
Proof. For $n=0$ we have $\partial \psi_{0}=0$ and this agrees with $B-\mathrm{id}$ in that degree.
For $n=1$, we get

$$
\partial \psi_{1}+\psi_{0} \partial=\partial \psi_{1}=\partial\left(K_{v} B-K_{v}-K_{v} \psi_{0} \partial\right)=\partial K_{v} B-\partial K_{v}
$$

With Lemma 7.2 we can transform the latter to $B+K_{v} \partial B-\partial K_{v}$ and as B is a chain map, this is $B+$ $K_{v} B \partial-\partial K_{v}$. In chain degree one $B \partial$ agrees with ∂, thus this reduces to

$$
B+K_{v} \partial-\partial K_{v}=B-\left(\partial K_{v}-K_{v} \partial\right)=B-\mathrm{id}
$$

So, finally we can do the inductive step:

$$
\begin{aligned}
\partial \psi_{n}= & (-1)^{n+1} \partial K_{v}\left(B-\mathrm{id}-\psi_{n-1} \partial\right) \\
= & (-1)^{n+1} \partial K_{v} B-(-1)^{n+1} \partial K_{v}-(-1)^{n+1} \partial K_{v} \psi_{n-1} \partial \\
= & (-1)^{n+1}\left((-1)^{n+1} B+K_{v} \partial B\right) \\
& \quad-(-1)^{n+1}\left((-1)^{n+1} \mathrm{id}+K_{v} \partial\right) \\
& \quad-(-1)^{n+1}\left((-1)^{n+1} \psi_{n-1} \partial+K_{v} \partial \psi_{n-1} \partial\right) \\
= & B-\mathrm{id}-\psi_{n-1} \partial+\text { remaining terms }
\end{aligned}
$$

The equation

$$
K_{v} \partial \psi_{n-1} \partial+K_{v} \psi_{n-2} \partial^{2}=K_{v} B \partial-K_{v} \partial
$$

from the inductive assumption ensures that these remaining terms give zero.

Definition 7.6. A singular n-simplex $\alpha: \Delta^{n} \rightarrow \Delta^{p}$ is called affine, if

$$
\alpha\left(\sum_{i=0}^{n} t_{i} e_{i}\right)=\sum_{i=0}^{n} t_{i} \alpha\left(e_{i}\right) .
$$

We abbreviate $\alpha\left(e_{i}\right)$ with v_{i}, so $\alpha\left(\sum_{i=0}^{n} t_{i} e_{i}\right)=\sum_{i=0}^{n} t_{i} v_{i}$ and we call the v_{i} 's the vertices of α.
Definition 7.7. Let A be a subset of a metric space (X, d). The diameter of A is

$$
\sup \{d(x, y) \mid x, y \in A\}
$$

and we denote it by $\operatorname{diam}(A)$.
Accordingly, the diameter of an affine n-simplex α in Δ^{p} is the diameter of its image, and we abbreviate that with $\operatorname{diam}(\alpha)$.

Lemma 7.8. For any affine α every simplex in the chain $B \alpha$ has diameter $\leqslant \frac{n}{n+1} \operatorname{diam}(\alpha)$.
Either you believe this lemma, or you prove it, or you check Bredon, Proof of Lemma 13.7 (p. 226).
Each simplex in $B \alpha$ is again affine; this allows us to iterate the application of B and get smaller and smaller diameter. Thus, the k-fold iteration, $B^{k}(\alpha)$, has diameter at most $\left(\frac{n}{n+1}\right)^{k} \operatorname{diam}(\alpha)$.

In the following we use the easy but powerful trick to express α as

$$
\alpha=\alpha \circ \mathrm{id}_{\Delta^{n}}=S_{n}(\alpha)\left(\mathrm{id}_{\Delta^{n}}\right) .
$$

This allows us to use the barycentric subdivision for general spaces.
Definition 7.9.
(a) We define $B_{n}^{X}: S_{n}(X) \rightarrow S_{n}(X)$ as

$$
B_{n}^{X}(\alpha):=S_{n}(\alpha) \circ B\left(\mathrm{id}_{\Delta^{n}}\right)
$$

(b) Similarly, $\psi_{n}^{X}: S_{n}(X) \rightarrow S_{n+1}(X)$ is

$$
\psi_{n}^{X}(\alpha):=S_{n+1}(\alpha) \circ \psi_{n}\left(\operatorname{id}_{\Delta^{n}}\right)
$$

Lemma 7.10. The maps B^{X} are natural in X and are homotopic to the identity on $S_{n}(X)$.
Proof. Let $f: X \rightarrow Y$ be a continuous map. We have

$$
\begin{aligned}
S_{n}(f) B_{n}^{X}(\alpha) & =S_{n}(f) \circ S_{n}(\alpha) \circ B\left(\operatorname{id}_{\Delta^{n}}\right) \\
& =S_{n}(f \circ \alpha) \circ B\left(\operatorname{id}_{\Delta^{n}}\right) \\
& =B_{n}^{Y}(f \circ \alpha) .
\end{aligned}
$$

The calculation for $\partial \psi_{n}^{X}+\psi_{n-1}^{X} \partial=B_{n}^{X}-\operatorname{id}_{S_{n}(X)}$ uses that α induces a chain map and thus we get

$$
\partial \psi_{n}^{X}(\alpha)=\partial \circ S_{n+1}(\alpha) \circ \psi_{n}\left(\mathrm{id}_{\Delta^{n}}\right)=S_{n}(\alpha) \circ \partial \circ \psi_{n}\left(\mathrm{id}_{\Delta^{n}}\right)
$$

Hence

$$
\partial \psi_{n}^{X}+\psi_{n-1}^{X} \partial=S_{n}(\alpha) \circ\left(\partial \circ \psi_{n}\left(\operatorname{id}_{\Delta^{n}}\right)+\psi_{n-1} \circ \partial\left(\mathrm{id}_{\Delta^{n}}\right)\right)=S_{n}(\alpha) \circ(B-\mathrm{id})\left(\mathrm{id}_{\Delta^{n}}\right)=B_{n}^{X}(\alpha)-\alpha
$$

Now we consider singular n-chains that are spanned by 'small' singular n-simplices.
Definition 7.11. Let $\mathfrak{U}=\left\{U_{i}, i \in I\right\}$ be an open covering of X. Then $S_{n}^{\mathfrak{U}}(X)$ is the free abelian group generated by all $\alpha: \Delta^{n} \rightarrow X$ such that the image of Δ^{n} under α is contained in one of the $U_{i} \in \mathfrak{U}$.

Note that $S_{n}^{\mathfrak{U}}(X)$ is an abelian subgroup of $S_{n}(X)$. As we will see now, these chains suffice to detect everything in singular homology.

Lemma 7.12. Every chain in $S_{n}(X)$ is homologous to a chain in $S_{n}^{\mathfrak{U}}(X)$.

Proof. Let $\alpha=\sum_{j=1}^{m} \lambda_{j} \alpha_{j} \in S_{n}(X)$ and let L_{j} for $1 \leqslant j \leqslant m$ be the Lebesgue numbers for the coverings $\left\{\alpha_{j}^{-1}\left(U_{i}\right), i \in I\right\}$ of Δ^{n}. Choose a k, such that $\left(\frac{n}{n+1}\right)^{k} \leqslant L_{1}, \ldots, L_{m}$. Then $B^{k} \alpha_{1}$ up to $B^{k} \alpha_{m}$ are all in $S_{n}^{\mathfrak{U}}(X)$. Therefore

$$
B^{k}(\alpha)=\sum_{j=1}^{m} \lambda_{j} B^{k}\left(\alpha_{j}\right)=: \alpha^{\prime} \in S_{n}^{\mathfrak{U}}(X)
$$

As B is homotopic to the identity we have

$$
\alpha \sim B \alpha \sim \ldots \sim B^{k} \alpha=\alpha^{\prime}
$$

With this we get the main result of this section:
Theorem 7.13. Let $W \subset A \subset X$ such that $\bar{W} \subset A$. Then the inclusion $i:(X \backslash W, A \backslash W) \hookrightarrow(X, A)$ induces an isomorphism

$$
H_{n}(i): H_{n}(X \backslash W, A \backslash W) \cong H_{n}(X, A)
$$

for all $n \geqslant 0$.
Proof. We first prove that $H_{n}(i)$ is surjective, so let $c \in S_{n}(X, A)$ be a relative cycle, i.e., let $\partial c \in$ $S_{n-1}(A)$. There is a k such that $c^{\prime}:=B^{k} c$ is a chain in $S_{n}^{\mathfrak{U}}(X)$ for the open covering $\mathfrak{U}=\{\AA, X \backslash \bar{W}\}=$: $\{U, V\}$. We decompose c^{\prime} as $c^{\prime}=c^{U}+c^{V}$ with c^{U} and c^{V} being elements in the corresponding chain complex. (This decomposition is not unique.)

We know that the boundary of c^{\prime} is $\partial c^{\prime}=\partial B^{k} c=B^{k} \partial c$ and by assumption this is a chain in $S_{n-1}(A)$. But $\partial c^{\prime}=\partial c^{U}+\partial c^{V}$ with $\partial c^{U} \in S_{n-1}(U) \subset S_{n-1}(A)$. Thus, $\partial c^{V} \in S_{n-1}(A)$, in fact, $\partial c^{V} \in S_{n-1}(A \backslash W)$ and therefore c^{V} is a relative cycle in $S_{n}(X \backslash W, A \backslash W)$. This shows that $H_{n}(i)\left[c^{V}\right]=[c] \in H_{n}(X, A)$ because $[c]=\left[c^{U}+c^{V}\right]=\left[c^{V}\right]$ in $H_{n}(X, A)$.

The injectivity of $H_{n}(i)$ is shown as follows. Assume that there is a $c \in S_{n}(X \backslash W)$ with $\partial c \in S_{n-1}(A \backslash W)$ and assume $H_{n}(i)[c]=0$, i.e., c is of the form $c=\partial b+a^{\prime}$ with $b \in S_{n+1}(X)$ and $a^{\prime} \in S_{n}(A)$ and write b as $b^{U}+b^{V}$ with $b^{U} \in S_{n+1}(U) \subset S_{n+1}(A)$ and $b^{V} \in S_{n+1}(V) \subset S_{n+1}(X \backslash W)$. Then

$$
c=\partial b^{U}+\partial b^{V}+a^{\prime}
$$

But ∂b^{U} and a^{\prime} are elements in $S_{n}(A \backslash W)$ and hence $c=\partial b^{V} \in S_{n}(X \backslash W, A \backslash W)$.

8. Mayer-Vietoris sequence

We consider the following situation: Assume that there are subspaces $X_{1}, X_{2} \subset X$ such that X_{1} and X_{2} are open in X and such that $X=X_{1} \cup X_{2}$. We consider the open covering $\mathfrak{U}=\left\{X_{1}, X_{2}\right\}$. We need the following maps:

Note that by definition, the sequence

$$
\begin{equation*}
0 \longrightarrow S_{*}\left(X_{1} \cap X_{2}\right) \xrightarrow{\left(i_{1}, i_{2}\right)} S_{*}\left(X_{1}\right) \oplus S_{*}\left(X_{2}\right) \longrightarrow S_{*}^{\mathfrak{U}}(X) \longrightarrow 0 \tag{8.1}
\end{equation*}
$$

is exact. Here, the second map is

$$
\left(\alpha_{1}, \alpha_{2}\right) \mapsto \kappa_{1}\left(\alpha_{1}\right)-\kappa_{2}\left(\alpha_{2}\right)
$$

Theorem 8.1. (The Mayer-Vietoris sequence)
There is a long exact sequence

$$
\ldots \xrightarrow{\delta} H_{n}\left(X_{1} \cap X_{2}\right) \longrightarrow H_{n}\left(X_{1}\right) \oplus H_{n}\left(X_{2}\right) \longrightarrow H_{n}(X) \xrightarrow{\delta} H_{n-1}\left(X_{1} \cap X_{2}\right) \longrightarrow \ldots
$$

Walther Mayer: 1887-1948 https://en.wikipedia.org/wiki/Walther_Mayer
Leopold Vietoris: 1891-2002 (!) https://en.wikipedia.org/wiki/Leopold_Vietoris
Proof. The proof follows from Lemma 7.12 because $H_{n}^{\mathfrak{U}}(X) \cong H_{n}(X)$.
As an application, we calculate the homology groups of spheres. Let $X=\mathbb{S}^{m}$ and let $X^{ \pm}:=\mathbb{S}^{m} \backslash$ $\left\{\mp e_{m+1}\right\}$. The subspaces X^{+}and X^{-}are contractible and therefore $H_{*}\left(X^{ \pm}\right)=0$ for all positive $*$.

The Mayer-Vietoris sequence is as follows

$$
\ldots \xrightarrow{\delta} H_{n}\left(X^{+} \cap X^{-}\right) \longrightarrow H_{n}\left(X^{+}\right) \oplus H_{n}\left(X^{-}\right) \longrightarrow H_{n}\left(\mathbb{S}^{m}\right) \xrightarrow{\delta} H_{n-1}\left(X^{+} \cap X^{-}\right) \longrightarrow \ldots
$$

For $n>1$ we can deduce

$$
H_{n}\left(\mathbb{S}^{m}\right) \cong H_{n-1}\left(X^{+} \cap X^{-}\right) \cong H_{n-1}\left(\mathbb{S}^{m-1}\right)
$$

The first map is the connecting homomorphism and the second map is $H_{n-1}(i): H_{n-1}\left(\mathbb{S}^{m-1}\right) \rightarrow H_{n-1}\left(X^{+} \cap\right.$ X^{-}) where i is the inclusion of \mathbb{S}^{m-1} into $X^{+} \cap X^{-}$and this inclusion is a homotopy equivalence. Thus define $D:=H_{n-1}(i)^{-1} \circ \delta$. This D is an isomorphism for all $n \geqslant 2$.

We have to controll what is going on in small degrees and dimensions.
We know from the Hurewicz isomorphism that $H_{1}\left(\mathbb{S}^{m}\right)$ is trivial for $m>1$. If we want to see that via the Mayer-Vietoris sequence, we have to understand the map

$$
\mathbb{Z} \cong H_{0}\left(X^{+} \cap X^{-}\right) \rightarrow H_{0}\left(X^{+}\right) \oplus H_{0}\left(X^{-}\right) \cong \mathbb{Z} \oplus \mathbb{Z}
$$

Let 1 be a base point of $X^{+} \cap X^{-}$. Then the map on H_{0} is

$$
[1] \mapsto([1],[1])
$$

This map is injective and therefore the connecting homomorphism $\delta: H_{1}\left(\mathbb{S}^{m}\right) \rightarrow H_{0}\left(X^{+} \cap X^{-}\right)$is trivial and we obtain that

$$
H_{1}\left(\mathbb{S}^{m}\right) \cong 0, \quad m>1
$$

Next, we consider the case of $n=1=m$. In this case the intersection $X^{+} \cap X^{-}$splits into two components. We choose a $P_{+} \in X^{+}$and a $P_{-} \in X^{-}$. Then, for $H_{0}\left(i_{1}, i_{2}\right)$ we have

$$
H_{0}\left(X^{+}\right) \oplus H_{0}\left(X^{-}\right) \ni\left(H_{0}\left(i_{1}\right)\left[P_{+}\right], H_{0}\left(i_{2}\right)\left[P_{-}\right]\right) \sim\left(\left[e_{2}\right],\left[-e_{2}\right]\right)
$$

Thus $\left[P_{+}\right] \mapsto\left(\left[e_{2}\right], 0\right)$ and $\left[P_{-}\right] \mapsto\left(0,\left[-e_{2}\right]\right)$ and the difference $\left[P_{+}\right]-\left[P_{-}\right]$generates the kernel of $H_{0}\left(\kappa_{1}\right)-$ $H_{0}\left(\kappa_{2}\right)$:

$$
\left(H_{0}\left(\kappa_{1}\right)-H_{0}\left(\kappa_{2}\right)\right)\left(\left[e_{2}\right],\left[-e_{2}\right]\right)=0
$$

Consider the exact sequence

$$
0 \longrightarrow H_{1} \mathbb{S}^{1} \xrightarrow{\delta} H_{0}\left(X^{+} \cap X^{-}\right) \xrightarrow{\left(H_{0}\left(i_{1}\right), H_{0}\left(i_{2}\right)\right)} H_{0}\left(X^{+}\right) \oplus H_{0}\left(X^{-}\right) \longrightarrow H_{0} \mathbb{S}^{1}
$$

which gives

$$
0 \longrightarrow H_{1} \mathbb{S}^{1} \xrightarrow{\delta} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z}
$$

where $\left[P_{+}\right]-\left[P_{-}\right] \mapsto\left(\left[e_{2}\right],\left[e_{2}\right]\right) \mapsto 0$. The image of $\left(H_{0}\left(i_{1}\right), H_{0}\left(i_{2}\right)\right)$ is isomorphic to the kernel of the difference of $H_{0}\left(\kappa_{1}\right)$ and $H_{0}\left(\kappa_{2}\right)$ and this is isomorphic to the free abelian group generated by ($\left[e_{2}\right],\left[e_{2}\right]$) which is \mathbb{Z}. Therefore

$$
0 \longrightarrow H_{1} \mathbb{S}^{1} \xrightarrow{\delta} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0
$$

is short exact and $H_{1} \mathbb{S}^{1} \cong \mathbb{Z}$. (We already knew this from the Hurewicz isomorphism.)
For $0<n<m$ we get

$$
H_{n} \mathbb{S}^{m} \xrightarrow{\cong} H_{n-1} \mathbb{S}^{m-1} \cong \xlongequal{\cong} H_{1}\left(\mathbb{S}^{m-n+1}\right) \cong \pi_{1}\left(\mathbb{S}^{m-n+1}\right)
$$

and the latter is trivial.
Similarly, for $0<m<n$ we have

$$
H_{n} \mathbb{S}^{m} \xrightarrow{\cong} H_{n-1} \mathbb{S}^{m-1} \xrightarrow{\cong} \ldots \xrightarrow{\cong} H_{n-m+1}\left(\mathbb{S}^{1}\right) \cong 0
$$

The last claim follows directly by another simple Mayer-Vietoris argument.

The remaining case $0<m=n$ gives something non-trivial

$$
H_{n} \mathbb{S}^{n} \cong H_{n-1} \mathbb{S}^{n-1} \cong \ldots \xrightarrow{\cong} H_{1}\left(\mathbb{S}^{1}\right) \cong \mathbb{Z}
$$

We can summarize the result as follows.
Proposition 8.2.

$$
H_{n}\left(\mathbb{S}^{m}\right) \cong \begin{cases}\mathbb{Z} \oplus \mathbb{Z}, & n=m=0 \\ \mathbb{Z}, & n=0, m>0 \\ \mathbb{Z}, & n=m>0 \\ 0, & \text { otherwise }\end{cases}
$$

DEFINITION 8.3. Let $\mu_{0}:=\left[P_{+}\right]-\left[P_{-}\right] \in H_{0}\left(X^{+} \cap X^{-}\right) \cong H_{0}\left(\mathbb{S}^{0}\right)$ and let $\mu_{1} \in H_{1}\left(\mathbb{S}^{1}\right) \cong \pi_{1}\left(\mathbb{S}^{1}\right)$ be given by the degree one map (aka the class of the identity on \mathbb{S}^{1}, aka the class of the loop $t \mapsto e^{2 \pi i t}$).

Define the higher $\mu_{n} \mathrm{~s}$ via $D \mu_{n}=\mu_{n-1}$. Then μ_{n} is called the fundamental class in $H_{n}\left(\mathbb{S}^{n}\right)$.
In order to obtain a relative version of the Mayer-Vietoris sequence, we need a tool from homological algebra.

Lemma 8.4. (The five-lemma)
Let

be a commutative diagram of exact sequences. If $f_{1}, f_{2}, f_{4}, f_{5}$ are isomorphisms, then so is f_{3}.
Proof. Again, we are chasing diagrams.
In order to prove that f_{3} is injective, assume that there is an $a \in A_{3}$ with $f_{3} a=0$. Then $\beta_{3} f_{3} a=$ $f_{4} \alpha_{3} a=0$, as well. But f_{4} is injective, thus $\alpha_{3} a=0$. Exactness of the top row gives, that there is an $a^{\prime} \in A_{2}$ with $\alpha_{2} a^{\prime}=a$. This implies

$$
f_{3} \alpha_{2} a^{\prime}=f_{3} a=0=\beta_{2} f_{2} a^{\prime}
$$

Exactness of the bottom row gives us a $b \in B_{1}$ with $\beta_{1} b=f_{2} a^{\prime}$, but f_{1} is an isomorphism so we can lift b to $a_{1} \in A_{1}$ with $f_{1} a_{1}=b$.

Thus $f_{2} \alpha_{1} a_{1}=\beta_{1} b=f_{2} a^{\prime}$ and as f_{2} is injective, this implies that $\alpha_{1} a_{1}=a^{\prime}$. So finally we get that $a=\alpha_{2} a^{\prime}=\alpha_{2} \alpha_{1} a_{1}$, but the latter is zero, thus $a=0$.

For the surjectivity of f_{3} assume $b \in B_{3}$ is given. Move b over to B_{4} via β_{3} and set $a:=f_{4}^{-1} \beta_{3} b$.
Consider $f_{5} \alpha_{4} a$. This is equal to $\beta_{4} \beta_{3} b$ and hence trivial. Therefore $\alpha_{4} a=0$ and thus there is an $a^{\prime} \in A_{3}$ with $\alpha_{3} a^{\prime}=a$. Then $b-f_{3} a^{\prime}$ is in the kernel of β_{3} because

$$
\beta_{3}\left(b-f_{3} a^{\prime}\right)=\beta_{3} b-f_{4} \alpha_{3} a^{\prime}=\beta_{3} b-f_{4} a=0
$$

Hence we get a $b_{2} \in B_{2}$ with $\beta_{2} b_{2}=b-f_{3} a^{\prime}$. Define a_{2} as $f_{2}^{-1}\left(b_{2}\right)$, so $a^{\prime}+\alpha_{2} a_{2}$ is in A_{3} and

$$
f_{3}\left(a^{\prime}+\alpha_{2} a_{2}\right)=f_{3} a^{\prime}+\beta_{2} f_{2} a_{2}=f_{3} a^{\prime}+\beta_{2} b_{2}=f_{3} a^{\prime}+b-f_{3} a^{\prime}=b
$$

We now consider a relative situation, so let X be a topological space with $A, B \subset X$ open in $A \cup B$ and set $\mathfrak{U}:=\{A, B\}$. This is an open covering of $A \cup B$. The following diagram of exact sequences combines
absolute chains with relative ones:

Here, ψ is induced by the inclusion $\varphi: S_{n}^{\mathfrak{U}}(A \cup B) \rightarrow S_{n}(A \cup B), \Delta$ denotes the diagonal map and diff the difference map. It is clear that the first two rows are exact. That the third row is exact follows by the nine-lemma or a direct diagram chase.

Consider the two right-most non-trivial columns in this diagram. Each gives a long exact sequence in homology and we focus on five terms.

Then by the five-lemma, as $H_{n}(\varphi)$ and $H_{n-1}(\varphi)$ are isomorphisms, so is $H_{n}(\psi)$. This observation together with the bottom non-trivial exact row proves the following.

Theorem 8.5. (Relative Mayer-Vietoris sequence)
If $A, B \subset X$ are open in $A \cup B$, then the following sequence is exact:

$$
\ldots \xrightarrow{\delta} H_{n}(X, A \cap B) \longrightarrow H_{n}(X, A) \oplus H_{n}(X, B) \longrightarrow H_{n}(X, A \cup B) \xrightarrow{\delta} \quad \ldots
$$

9. Reduced homology and suspension

For any path-connected space we have that the zeroth homology group is isomorphic to the integers, so somehow this copy of \mathbb{Z} is superfluous information and we want to get rid of it in a civilized manner. Let P denote the one-point topological space. Then for any space X there is a continuous map $\varepsilon: X \rightarrow P$.

Definition 9.1. We define $\widetilde{H}_{n}(X):=\operatorname{ker}\left(H_{n}(\varepsilon): H_{n}(X) \rightarrow H_{n}(P)\right)$ and call it the reduced nth homology group of the space X.

- Note that $\widetilde{H}_{n}(X) \cong H_{n}(X)$ for all positive n.
- If X is path-connected, then $\widetilde{H}_{0}(X)=0$.
- For any choice of a base point $x \in X$ we get

$$
\widetilde{H}_{n}(X) \oplus H_{n}(\{x\}) \cong H_{n}(X)
$$

because $H_{n}(P) \cong H_{n}(\{x\})$ and the composition

$$
\{x\} \hookrightarrow X \rightarrow\{x\}
$$

is the identity. Therefore, $\widetilde{H}_{n}(X) \cong H_{n}(X,\{x\})$ because the retraction $r: X \rightarrow\{x\}$ splits the exact sequence

$$
\ldots H_{n}(\{x\}) \rightarrow H_{n}(X) \rightarrow H_{n}(X,\{x\}) \rightarrow \ldots
$$

- We can prolong the singular chain complex $S_{*}(X)$ and consider $\widetilde{S}_{*}(X)$:

$$
\ldots \longrightarrow S_{1}(X) \longrightarrow S_{0}(X) \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

where $\varepsilon(\alpha)=1$ for every singular 0 -simplex α. This is precisely the augmentation we considered before. Then for all $n \geqslant 0$,

$$
\widetilde{H}_{*}(X) \cong H_{*}\left(\widetilde{S}_{*}(X)\right)
$$

As every continuous map $f: X \rightarrow Y$ induces a chain map $S_{*}(f): S_{*}(X) \rightarrow S_{*}(Y)$ and as $\varepsilon^{Y} \circ S_{0}(f)=\varepsilon^{X}$ we obtain the following result.

Lemma 9.2. The assignment $X \mapsto H_{*}\left(\widetilde{S}_{*}(X)\right)$ is a functor, i.e., for a continuous $f: X \rightarrow Y$ we get an induced map $H_{*}\left(\widetilde{S}_{*}(f)\right): H_{*}\left(\widetilde{S}_{*}(X)\right) \rightarrow H_{*}\left(\widetilde{S}_{*}(Y)\right)$ such that the identity on X induces the identity and composition of maps is respected.

Similarly, $\widetilde{H}_{*}(-)$ is a functor.
Definition 9.3. For $\varnothing \neq A \subset X$ we define

$$
\widetilde{H}_{n}(X, A):=H_{n}(X, A)
$$

As we identified reduced homology groups with relative homology groups we obtain a reduced version of the Mayer-Vietoris sequence. A similar remark applies to the long exact sequence for a pair of spaces.

Proposition 9.4. For each pair of spaces, there is a long exact sequence

$$
\ldots \longrightarrow \widetilde{H}_{n}(A) \longrightarrow \tilde{H}_{n}(X) \longrightarrow \tilde{H}_{n}(X, A) \longrightarrow \tilde{H}_{n-1}(A) \longrightarrow
$$

and a reduced Mayer-Vietoris sequence.
Examples.

1) Recall that we can express $\mathbb{R} P^{2}$ as the quotient space of \mathbb{S}^{2} modulo antipodal points or as a quotient of \mathbb{D}^{2} :

$$
\mathbb{R} P^{2} \cong \mathbb{S}^{2} / \pm \mathrm{id} \cong \mathbb{D}^{2} / z \sim-z \text { for } z \in \mathbb{S}^{1}
$$

We use the latter definition and set $X=\mathbb{R} P^{2}, X_{1}=X \backslash\{[0,0]\}$ (which is an open Möbius strip and hence homotopically equivalent to \mathbb{S}^{1}) and $X_{2}=\stackrel{\circ}{D}^{2}$. Then

$$
X_{1} \cap X_{2}=\stackrel{D}{D}^{2} \backslash\{[0,0]\} \simeq \mathbb{S}^{1}
$$

Thus we know that $H_{1}\left(X_{1}\right) \cong \mathbb{Z}, H_{1}\left(X_{2}\right) \cong 0$ and $H_{2} X_{1}=H_{2} X_{2}=0$. We choose generators for $H_{1}\left(X_{1}\right)$ and $H_{1}\left(X_{1} \cap X_{2}\right)$ as follows.

Let a be the path that runs along the outer circle in mathematical positive direction half around starting from the point $(1,0)$. Let γ be the loop that runs along the inner circle in mathematical positive direction. Then the inclusion $i: X_{1} \cap X_{2} \rightarrow X_{1}$ induces

$$
H_{1}(i)[\gamma]=2[a] .
$$

This suffices to compute $H_{*}\left(\mathbb{R} P^{2}\right)$ up to degree two because the long exact sequence is

$$
\widetilde{H}_{2}\left(X_{1}\right) \oplus \widetilde{H}_{2}\left(X_{2}\right)=0 \rightarrow \widetilde{H}_{2}(X) \rightarrow \widetilde{H}_{1}\left(X_{1} \cap X_{2}\right) \cong \mathbb{Z} \rightarrow \widetilde{H}_{1}\left(X_{1}\right) \cong \mathbb{Z} \rightarrow \widetilde{H}_{1}(X) \rightarrow \widetilde{H}_{0}\left(X_{1} \cap X_{2}\right)=0
$$

On the two copies of the integers, the map is given as above and thus we obtain:

$$
\begin{aligned}
& H_{2}\left(\mathbb{R} P^{2}\right) \cong \operatorname{ker}(2 \cdot: \mathbb{Z} \rightarrow \mathbb{Z})=0 \\
& H_{1}\left(\mathbb{R} P^{2}\right) \cong \operatorname{coker}(2 \cdot: \mathbb{Z} \rightarrow \mathbb{Z}) \cong \mathbb{Z} / 2 \mathbb{Z} \\
& H_{0}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z}
\end{aligned}
$$

The higher homology groups are trivial, because there $H_{n}\left(\mathbb{R} P^{2}\right)$ is located in a long exact sequence between trivial groups.
2) We can now calculate the homology groups of bouquets of spaces in terms of the homology groups of the single spaces, at least in good cases. Let $\left(X_{i}\right)_{i \in I}$ be a family of topological spaces with chosen basepoints $x_{i} \in X_{i}$. Consider

$$
X=\bigvee_{i \in I} X_{i}
$$

If the inclusion of x_{i} into X_{i} is pathological, then we cannot apply the Mayer-Vietoris sequence. However, we get the following:

Proposition 9.5. If there are open neighbourhoods U_{i} of $x_{i} \in X_{i}$ together with a deformation of U_{i} to $\left\{x_{i}\right\}$, then we have for any finite $E \subset I$

$$
\widetilde{H}_{n}\left(\bigvee_{i \in E} X_{i}\right) \cong \bigoplus_{i \in E} \widetilde{H}_{n}\left(X_{i}\right)
$$

In the situation above we say that the X_{i} are well-pointed with respect to x_{i}.
Proof. First we consider the case of two bouquet summands. We have $X_{1} \vee U_{2} \cup U_{1} \vee X_{2}$ as an open covering of $X_{1} \vee X_{2}$. The Mayer-Vietoris sequence then gives that $H_{n}(X) \cong H_{n}\left(X_{1} \vee U_{2}\right) \oplus H_{n}\left(U_{1} \vee X_{2}\right)$ for $n>0$. For H_{0} we get the exact sequence

$$
0 \rightarrow \widetilde{H}_{0}\left(X_{1} \vee U_{2}\right) \oplus \widetilde{H}_{0}\left(U_{1} \vee X_{2}\right) \rightarrow \widetilde{H}_{0}(X) \rightarrow 0
$$

By induction we obtain the case of finitely many bouquet summands.
We also get

$$
\widetilde{H}_{n}\left(\bigvee_{i \in I} X_{i}\right) \cong \bigoplus_{i \in I} \widetilde{H}_{n}\left(X_{i}\right)
$$

but for this one needs a colimit argument. We postpone that for a while.
We can extend such results to the full relative case. Let $A \subset X$ be a closed subspace and assume that A is a deformation retract of an open neighbourhood $A \subset U$. Let $\pi: X \rightarrow X / A$ be the canonical projection and $b=\{A\}$ the image of A. Then X / A is well-pointed with respect to b.

Proposition 9.6. In the situation above

$$
H_{n}(X, A) \cong \widetilde{H}_{n}(X / A), \quad 0 \leqslant n
$$

Proof. The canonical projection, π, induces a homeomorphism $(X \backslash A, U \backslash A) \cong(X / A \backslash\{b\}, \pi(U) \backslash\{b\})$. Consider the following diagram:

The upper and lower left arrows are isomorphisms because A is a deformation retract of U, the isomorphism in the upper right is a consequence of excision, because $A=\bar{A} \subset U$ and the lower right one follows from excision as well.

THEOREM 9.7. (Suspension isomorphism) If $A \subset X$ is as above, then

$$
H_{n}(\Sigma X, \Sigma A) \cong \tilde{H}_{n-1}(X, A), \quad \text { for all } n>0
$$

Proof. Consider the inclusion of pairs $(X, A) \subset(C X, C A) \subset(\Sigma X, \Sigma A)$ and the triple $(C X, X \cup$ $C A, C A)$. We obtain the corresponding long exact sequence on homology groups

$$
\ldots \longrightarrow H_{n}(C X, C A) \longrightarrow H_{n}(C X, C A \cup X) \xrightarrow{\delta} \tilde{H}_{n-1}(X \cup C A, C A) \longrightarrow \ldots
$$

By Proposition 9.6 we get that $\tilde{H}_{n}(C X, C A \cup X) \cong \tilde{H}_{n}(C X / C A \cup X)$ and $\tilde{H}_{n-1}(X \cup C A, C A) \cong \tilde{H}_{n-1}(X \cup$ $C A / C A)$ and the latter is isomorphic to $\tilde{H}_{n-1}(X / A) \cong \tilde{H}_{n-1}(X, A)$. Similarly, as $C X / C A \cup X \simeq \Sigma X / \Sigma A$, we get

$$
\tilde{H}_{n}(C X, C A \cup X) \cong \tilde{H}_{n}(C X / C A \cup X) \cong \tilde{H}_{n}(\Sigma X / \Sigma A) \cong H_{n}(\Sigma X, \Sigma A)
$$

$X \cup C A / C A \cong X / A:$

$C X / C A \cup X \cong \Sigma X / \Sigma A:$

Note, that the corresponding statement is terribly wrong for homotopy groups. We have $\Sigma \mathbb{S}^{2} \cong \mathbb{S}^{3}$, but $\pi_{3}\left(\mathbb{S}^{2}\right) \cong \mathbb{Z}$, whereas $\pi_{4}\left(\mathbb{S}^{3}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$, so homotopy groups (unlike homology groups) don't satisfy such an easy form of a suspension isomorphism. There is a Freundenthal suspension theorem for homotopy groups, but that's more complicated (https://en.wikipedia.org/wiki/Freudenthal_suspension_theorem). For the above case it yields:

$$
\mathbb{Z} / 2 \mathbb{Z} \cong \pi_{1+3}\left(\mathbb{S}^{3}\right) \cong \pi_{1+4}\left(\mathbb{S}^{4}\right) \cong \ldots=: \pi_{1}^{s}
$$

where π_{1}^{s} denotes the first stable homotopy group.
Freudenthal: 1905-1990 https://en.wikipedia.org/wiki/Hans_Freudenthal

10. Mapping degree

Recall that we defined fundamental classes $\mu_{n} \in \tilde{H}_{n}\left(\mathbb{S}^{n}\right)$ for all $n \geqslant 0$. Let $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ be any continuous map.

Definition 10.1. The map f induces a homomorphism

$$
\tilde{H}_{n}(f): \tilde{H}_{n}\left(\mathbb{S}^{n}\right) \rightarrow \tilde{H}_{n}\left(\mathbb{S}^{n}\right)
$$

and therefore we get

$$
\tilde{H}_{n}(f) \mu_{n}=\operatorname{deg}(f) \mu_{n}
$$

with $\operatorname{deg}(f) \in \mathbb{Z}$. We call this integer the degree of f.

In the case $n=1$ we can relate this notion of a mapping degree to the one defined via the fundamental group of the 1 -sphere: if we represent the generator of $\pi_{1}\left(\mathbb{S}^{1}, 1\right)$ as the class given by the loop

$$
\omega:[0,1] \rightarrow \mathbb{S}^{1}, \quad t \mapsto e^{2 \pi i t},
$$

then the abelianized Hurewicz, $h_{\mathrm{ab}}: \pi_{1}\left(\mathbb{S}^{1}, 1\right) \rightarrow H_{1}\left(\mathbb{S}^{1}\right)$, sends the class of ω precisely to μ_{1} and therefore the naturality of h_{ab}

shows that

$$
\operatorname{deg}(f) \mu_{1}=H_{1}(f) \mu_{1}=h_{\mathrm{ab}}\left(\pi_{1}(f)[w]\right)=h_{\mathrm{ab}}(k[w])=k \mu_{1} .
$$

where k is the degree of f defined via the fundamental group. Thus both notions coincide for $n=1$.
As we know that the connecting homomorphism induces an isomorphism between $H_{n}\left(\mathbb{D}^{n}, \mathbb{S}^{n-1}\right)$ and $\tilde{H}_{n-1}\left(\mathbb{S}^{n-1}\right)$, we can consider degrees of maps $f:\left(\mathbb{D}^{n}, \mathbb{S}^{n-1}\right) \rightarrow\left(\mathbb{D}^{n}, \mathbb{S}^{n-1}\right)$ by defining $\bar{\mu}_{n}:=\delta^{-1} \mu_{n}$. Then $H_{n}(f)\left(\bar{\mu}_{n}\right):=\operatorname{deg}(f) \bar{\mu}_{n}$ gives a well-defined integer $\operatorname{deg}(f) \in \mathbb{Z}$.

The degree of self-maps of \mathbb{S}^{n} satisfies the following properties:
Proposition 10.2.
(a) If f is homotopic to g, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
(b) The degree of the identity on \mathbb{S}^{n} is one.
(c) The degree is multiplicative, i.e., $\operatorname{deg}(g \circ f)=\operatorname{deg}(g) \operatorname{deg}(f)$.
(d) If f is not surjective, then $\operatorname{deg}(f)=0$.

Proof. The first three properties follow directly from the definition of the degree. If f is not surjective, then it is homotopic to a constant map and this has degree zero.

It is true that the group of (pointed) homotopy classes of self-maps of \mathbb{S}^{n} is isomorphic to \mathbb{Z} and thus the first property can be upgraded to an 'if and only if', but we won't prove that here.

Recall that $\Sigma \mathbb{S}^{n} \cong \mathbb{S}^{n+1}$. If $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is continuous, then $\Sigma(f): \Sigma \mathbb{S}^{n} \rightarrow \Sigma \mathbb{S}^{n}$ is given as $\Sigma \mathbb{S}^{n} \ni[x, t] \mapsto$ $[f(x), t]$.

Lemma 10.3. Suspensions leave the degree invariant, i.e., for $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ we have

$$
\operatorname{deg}(\Sigma(f))=\operatorname{deg}(f)
$$

In particular, for every $k \in \mathbb{Z}$ there is an $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ with $\operatorname{deg}(f)=k$.
Proof. The suspension isomorphism of Theorem 9.7 is induced by a connecting homomorphism. Using the isomorphism $H_{n+1}\left(\mathbb{S}^{n+1}\right) \cong H_{n+1}\left(\Sigma \mathbb{S}^{n}\right)$, the connecting homomorphism sends $\mu_{n+1} \in H_{n+1}\left(\mathbb{S}^{n+1}\right)$ to $\pm \mu_{n} \in \tilde{H}_{n}\left(\mathbb{S}^{n}\right)$. But then the commutativity of

ensures that $\pm \operatorname{deg}(f) \mu_{n}= \pm \operatorname{deg}(\Sigma f) \mu_{n}$ with the same sign.
For the degree of a self-map of \mathbb{S}^{1} one has an additivity relation. We can generalize this to higher dimensions. Consider the pinch map $T: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n} / \mathbb{S}^{n-1} \simeq \mathbb{S}^{n} \vee \mathbb{S}^{n}$ and the fold map $F: \mathbb{S}^{n} \vee \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$. Here, F is induced by the identity of \mathbb{S}^{n}.

Note that we can replace every continuous $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ by a basepoint-preserving map by composing with a rotation. That doesn't change the degree.

Proposition 10.4. For $f, g: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ we have

$$
\operatorname{deg}(F \circ(f \vee g) \circ T)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

Proof. The map $H_{n}(T)$ sends μ_{n} to $\left(\mu_{n}, \mu_{n}\right) \in \tilde{H}_{n} \mathbb{S}^{n} \oplus \tilde{H}_{n} \mathbb{S}^{n} \cong \tilde{H}_{n}\left(\mathbb{S}^{n} \vee \mathbb{S}^{n}\right)$. Under this isomorphism, the map $H_{n}(f \vee g)$ corresponds to $\left(\mu_{n}, \mu_{n}\right) \mapsto\left(\tilde{H}_{n}(f) \mu_{n}, \tilde{H}_{n}(g) \mu_{n}\right)$ and this yields $\left(\operatorname{deg}(f) \mu_{n}, \operatorname{deg}(g) \mu_{n}\right)$ which under the fold map is sent to the sum.

We use the mapping degree to show some geometric properties of self-maps of spheres.
Proposition 10.5. Let $f^{(n)}: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ be the map

$$
\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mapsto\left(-x_{0}, x_{1}, \ldots, x_{n}\right)
$$

Then $f^{(n)}$ has degree -1 .
Proof. We prove the claim by induction. μ_{0} was the difference class $[+1]-[-1]$, and

$$
f^{(0)}([+1]-[-1])=[-1]-[+1]=-\mu_{0}
$$

We defined μ_{n} in such a way that $D \mu_{n}=\mu_{n-1}$. Therefore, as D is natural,

$$
H_{n}\left(f^{(n)}\right) \mu_{n}=H_{n}\left(f^{(n)}\right) D^{-1} \mu_{n-1}=D^{-1} H_{n-1}\left(f^{(n-1)}\right) \mu_{n-1}=D^{-1}\left(-\mu_{n-1}\right)=-\mu_{n}
$$

Corollary 10.6. The antipodal map $A: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}, A(x)=-x$, has degree $(-1)^{n+1}$.
Proof. Let $f_{i}^{(n)}: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ be the $\operatorname{map}\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(x_{0}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)$. As in Proposition 10.5 one shows that the degree of $f_{i}^{(n)}$ is -1 . As $A=f_{n}^{(n)} \circ \ldots \circ f_{0}^{(n)}$, the claim follows.

In particular, the antipodal map cannot be homotopic to the identity as long as n is even!
Proposition 10.7. Let $f, g: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ with $f(x) \neq g(x)$ for all $x \in \mathbb{S}^{n}$, then f is homotopic to $A \circ g$. In particular,

$$
\operatorname{deg}(f)=(-1)^{n+1} \operatorname{deg}(g)
$$

Proof. By assumption the segment $t \mapsto(1-t) f(x)-t g(x)$ doesn't pass through the origin for $0 \leqslant t \leqslant 1$. Thus the homotopy

$$
H(x, t)=\frac{(1-t) f(x)-\operatorname{tg}(x)}{\|(1-t) f(x)-\operatorname{tg}(x)\|}
$$

connects f to $-g=A \circ g$.
Corollary 10.8. For any $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ with $\operatorname{deg}(f)=0$ there is an $x_{+} \in \mathbb{S}^{n}$ with $f\left(x_{+}\right)=x_{+}$and an x_{-}with $f\left(x_{-}\right)=-x_{-}$.

Proof. If $f(x) \neq x$ for all x, then $\operatorname{deg}(f)=\operatorname{deg}(A) \neq 0$. If $f(x) \neq-x$ for all x, then $\operatorname{deg}(f)=$ $(-1)^{n+1} \operatorname{deg}(A) \neq 0$.

Corollary 10.9. Assume that n is even and let $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ be any continuous map. Then there is an $x \in \mathbb{S}^{n}$ with $f(x)=x$ or $f(x)=-x$.

Finally, we can say the following about hairstyles of hedgehogs of arbitrary even dimension:
Proposition 10.10. Any tangential vector field on $\mathbb{S}^{2 k}$ is trivial in at least one point.

Proof. Recall that we can describe the tangent space at a point $x \in \mathbb{S}^{2 k}$ as

$$
T_{x}\left(\mathbb{S}^{2 k}\right)=\left\{y \in \mathbb{R}^{2 k+1} \mid\langle x, y\rangle=0\right\} .
$$

Assume that $V: \mathbb{S}^{2 k} \rightarrow T\left(\mathbb{S}^{2 k}\right)$ with $V(x) \in T_{x}\left(\mathbb{S}^{2 k}\right)$ for all x is a tangential vector field which does not vanish, i.e., $V(x) \neq 0$ for all $x \in \mathbb{S}^{2 k}$.

Define $f(x):=\frac{V(x)}{\|V(x)\|}$. If $f(x)=x$, then $V(x)=\|V(x)\| x$. But this means that $V(x)$ points into the direction of x and thus it cannot be tangential. Similarly, $f(x)=-x$ yields the same contradiction. Thus such a V cannot exist.

11. CW complexes

Definition 11.1. Let X be a topological space. Then X is called an n-cell, if X is homeomorphic to \mathbb{R}^{n}. The number n is then the dimension of the cell.

Examples. Every point is a zero cell and $D^{n} \cong \mathbb{R}^{n} \cong \mathbb{S}^{n} \backslash N$ are n-cells.
Note that an n-cell cannot be an m-cell for $n \neq m$, because $\mathbb{R}^{n} \not \not \mathbb{R}^{m}$ for $n \neq m$.
Definition 11.2. A cell decomposition of a space X is a decomposition of X into subspaces, each of which is a cell of some dimension, i.e.,

$$
X=\bigsqcup_{i \in I} X_{i}, \quad X_{i} \cong \mathbb{R}^{n_{i}}
$$

Here, this decomposition is meant as a set, not as a topological space.

Examples.

- A hollow 3-dimensional cube has a cell decomposition into 8 points, 12 open edges, and 6 open faces.
- The standard 3 -simplex can be decomposed into 4 zero-cells, 6 1-cells, 42 -cells, and a 3 -cell.
- The n-dimensional sphere (for $n>0$) has a cell decomposition into the north pole and its complement.

Definition 11.3. A topological Hausdorff space X together with a cell decomposition is called a $C W$ complex, if it satisfies the following conditions:
(a) For every n-cell $\sigma \subset X$ there is a continuous map $\Phi_{\sigma}: \mathbb{D}^{n} \rightarrow X$ such that the restriction of Φ_{σ} to \mathbb{D}^{n} is a homeomorphism

$$
\left.\Phi_{\sigma}\right|_{\mathbb{D}^{n}}: \dot{\mathbb{D}}^{n} \cong \sigma
$$

and Φ_{σ} maps \mathbb{S}^{n-1} to the union of cells of dimension at most $n-1$.
(b) For every n-cell σ, the closure $\bar{\sigma} \subset X$ has a non-trivial intersection with only finitely many cells of X.
(c) A subset $A \subset X$ is closed if and only if $A \cap \bar{\sigma}$ is closed for all cells σ in X.

- The map Φ_{σ} as in (a) is called the characteristic map of the cell σ. Its restriction $\left.\Phi_{\sigma}\right|_{\mathbb{S}^{n-1}}$ is called attaching map.
- Property (b) is the closure finite condition: the closure of every cell is contained in finitely many cells. That's the 'C' in CW.
- Property (c) tells us that X has the weak topology. That's the 'W'.
- If X is a CW complex with only finitely many cells, then we call X finite.

Definition 11.4. Assume that X is a CW complex.

- We set $X^{n}:=\bigcup_{\sigma \subset X, \operatorname{dim}(\sigma) \leqslant n} \sigma$ and call it the n-skeleton of X.
- If we have $X=X^{n}$, but $X^{n-1} \subsetneq X$, then we say that X is n-dimensional, i.e., $\operatorname{dim}(X)=n$.
- A subset $Y \subset X$ of a CW complex X is called a subcomplex (sub-CW complex), if it has a cell decomposition by cells in X and if for any cell $\sigma \subset Y$ we also have $\bar{\sigma} \subset Y$.
- For any subcomplex $Y \subset X,(X, Y)$ is a $C W$-pair.

Note, that any subcomplex of a CW complex is again a CW complex: the characteristic maps Φ_{σ} for Y are the same as for X. We obtain that Y is closed in X because of the second requirement and this guarantees that Y has the weak topology. If $\bar{\sigma} \subset X$ and $\sigma \subset Y$, then $\bar{\sigma} \subset Y$. As Y is closed, this says that Y satisfies condition (b) of a CW complex.
Examples The unit interval $[0,1]$ has a CW structure with two zero cells and one 1-cell. But for instance the decomposition $\sigma_{0}^{0}=\{0\}, \sigma_{k}^{0}=\left\{\frac{1}{k}\right\}, k>0$ and $\sigma_{k}^{1}=\left(\frac{1}{k+1}, \frac{1}{k}\right)$ does not give a CW structure on [0, 1]. Consider the following $A \subset[0,1]$

$$
A:=\left\{\left.\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+1}\right) \right\rvert\, k \in \mathbb{N}\right\} .
$$

Then $A \cap \bar{\sigma}_{k}^{1}$ is precisely the point $\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+1}\right)$ and this is closed, but A isn't.
We want to understand the topology of CW complexes. Note that cells don't have to be open in X : if X is a CW complex and σ is an n-cell, then σ is open in the n-skeleton of X, X^{n} and X^{n} is closed in X.

Of course, as a set we have $X=\bigcup_{n \geqslant 0} X^{n}$. From the condition that A is closed in X if and only if the intersection of A with $\bar{\sigma}$ is closed for any cell σ we see that A is closed in X if and only if $A \cap X^{n}$ is closed for all $n \geqslant 0$. This is an instance of a direct limit topology on X and this is denoted by

$$
X=\underset{\longrightarrow}{\lim } X^{n}
$$

Such a direct limit has the following universal property: for any system of maps $\left(f_{n}: X^{n} \rightarrow Z\right)_{n \geqslant 0}$ such that $\left.f_{n+1}\right|_{X^{n}}=f_{n}$ there is a uniquely determined continuous map $f: X \rightarrow Z$ such that $\left.f\right|_{X^{n}}=f_{n}$.

Note that CW structures on a fixed topological space are not unique. For instance you can consider \mathbb{S}^{2} with the CW structure coming from the cell decomposition $\mathbb{S}^{2}=\mathbb{S}^{2} \backslash N \sqcup N$. Then the zero skeleton of \mathbb{S}^{2} only consists of the north pole N and this agrees with the 1 -skeleton, but the 2 -skeleton is equal to \mathbb{S}^{2}.

But of course there are many other CW structures. Take your favorite dice, i.e., a tetrahedron, a cube, an octahedron, a dodecahedron, an icosahedron or something less regular like a rhombic dodecahedron. Imagine these dice are hollow and project them to \mathbb{S}^{2}. Then you get different CW structures on \mathbb{S}^{2} that way.

Definition 11.5. Let X and Y be CW complexes. A continuous map $f: X \rightarrow Y$ is called cellular, if $f\left(X^{n}\right) \subset Y^{n}$ for all $n \geqslant 0$.

The category of CW complexes together with cellular maps is rather flexible. Most of the classical constructions don't lead out of it, but one has to be careful with respect to products:

Proposition 11.6. If X and Y are $C W$ complexes then $X \times Y$ is a $C W$ complex if one of the factors is locally compact.

Proof. As products of cells are cells, $X \times Y$ inherits a cell decomposition from its factors. We need to ensure that $X \times Y$ carries the weak topology. For this we prove a slightly more general auxiliary fact: if X, Y and Z are topological spaces satisfying the Hausdorff condition and if $\pi: X \rightarrow Y$ gives Y the quotient topology, and if Z is locally compact, then

$$
\pi \times \mathrm{id}: X \times Z \rightarrow Y \times Z
$$

gives $Y \times Z$ the quotient topology. For this we show that $Y \times Z$ has the universal property of a quotient space, so if $g: Y \times Z \rightarrow W$ is a map of sets and assume that the composition $g \circ(\pi \times \mathrm{id})$ is continuous. As Z is locally compact and as all spaces are Hausdorff, there is a homeomorphism

$$
C(X \times Z, W) \cong C(X, C(Z, W))
$$

of topological spaces. (Here for two spaces $U, V, C(U, V)$ is the set of all continuous maps from U to V and the topology of $C(U, V)$ is generated (under finite intersections and arbitrary unions) by the sets $V(K, O):=\{f \in C(U, V) \mid f(K) \subset O\}$ for compact $K \subset U$ and open $O \subset V$.)

Under this adjunction $g \circ(\pi \times \mathrm{id})$ corresponds to the composite

$$
\tilde{g}: X \xrightarrow{\pi} Y \xrightarrow{\bar{g}} C(Z, W) .
$$

As \tilde{g} is continuous and as Y carries the quotient topology we get that \bar{g} is continuous and hence g is continuous, too.

With the help of this result we consider the characteristic maps of X and Y,

$$
\begin{aligned}
& \Phi_{\sigma}: \dot{D}^{n} \rightarrow X, \sigma \text { a cell in } X \\
& \Psi_{\tau}: \dot{D}^{m} \rightarrow Y, \tau \text { a cell in } Y .
\end{aligned}
$$

Then we can use these maps to write $X \times Y$ as a target of a map

$$
\Phi \times \Psi:\left(\bigsqcup_{\sigma} \stackrel{\circ}{D}^{n}\right) \times\left(\bigsqcup_{\tau} \stackrel{\circ}{D}^{m}\right) \rightarrow X \times Y
$$

Assume that Y is locally compact. We have to show that $X \times Y$ carries the quotient topology with respect to this map. We know that each \mathbb{D}^{n} is locally compact, thus so is the disjoint union of open discs. The map $\mathrm{id}_{\sqcup \mathbb{D}^{n}} \times \Psi$ gives $\left(\bigsqcup \dot{\mathbb{D}}^{n}\right) \times Y$ the quotient topology and by assumption Y is locally compact and therefore $\Phi \times \mathrm{id}_{Y}$ induces the quotient topology on $X \times Y$.

Lemma 11.7. If D is a subset of a $C W$ complex X and D intersects each cell in at most one point, then D is discrete.

Proof. Let S be an arbitrary subset of D. We show that S is closed. We know that $S \cap \bar{\sigma}$ is finite, because $\bar{\sigma}$ is covered by finitely many cells. Therefore $S \cap \bar{\sigma}$ is closed in $\bar{\sigma}$, because X is Hausdorff (and therefore T_{1}). But then the weak topology guarantees that S is closed.

Corollary 11.8. Let X be a $C W$ complex.
(a) Every compact subset $K \subset X$ is contained in a finite union of cells.
(b) The space X is compact if and only if it is a finite $C W$ complex.
(c) The space X is locally compact if and only if it is locally finite, i.e., every point has a neighborhood that is contained in finitely many cells.
Proof. It is easy to see that (a) implies (b) and that (b) implies (c). Thus we only prove (a): consider the intersections $K \cap \sigma$ and choose a point p_{σ} in every non-empty intersection. Then $D:=\left\{p_{\sigma} \mid \sigma\right.$ a cell in $\left.X\right\}$ is discrete. It is also compact and therefore finite.

Corollary 11.9. If $f: K \rightarrow X$ is a continuous map from a compact space K to a $C W$ complex X, then the image of K under f is contained in a finite skeleton.

For the proof just note that $f(K)$ is compact in X.
Proposition 11.10. Let A be a subcomplex of a $C W$ complex X. Then $X \times\{0\} \cup A \times[0,1]$ is a strong deformation retract of $X \times[0,1]$.

Proof. For $r: \mathbb{D}^{n} \times[0,1] \rightarrow \mathbb{D}^{n} \times\{0\} \cup \mathbb{S}^{n-1} \times[0,1]$ we can choose the standard retraction of a cylinder onto its bottom and sides.

As $X^{n} \times[0,1]$ is built out of $X^{n} \times\{0\} \cup\left(X^{n-1} \cup A^{n}\right) \times[0,1]$ by gluing in copies of $\mathbb{D}^{n} \times[0,1]$ along $\mathbb{D}^{n} \times\{0\} \cup \mathbb{S}^{n-1} \times[0,1]$ we get that $X^{n} \times[0,1]$ is a deformation retract of $X^{n} \times\{0\} \cup\left(X^{n-1} \cup A^{n}\right) \times[0,1]$. We can parametrize the retracting homotopy in such a way that it takes place in the time interval $\left[\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right]$. Using the direct limit topology on X, we obtain a deformation of $X \times I$ to $X \times\{0\} \cup A \times[0,1]$.

The property in Proposition 11.10 implies the so-called homotopy extension property, (HEP): If $g: X \rightarrow$ Y is a map and $H: A \times[0,1] \rightarrow Y$ is a homotopy such that $\left.H\right|_{A \times\{0\}}=g$, then there is an extension of H to $X \times[0,1]$, compatible with g and H. This identifies $A \rightarrow X$ as a so-called cofibration.

In the following we just collect some facts about the topology of CW complexes, that I won't prove:
Lemma 11.11.

- For any subcomplex $A \subset X$ there is an open neighborhood U of A in X together with a strong deformation retraction to A. In particular, for each skeleton X^{n} there is an open neighborhood U in X (and as well in X^{n+1}) of X^{n} such that X^{n} is a strong deformation retract of U.
- Every CW complex is paracompact, locally path-connected and locally contractible.
- Every CW complex is semi-locally 1-connected, hence possesses a universal covering space.

Lemma 11.12. For any $C W$ complex X we get for the skeleta:
(a)

$$
X^{n} \backslash X^{n-1}=\bigsqcup_{\sigma \text { an } n \text {-cell }} \sigma \cong \bigsqcup_{\sigma \text { an } n \text {-cell }} \mathbb{D}^{n}
$$

(b)

$$
X^{n} / X^{n-1} \cong \bigvee_{\sigma \text { an } n-\text { cell }} \mathbb{S}^{n}
$$

Proof. The first claim follows directly from the definition of a CW complex. For the second claim note that the characteristic maps send the boundary $\partial \mathbb{D}^{n}$ to the $n-1$-skeleton and hence for every n-cell we get a copy of \mathbb{S}^{n} in the quotient.

Example Consider the hollow cube W^{2}. Then $W^{2} / W^{1} \cong \bigvee_{i=1}^{6} \mathbb{S}^{2}$.

12. Cellular homology

In the following, X will always be a CW complex.
Lemma 12.1. For all $q \neq n \geqslant 1, H_{q}\left(X^{n}, X^{n-1}\right)=0$.
Proof. Using the identification of relative homology and reduced homology of the quotient gives

$$
H_{q}\left(X^{n}, X^{n-1}\right) \cong \tilde{H}_{q}\left(X^{n} / X^{n-1}\right) \cong \bigoplus_{\sigma \text { an } n \text {-cell }} \tilde{H}_{q}\left(\mathbb{S}^{n}\right)
$$

Lemma 12.2. Consider the inclusion $i_{n}: X^{n} \rightarrow X$.
(a) The induced map $H_{n}\left(i_{n}\right): H_{n}\left(X^{n}\right) \rightarrow H_{n}(X)$ is surjective.
(b) On the $(n+1)$-skeleton we get an isomorphism

$$
H_{n}\left(i_{n+1}\right): H_{n}\left(X^{n+1}\right) \cong H_{n}(X)
$$

Proof. (a) We can factor i_{n} as

The map $H_{n}\left(\alpha_{1}\right): H_{n}\left(X^{n}\right) \rightarrow H_{n}\left(X^{n+1}\right)$ is surjective, because $H_{n}\left(X^{n+1}, X^{n}\right)=0$. For $i>1$ we have the following piece of the long exact sequence of the pair (X^{n+i}, X^{n+i-1})

$$
0 \cong H_{n+1}\left(X^{n+i}, X^{n+i-1}\right) \longrightarrow H_{n}\left(X^{n+i-1}\right) \xrightarrow{H_{n}\left(\alpha_{i}\right)} H_{n}\left(X^{n+i}\right) \longrightarrow H_{n}\left(X^{n+i}, X^{n+i-1}\right) \cong 0
$$

Therefore $H_{n}\left(\alpha_{i}\right)$ is an isomorphism in this range. If X is finite-dimensional, this already proves the claim.
Every singular simplex in X has an image that is contained in one of the X^{m} s because the standard simplices are compact. If $a \in S_{n}(X)$ is a chain, $a=\sum_{i=1}^{m} \lambda_{i} \beta_{i}$ then we can find an M such that the images of all the β_{i} 's are contained in X^{M}, say for $M=n+q$. Therefore every $[a] \in H_{n}(X)$ can be written as $i_{M}[b]$, but $\alpha_{q} \circ \ldots \circ \alpha_{1}$ is surjective, hence $[b]$ is of the form $\alpha_{q} \circ \ldots \circ \alpha_{1}[c]$ but then

$$
[a]=i_{M} \circ \alpha_{q} \circ \ldots \circ \alpha_{1}[c]=i_{n}[c]
$$

thus i_{n} is surjective.
(b) If $[a]=H_{n}\left(i_{n+1}\right)[u]=0$, then again we can write $[a]$ as $i_{M} \circ \alpha_{q} \circ \ldots \circ \alpha_{2}[u]$ where the α_{i} 's are now isos and i_{M} indicates that it suffices to use the M-skeleton of X in order to define $[a]$, hence $[a]$ was trivial to start with.

Corollary 12.3. For $C W$ complexes X, Y we have
(a) If the n-skeleta X^{n} and Y^{n} are homeomorphic, then $H_{q}(X) \cong H_{q}(Y)$, for all $q<n$.
(b) If X has no q-cells, then $H_{q}(X) \cong 0$.
(c) In particular, if q exceeds the dimension of X, then $H_{q}(X) \cong 0$.

Proof. The first claim is a direct consequence of the lemma above.
By assumption in (b) $X^{q-1}=X^{q}$, therefore we have $H_{q}\left(X^{q-1}\right) \cong H_{q}\left(X^{q}\right)$ and the latter surjects onto $H_{q}(X)$. We show that $H_{n}\left(X^{r}\right) \cong 0$ for $n>r$. To that end we use the chain of isomorphisms

$$
H_{n}\left(X^{r}\right) \cong H_{n}\left(X^{r-1}\right) \cong \ldots \cong H_{n}\left(X^{0}\right)
$$

which holds because the adjacent relative groups $H_{n}\left(X^{i}, X^{i-1}\right)$ are trivial for $i<n$.

Again, X is a CW complex.

Definition 12.4. The cellular chain complex $C_{*}(X)$ consists of $C_{n}(X):=H_{n}\left(X^{n}, X^{n-1}\right)$ with boundary operator

$$
d: H_{n}\left(X^{n}, X^{n-1}\right) \xrightarrow{\delta} H_{n-1}\left(X^{n-1}\right) \xrightarrow{\varrho} H_{n-1}\left(X^{n-1}, X^{n-2}\right)
$$

where ϱ is the map induced by the projection map $S_{n-1}\left(X^{n-1}\right) \rightarrow S_{n-1}\left(X^{n-1}, X^{n-2}\right)$.

Note that $C_{n}(X)$ is a free abelian group with

$$
C_{n}(X) \cong \bigoplus_{\sigma \text { an } n \text {-cell }} \tilde{H}_{n}\left(\mathbb{S}^{n}\right) \cong \bigoplus_{\sigma \text { an } n \text {-cell }} \mathbb{Z}
$$

For $n<0, C_{n}(X)$ is trivial. If X has only finitely many n-cells, then $C_{n}(X)$ is finitely generated. If X is a finite CW complex, then $C_{*}(X)$ is finitely generated as a chain complex, i.e., $C_{n}(X)$ is only non-trivial in finitely many degrees n, and in these degrees, $C_{n}(X)$ is finitely generated. In this case, the boundary operator can be calculated using matrices over the integers.

LEmma 12.5. The map d is a boundary operator.

Proof. The composition d^{2} is $\varrho \circ \delta \circ \varrho \circ \delta$, but $\delta \circ \varrho$ is a composition in an exact sequence.

THEOREM 12.6. (Comparison of cellular and singular homology) For every $C W$ complex X, there is an isomorphism $\Upsilon: H_{*}\left(C_{*}(X), d\right) \cong H_{*}(X)$.

Proof. Consider the diagram

- All occurring ϱ-maps are injective because $H_{k}\left(X^{k-1}\right) \cong 0$ for all k.
- For every $a \in H_{n}\left(X^{n}\right) \varrho(a)$ is a cycle for d :

$$
d \varrho(a)=\varrho \delta \varrho(a)=0 .
$$

- Let $c \in C_{n}(X)$ be a d-cycle, thus $0=d c=\varrho \delta c$ and as ϱ is injective we obtain $\delta c=0$. Exactness yields that $c=\varrho(a)$ for an $a \in H_{n}\left(X^{n}\right)$. Hence,

$$
H_{n}\left(X^{n}\right) \cong \operatorname{ker}\left(d: C_{n}(X) \rightarrow C_{n-1}(X)\right) .
$$

- We define $\Upsilon: \operatorname{ker}(d) \rightarrow H_{n}(X)$ as $\Upsilon(c)=H_{n}\left(i_{n}\right)(a)$ for $c=\varrho(a)$ and $H_{n}\left(i_{n}\right): H_{n}\left(X^{n}\right) \rightarrow H_{n}(X)$.
- The map Υ is surjective because $H_{n}\left(i_{n}\right)$ is surjective.
- In the diagram, the triangles commute, i.e., $\delta=\delta^{\prime} \circ \lambda$.
- Consider the sequence

$$
H_{n+1}\left(X^{n+1}\right) \longrightarrow H_{n+1}(X) \longrightarrow H_{n+1}\left(X, X^{n+1}\right) \longrightarrow H_{n}\left(X^{n+1}\right) \cong \xlongequal{\cong} H_{n}(X)
$$

which tells us that $H_{n+1}\left(X, X^{n+1}\right)=0$ and this in turn implies that λ is surjective.

- Using this we obtain

$$
\operatorname{im}(\delta)=\operatorname{im}\left(\delta^{\prime}\right)=\operatorname{ker}\left(H_{n}\left(i_{n}\right)\right) .
$$

As $d=\varrho \circ \delta$, the map ϱ induces an isomorphism between the image of d and the image of δ.

- Taking all facts into account we get that ϱ induces an isomorphism

$$
\frac{\operatorname{ker}\left(d: C_{n}(X) \rightarrow C_{n-1}(X)\right)}{\operatorname{im}\left(d: C_{n+1}(X) \rightarrow C_{n}(X)\right)} \cong \frac{H_{n}\left(X^{n}\right)}{\operatorname{ker}\left(H_{n}\left(i_{n}\right)\right)}
$$

But the sequence

$$
0 \longrightarrow \operatorname{ker} H_{n}\left(i_{n}\right) \longrightarrow H_{n}\left(X^{n}\right) \longrightarrow \operatorname{im}\left(H_{n}\left(i_{n}\right)\right) \longrightarrow 0
$$

is exact and therefore

$$
H_{n}\left(X^{n}\right) / \operatorname{ker}\left(H_{n}\left(i_{n}\right)\right) \cong \operatorname{im} H_{n}\left(i_{n}\right) \cong H_{n}(X) .
$$

Examples Projective Spaces

Let K be \mathbb{R}, \mathbb{C} or \mathbb{H} with $m:=\operatorname{dim}_{\mathbb{R}}(K)$ and let $K^{*}=K \backslash\{0\}$. We let K^{*} act on K^{n+1} via

$$
K^{*} \times K^{n+1} \backslash\{0\} \rightarrow K^{n+1} \backslash\{0\}, \quad(\lambda, v) \mapsto \lambda v
$$

We define $K P^{n}=\left(K^{n+1} \backslash\{0\}\right) / K^{*}$ and we denote the equivalence class of $\left(x_{0}, \ldots, x_{n}\right)$ in $K P^{n}$ by $\left[x_{0}: \ldots\right.$: x_{n}].

We define

$$
X_{i}:=\left\{\left[x_{0}: \ldots: x_{n}\right] \mid x_{i} \neq 0, x_{i+1}=\ldots=x_{n}=0\right\}
$$

and consider the map

$$
\xi_{i}: X_{i} \rightarrow K^{i}, \quad \xi_{i}\left[x_{0}: \ldots: x_{n}\right]=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}\right)
$$

As ξ_{i} is a homeomorphism, we see that X_{i} is a cell of dimension $i \cdot m$. We can write $K P^{n}$ as $X_{0} \sqcup \ldots \sqcup X_{n}$ and we have characteristic maps $\Phi_{i}: \mathbb{D}^{m i} \rightarrow K P^{n}$ as

$$
\Phi_{i}(y)=\Phi_{i}\left(y_{0}, \ldots, y_{i-1}\right)=\left[y_{0}: \ldots: y_{i-1}: 1-\|y\|: 0: \ldots: 0\right]
$$

with $X_{i}=\Phi_{i}\left(\mathbb{D}^{m i}\right)$.

1) First we consider the case $K=\mathbb{C}$. Here, we have a cell in each even dimension $0,2,4, \ldots, 2 n$ for $\mathbb{C} P^{n}$. Therefore the cellular chain complex is

$$
C_{k}\left(\mathbb{C} P^{n}\right)= \begin{cases}\mathbb{Z} & k=2 i, 0 \leqslant i \leqslant n \\ 0 & k=2 i-1 \text { or } k>2 n\end{cases}
$$

The boundary operator is zero in each degree and thus

$$
H_{*}\left(\mathbb{C} P^{n}\right)= \begin{cases}\mathbb{Z}, & *=2 i, 0 \leqslant * \leqslant 2 n \\ 0, & \text { otherwise }\end{cases}
$$

2) The case of the quaternions is similar. Here the cells are spread in degrees congruent to zero modulo four, thus

$$
H_{*}\left(\mathbb{H} P^{n}\right)= \begin{cases}\mathbb{Z}, & *=4 i, 0 \leqslant * \leqslant 4 n \\ 0, & \text { otherwise }\end{cases}
$$

3) Non-trivial boundary operators occur in the case of the real numbers. Here, we have a cell in each dimension up to n and thus the homology of $\mathbb{R} P^{n}$ is the homology of the chain complex

$$
0 \longrightarrow C_{n} \cong \mathbb{Z} \xrightarrow{d} C_{n-1} \cong \mathbb{Z} \xrightarrow{d} \ldots \xrightarrow{d} C_{0} \cong \mathbb{Z}
$$

For the computation of d we consider the diagram

Let $\varphi_{i}=\left.\Phi_{i}\right|_{\mathbb{S}^{i-1}}: \mathbb{S}^{i-1} \rightarrow \mathbb{S}^{i-1} / \pm \mathrm{id}$. The preimage of a class $[x] \in \mathbb{S}^{i-1} / \pm \mathrm{id}$ is $\{ \pm x\}$. We consider the composition $\bar{\varphi}_{i}$

and have to determine its degree.

By construction $\bar{\varphi}_{i} \circ A=\bar{\varphi}_{i}$ and thus

$$
\operatorname{deg}\left(\bar{\varphi}_{i}\right)=\operatorname{deg}\left(\bar{\varphi}_{i} \circ A\right)=(-1)^{i} \operatorname{deg}\left(\bar{\varphi}_{i}\right)
$$

and hence the degree of $\bar{\varphi}_{i}$ is trivial for odd i. The complement $\mathbb{S}^{i-1} \backslash \mathbb{S}^{i-2}$ has two components X_{+}, X_{-}and A exchanges these two components. The map $\bar{\varphi}_{i}$ sends X_{+}and X_{-}to $\left[X_{+}\right]$. Therefore the degree of $\bar{\varphi}_{i}$ is

$$
\operatorname{deg}\left(\bar{\varphi}_{i}\right)=\operatorname{deg}(F \circ(\operatorname{id} \vee A) \circ T)=\operatorname{deg}(\operatorname{id})+\operatorname{deg}(A)=1+(-1)^{i}
$$

and d is either zero or two. Thus, depending on n we get

$$
H_{k}\left(\mathbb{R} P^{n}\right)= \begin{cases}\mathbb{Z} & k=0 \\ \mathbb{Z} / 2 \mathbb{Z} & k \leqslant n, k \text { odd } \\ 0 & \text { otherwise }\end{cases}
$$

for n even.
For odd dimensions n we get

$$
H_{k}\left(\mathbb{R} P^{n}\right)= \begin{cases}\mathbb{Z} & k=0, n \\ \mathbb{Z} / 2 \mathbb{Z} & 0<k<n, k \text { odd } \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\mathbb{R} P^{1} \cong \mathbb{S}^{1}$ and $\mathbb{R} P^{3} \cong S O(3)$.

13. Homology with coefficients

Let G be an arbitrary abelian group.
Definition 13.1. The singular chain complex of a topological space X with coefficients in $G, S_{*}(X ; G)$, has as elements in $S_{n}(X ; G)$ finite sums of the form $\sum_{i=1}^{N} g_{i} \alpha_{i}$ with g_{i} in G and $\alpha_{i}: \Delta^{n} \rightarrow X$. Addition in $S_{n}(X ; G)$ is given by

$$
\sum_{i=1}^{N} g_{i} \alpha_{i}+\sum_{i=1}^{N} h_{i} \alpha_{i}=\sum_{i=1}^{N}\left(g_{i}+h_{i}\right) \alpha_{i}
$$

The nth (singular) homology group of X with coefficients in G is

$$
H_{n}(X ; G):=H_{n}\left(S_{*}(X ; G)\right)
$$

where the boundary operator $\partial: S_{n}(X ; G) \rightarrow S_{n-1}(X ; G)$ is given by

$$
\partial\left(\sum_{i=1}^{N} g_{i} \alpha_{i}\right)=\sum_{j=0}^{n}(-1)^{j}\left(\sum_{i=1}^{N} g_{i}\left(\alpha_{i} \circ d_{j}\right)\right) .
$$

We use a similar definition for cellular homology of a $C W$ complex X with coefficients in G. Recall, that $C_{n}(X)=H_{n}\left(X^{n}, X^{n-1}\right) \cong \bigoplus_{\sigma \text { an } n \text {-cell }} \mathbb{Z}$.

Definition 13.2. We denote a $c \in C_{n}(X ; G)$ as $c=\sum_{i=1}^{N} g_{i} \sigma_{i} \in \bigoplus_{\sigma}$ an n-cell G and let the boundary operator \tilde{d} be defined by $\tilde{d} c=\sum_{i=1}^{N} g_{i} d\left(\sigma_{i}\right)$ where $d: C_{n}(X) \rightarrow C_{n-1}(X)$ is the boundary in the cellular chain complex of X.

We can transfer Theorem 12.6 to the case of homology with coefficients:

$$
H_{n}(X ; G) \cong H_{n}\left(C_{*}(X ; G), \tilde{d}\right)
$$

for every CW complex X and therefore we denote the latter by $H_{n}(X ; G)$ as well.
Note, that $H_{n}(X ; \mathbb{Z})=H_{n}(X)$ for every space X.
Example If we consider the case $X=\mathbb{R} P^{2}$, then we see that coefficients really make a difference.
Recall that for $G=\mathbb{Z}$ we had that $H_{0}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z}, H_{1}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ and $H_{2}\left(\mathbb{R} P^{2}\right)=0$. However, for $G=\mathbb{Z} / 2 \mathbb{Z}$ the outcome differs drastically. The cellular chain complex looks as follows:

$$
0 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{2=0} \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{0} \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 0
$$

and therefore $H_{i}\left(\mathbb{R} P^{2} ; \mathbb{Z} / 2 \mathbb{Z}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ for $0 \leqslant i \leqslant 2$.
If we consider $H_{*}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right)$ we obtain the cellular complex

$$
0 \longrightarrow \mathbb{Q} \xrightarrow{2} \mathbb{Q} \xrightarrow{0} \mathbb{Q} \longrightarrow 0
$$

But here, multiplication by 2 is an isomorphism and we get $H_{0}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right)=\mathbb{Q}, H_{1}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right)=\mathbb{Q} / 2 \mathbb{Q}=0$ and $H_{2}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right)=0$.

14. Tensor products and universal coefficient theorem

The question we want to pursue in this section is, whether $H_{*}(X, G)$ is computable from $H_{*}(X)$ and G. The general answer is 'Yes', but we need some basics from algebra to see that.

Let A and B be abelian groups.
Definition 14.1. The tensor product of A and $B, A \otimes B$, is the quotient of the free abelian group generated by $A \times B$ by the subgroup generated by
(a) $\left(a_{1}+a_{2}, b\right)-\left(a_{1}, b\right)-\left(a_{2}, b\right)$,
(b) $\left(a, b_{1}+b_{2}\right)-\left(a, b_{1}\right)-\left(a, b_{2}\right)$
for $a_{1}, a_{1}, a \in A$ and $b_{1}, b_{2}, b \in B$.
We denote an equivalence class of (a, b) in $A \otimes B$ by $a \otimes b$.
Note, that relations (a) and (b) imply that $\lambda(a \otimes b)=(\lambda a) \otimes b=a \otimes(\lambda b)$ for any integer $\lambda \in \mathbb{Z}$ and $a \in A, b \in B$. Elements in $A \otimes B$ are finite sums of equivalence classes $\sum_{i=1}^{n} \lambda_{i} a_{i} \otimes b_{i}$.

- Of course, $A \otimes B$ is generated by $a \otimes b$ with $a \in A, b \in B$.
- The tensor product is symmetric up to isomorphism and the isomorphism $A \otimes B \cong B \otimes A$ is given by

$$
\sum_{i=1}^{n} \lambda_{i} a_{i} \otimes b_{i} \mapsto \sum_{i=1}^{n} \lambda_{i} b_{i} \otimes a_{i}
$$

- It is associative up to isomorphism:

$$
A \otimes(B \otimes C) \cong(A \otimes B) \otimes C
$$

for all abelian groups A, B, C.

- For homomorphisms $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ we get an induced homomorphism

$$
f \otimes g: A \otimes B \rightarrow A^{\prime} \otimes B^{\prime}
$$

which is given by $(f \otimes g)(a \otimes b)=f(a) \otimes g(b)$ on generators.

- The tensor product has the following universal property. For abelian groups A, B, C, the bilinear maps from $A \times B$ to C are in bijection with the linear maps from $A \otimes B$ to C.
- We've already seen tensor products: Note that $S_{n}(X) \otimes G$ is isomorphic to $S_{n}(X, G)$ and $C_{n}(X) \otimes$ $G \cong C_{n}(X, G)$.
We collect the following properties of tensor products:
(a) For every abelian group A, we have

$$
A \otimes \mathbb{Z} \cong A \cong \mathbb{Z} \otimes A
$$

(b) For every abelian group A, we have

$$
A \otimes \mathbb{Z} / n \mathbb{Z} \cong A / n A
$$

Here, note that $n A=\{n a \mid a \in A\}$ makes sense in any abelian group. The isomorphism above is given by

$$
a \otimes \bar{i} \mapsto \overline{i a}
$$

where \bar{i} denotes an equivalence class of $i \in \mathbb{Z}$ in $\mathbb{Z} / n \mathbb{Z}$ and $\overline{i a}$ the class of $i a \in A$ in $A / n A$.
(c) If $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$ is a short exact sequence, then in general,

$$
0 \longrightarrow A \otimes D \xrightarrow{\alpha \otimes \mathrm{id}} B \otimes D \xrightarrow{\beta \otimes \mathrm{id}} C \otimes \mathrm{id} \longrightarrow 0
$$

is not exact for D abelian. For example,

$$
0 \rightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

is exact, but

$$
0 \rightarrow \mathbb{Z} \otimes \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \mathbb{Q} \otimes \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \mathbb{Q} / \mathbb{Z} \otimes \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

isn't, because $\mathbb{Q} \otimes \mathbb{Z} / 2 \mathbb{Z} \cong 0$.
Lemma 14.2. For every abelian group $D,(-) \otimes D$ is right exact, i.e., if $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$ is a short exact sequence, then

$$
A \otimes D \xrightarrow{\alpha \otimes \mathrm{id}} B \otimes D \xrightarrow{\beta \otimes \mathrm{id}} C \otimes D \longrightarrow 0
$$

is exact. If the exact sequence $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$ is a split short exact sequence, then

$$
0 \longrightarrow A \otimes D \xrightarrow{\alpha \otimes \mathrm{id}} B \otimes D \xrightarrow{\beta \otimes \mathrm{id}} C \otimes D \longrightarrow 0
$$

is exact.
Proof. Exercise.
A consequence of the failure of the functor $(-) \otimes D$ to be exact on the left hand side has as a consequence that $H_{n}(X, G)=H_{n}\left(S_{*}(X) \otimes G\right)$ is not always isomorphic to $H_{n}(X) \otimes G=H_{n}\left(S_{*}(X)\right) \otimes G$.

Definition 14.3. Let A be an abelian group. A short exact sequence $0 \rightarrow R \longrightarrow F \longrightarrow A \rightarrow 0$ with F a free abelian group is called a free resolution of A.

Note that in the situation above R is also free abelian because it can be identified with a subgroup of F.
Example For every $n \geqslant 1$, the sequence $0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \longrightarrow{ }^{\pi} \mathbb{Z} / n \mathbb{Z} \longrightarrow 0$ is a free resolution of $\mathbb{Z} / n \mathbb{Z}$.
Proposition 14.4. Every abelian group possesses a free resolution.
The resolution that we will construct in the proof is called the standard resolution of A.
Proof. Let F be the free abelian group generated by the elements of the underlying set of A. We denote by y_{a} the basis element in F corresponding to $a \in A$. Define a homomorphism

$$
p: F \rightarrow A, p\left(\sum_{a \in A} \lambda_{a} y_{a}\right)=\sum_{a \in A} \lambda_{a} a .
$$

Here, $\lambda_{a} \in \mathbb{Z}$ and this integer is non-trivial for only finitely many $a \in A$. By construction, p is an epimorphism. We set R to be the kernel of p and in that way obtain the desired free resolution of A.

Definition 14.5. For two abelian groups A and B and for $0 \longrightarrow R \longrightarrow T \longrightarrow A \longrightarrow 0$ the standard resolution of A we define

$$
\operatorname{Tor}(A, B):=\operatorname{ker}(i \otimes \mathrm{id}: R \otimes B \rightarrow F \otimes B) .
$$

In general, $i \otimes$ id doesn't have to be injective, thus $\operatorname{Tor}(A, B)$ won't be trivial. We will show that we can calculate $\operatorname{Tor}(A, B)$ via an arbitrary free resolution of A. To that end we prove the following result.

Proposition 14.6. For every homomorphism $f: A \rightarrow B$ and for free resolutions $0 \longrightarrow R \longrightarrow$ and $0 \longrightarrow R^{\prime} \xrightarrow{i^{\prime}} F^{\prime} \longrightarrow B \longrightarrow 0$ we have:
(a) There are homomorphisms $g: F \rightarrow F^{\prime}$ and $h: R \rightarrow R^{\prime}$, such that the diagram

commutes.
If g^{\prime}, h^{\prime} are also homomorphisms with this property, then there is an $\alpha: F \rightarrow R^{\prime}$ with $i^{\prime} \circ \alpha=g-g^{\prime}$ and $\alpha \circ i=h-h^{\prime}$.
(b) For every abelian group D the map $h \otimes \mathrm{id}: R \otimes D \rightarrow R^{\prime} \otimes D$ maps the kernel of $i \otimes \mathrm{id}$ to the kernel of $i^{\prime} \otimes \mathrm{id}$ and the restriction $\left.h \otimes \mathrm{id}\right|_{\operatorname{ker}(i \otimes \mathrm{id})}$ is independent of the choice of g and h. We denote this map by $\varphi\left(f, R \rightarrow F, R^{\prime} \rightarrow F^{\prime}\right)$.
(c) For a homomorphism $f^{\prime}: B \rightarrow C$ the map $\varphi\left(f^{\prime} \circ f, R \rightarrow F, R^{\prime \prime} \rightarrow F^{\prime \prime}\right)$ is equal to the composition $\varphi\left(f^{\prime}, R^{\prime} \rightarrow F^{\prime}, R^{\prime \prime} \rightarrow F^{\prime \prime}\right) \circ \varphi\left(f, R \rightarrow F, R^{\prime} \rightarrow F^{\prime}\right)$.

Note that we can view the α above as a chain homotopy between the chain maps g, h and g^{\prime}, h^{\prime}.

Proof. For (a) let $\left\{x_{i}\right\}$ be a basis of F and choose $y_{i} \in F^{\prime}$ with $p^{\prime}\left(y_{i}\right)=f p\left(x_{i}\right)$. We define $g: F \rightarrow F^{\prime}$ via $g\left(x_{i}\right)=y_{i}$. Thus $p^{\prime} \circ g\left(x_{i}\right)=p^{\prime}\left(y_{i}\right)=f p\left(x_{i}\right)$. For every $r \in R$ we obtain $p^{\prime} \circ g(i(r))=f \circ p \circ i(r)=0$ and therefore $g(i(r))$ is contained in the kernel of p^{\prime} which is equal to the image of i^{\prime}. In order to define h we use the injectivity of i^{\prime}, thus $h(r)$ is the unique preimage of $g(i(r))$ under i^{\prime}.

For h, h^{\prime} and g, g^{\prime} as in (a) we get for $x \in F$ that $g(x)-g^{\prime}(x)$ is in the kernel of p^{\prime} which is the image of i^{\prime}. Define α as $\left(i^{\prime}\right)^{-1}\left(g-g^{\prime}\right)$. Then by construction $i^{\prime} \alpha=g-g^{\prime}$ and

$$
i^{\prime}\left(h-h^{\prime}\right)=\left(g-g^{\prime}\right) i=i^{\prime} \alpha i .
$$

As i^{\prime} is injective, this yields $h-h^{\prime}=\alpha i$.
For (b) we consider an element z in the kernel of $i \otimes \mathrm{id}$. Note $\operatorname{ker}(i \otimes \mathrm{id}) \subset R \otimes D$. Then

$$
\left(i^{\prime} \otimes \mathrm{id}\right) \circ(h \otimes \mathrm{id})(z)=(g \otimes \mathrm{id}) \circ(i \otimes \mathrm{id})(z)=0
$$

and thus $(h \otimes \mathrm{id})(z)$ is in the kernel of $\left(i^{\prime} \otimes \mathrm{id}\right)$. If h^{\prime} is any other map satisfying the properties, then

$$
\left(h^{\prime} \otimes \mathrm{id}\right)(z)-(h \otimes \mathrm{id})(z)=\left(\left(h^{\prime}-h\right) \otimes \mathrm{id}\right)(z)=((-\alpha \circ i) \otimes \mathrm{id})(z)=-(\alpha \otimes \mathrm{id})(i \otimes \mathrm{id})(z)=0
$$

For (c) we note that the uniqueness in (b) implies (c).
Corollary 14.7. For every free resolution $0 \longrightarrow R^{\prime} \xrightarrow{i^{\prime}} F^{\prime} \longrightarrow A \longrightarrow 0$ we get a unique isomorphism

$$
\varphi\left(\operatorname{id}_{A}, R^{\prime} \rightarrow F^{\prime}, R \rightarrow F\right): \operatorname{ker}\left(i^{\prime} \otimes \mathrm{id}\right) \rightarrow \operatorname{Tor}(A, D)
$$

Thus we can calculate $\operatorname{Tor}(A, D)$ with every free resolution of A.
Examples
(a) $\operatorname{Tor}(\mathbb{Z} / n \mathbb{Z}, D) \cong\{d \in D \mid n d=0\}$ for all $n \geqslant 1$. That's why Tor is sometimes called torsion product.

For the calculation we use the resolution $0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z} / n \mathbb{Z} \longrightarrow 0$. By definition and by Corollary 14.7 we have

$$
\operatorname{Tor}(\mathbb{Z} / n \mathbb{Z}, D) \cong \operatorname{ker}(n \otimes \mathrm{id}: \mathbb{Z} \otimes D \rightarrow \mathbb{Z} \otimes D)
$$

As $\mathbb{Z} \otimes D \cong D$ and as $n \otimes$ id induces the multiplication by n, we get the claim.
(b) From the first example we obtain $\operatorname{Tor}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z}) \cong \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}$ because the n-torsion subgroup in $\mathbb{Z} / m \mathbb{Z}$ is $\mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}$.
(c) For A free abelian, $\operatorname{Tor}(A, D) \cong 0$ for arbitrary D. For this note that $0 \rightarrow 0 \rightarrow A=A \rightarrow 0$ is a free resolution of A and the kernel is a subgroup of $0 \otimes D=0$ and hence trivial.
(d) For two abelian groups A_{1}, A_{2}, D there is an isomorphism

$$
\operatorname{Tor}\left(A_{1} \oplus A_{2}, D\right) \cong \operatorname{Tor}\left(A_{1}, D\right) \oplus \operatorname{Tor}\left(A_{2}, D\right)
$$

Consider free resolutions

$$
0 \rightarrow R_{i} \rightarrow F_{i} \rightarrow A_{i} \rightarrow 0, i=1,2
$$

Their direct sum

$$
0 \rightarrow R_{1} \oplus R_{2} \rightarrow F_{1} \oplus F_{2} \rightarrow A_{1} \oplus A_{2} \rightarrow 0
$$

is a free resolution of $A_{1} \oplus A_{2}$ with

$$
\operatorname{ker}\left(\left(i_{1} \oplus i_{2}\right) \otimes \mathrm{id}\right)=\operatorname{ker}\left(i_{1} \otimes \mathrm{id}\right) \oplus \operatorname{ker}\left(i_{2} \otimes \mathrm{id}\right)
$$

We extend the definition of tensor products to chain complexes.
Definition 14.8. Are $\left(C_{*}, d\right)$ and $\left(C_{*}^{\prime}, d^{\prime}\right)$ two chain complexes, then $\left(C_{*} \otimes C_{*}^{\prime}, d_{\otimes}\right)$ is the chain complex with

$$
\left(C_{*} \otimes C_{*}^{\prime}\right)_{n}=\bigoplus_{p+q=n} C_{p} \otimes C_{q}^{\prime}
$$

and with $d_{\otimes}\left(c_{p} \otimes c_{q}^{\prime}\right)=\left(d c_{p}\right) \otimes c_{q}^{\prime}+(-1)^{p} c_{p} \otimes d^{\prime} c_{q}^{\prime}$.
Lemma 14.9. The map d_{\otimes} is a differential.
Proof. The composition is

$$
d_{\otimes}\left(\left(d c_{p}\right) \otimes c_{q}^{\prime}+(-1)^{p} c_{p} \otimes d^{\prime} c_{q}^{\prime}\right)=0+(-1)^{p-1}\left(d c_{p}\right) \otimes\left(d^{\prime} c_{q}^{\prime}\right)+(-1)^{p}\left(d c_{p}\right) \otimes\left(d^{\prime} c_{q}^{\prime}\right)+0=0
$$

Example Let G be an abelian group, then let C_{G} be the chain complex with

$$
\left(C_{G}\right)_{n}= \begin{cases}G, & n=0 \\ 0, & n \neq 0\end{cases}
$$

Then for every chain complex $\left(C_{*}, d\right)$

$$
\left(C_{*} \otimes C_{G}\right)_{n}=C_{n} \otimes G, \quad d_{\otimes}=d \otimes \mathrm{id}
$$

In particular, for every topological space X,

$$
S_{*}(X) \otimes C_{G} \cong S_{*}(X) \otimes G=S_{*}(X, G)
$$

Similarly, for a CW complex X we get $C_{*}(X ; G)=C_{*}(X) \otimes C_{G}$.
For every pair of spaces (X, A) we set

$$
S_{*}(X, A ; G):=S_{*}(X, A) \otimes C_{G}
$$

A map $f:\left(C_{*}, d\right) \rightarrow\left(D_{*}, d_{D}\right)$ induces a map of chain complexes

$$
f \otimes \mathrm{id}: C_{*} \otimes C_{*}^{\prime} \rightarrow D_{*} \otimes C_{*}^{\prime}
$$

In particular, for every continuous (cellular) map we get induced maps on singular (cellular) homology with coefficients.

Note, that $H_{*}(\mathrm{pt} ; G) \cong \begin{cases}G, & *=0 \\ 0, & * \neq 0 .\end{cases}$
Definition 14.10. A chain complex C_{*} is called free, if C_{n} is a free abelian group for all $n \in \mathbb{Z}$.
Examples The complexes $S_{*}(X, A)$ and $C_{*}(X)$ are free.

THEOREM 14.11. (Universal coefficient theorem (algebraic version)) Let C_{*} be a free chain complex and G an abelian group, then for all $n \in \mathbb{Z}$ we have a split short exact sequence

$$
0 \rightarrow H_{n}\left(C_{*}\right) \otimes G \rightarrow H_{n}\left(C_{*} \otimes G\right) \rightarrow \operatorname{Tor}\left(H_{n-1}\left(C_{*}\right), G\right) \rightarrow 0
$$

in particular

$$
H_{n}\left(C_{*} \otimes G\right) \cong H_{n}\left(C_{*}\right) \otimes G \oplus \operatorname{Tor}\left(H_{n-1}\left(C_{*}\right), G\right)
$$

THEOREM 14.12. (Universal coefficient theorem (topological version)) For every space X there is a split short exact sequence

$$
0 \rightarrow H_{n}(X) \otimes G \rightarrow H_{n}(X ; G) \rightarrow \operatorname{Tor}\left(H_{n-1}(X), G\right) \rightarrow 0
$$

and therefore we get an isomorphism

$$
H_{n}(X ; G) \cong H_{n}(X) \otimes G \oplus \operatorname{Tor}\left(H_{n-1}(X), G\right)
$$

Example For $X=\mathbb{R} P^{2}$ we obtain

$$
H_{n}\left(\mathbb{R} P^{2} ; G\right) \cong H_{n}\left(\mathbb{R} P^{2}\right) \otimes G \oplus \operatorname{Tor}\left(H_{n-1}\left(\mathbb{R} P^{2}\right), G\right)
$$

thus

$$
\begin{gathered}
H_{0}\left(\mathbb{R} P^{2} ; G\right) \cong H_{0}\left(\mathbb{R} P^{2}\right) \otimes G \oplus \operatorname{Tor}\left(H_{-1}\left(\mathbb{R} P^{2}\right), G\right) \cong G \\
H_{1}\left(\mathbb{R} P^{2} ; G\right) \cong H_{1}\left(\mathbb{R} P^{2}\right) \otimes G \oplus \operatorname{Tor}\left(H_{0}\left(\mathbb{R} P^{2}\right), G\right) \cong G / 2 G \oplus 0 \cong G / 2 G
\end{gathered}
$$

and

$$
H_{2}\left(\mathbb{R} P^{2} ; G\right) \cong H_{2}\left(\mathbb{R} P^{2}\right) \otimes G \oplus \operatorname{Tor}\left(H_{1}\left(\mathbb{R} P^{2}\right), G\right) \cong \operatorname{Tor}(\mathbb{Z} / 2 \mathbb{Z}, G)
$$

The universal coefficient theorems are both corollaries of the following more general statement.
THEOREM 14.13. (Künneth formula) For a free chain complex C_{*} and a chain complex C_{*}^{\prime} we have the following split exact sequence for every integer n

$$
0 \longrightarrow \bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right) \xrightarrow{\lambda} H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right) \longrightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}\left(H_{p}\left(C_{*}\right), H_{q}\left(C_{*}^{\prime}\right)\right) \longrightarrow 0,
$$

i.e.,

$$
H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right) \cong \bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right) \oplus \bigoplus_{p+q=n-1} \operatorname{Tor}\left(H_{p}\left(C_{*}\right), H_{q}\left(C_{*}^{\prime}\right)\right)
$$

The map $\lambda: \bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right) \rightarrow H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right)$ in the theorem is given on the (p, q)-summand by

$$
\lambda\left(\left[c_{p}\right] \otimes\left[c_{q}^{\prime}\right]\right):=\left[c_{p} \otimes c_{q}^{\prime}\right]
$$

for $c_{p} \in C_{p}$ and $c_{q}^{\prime} \in C_{q}^{\prime}$. By the definition of the tensor product of complexes, this map is well-defined.
Lemma 14.14. For any free chain complex C_{*} with trivial differential and an arbitrary chain complex, C_{*}^{\prime}, λ is an isomorphism

$$
\lambda: \bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right) \cong H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right)
$$

Proof. We abbreviate the subgroup of cycles in C_{q}^{\prime} with Z_{q}^{\prime} and the subgroup of boundaries in C_{q}^{\prime} with B_{q}^{\prime} and use analog abbreviations for C_{*}. By definition $0 \rightarrow Z_{q}^{\prime} \longrightarrow C_{q}^{\prime} \longrightarrow B_{q-1}^{\prime} \rightarrow 0$ is a short exact sequence. By assumption Z_{p} is free because $Z_{p}=C_{p}$, in particular $Z_{p} \otimes(-)$ is exact and thus

$$
0 \rightarrow Z_{p} \otimes Z_{q}^{\prime} \longrightarrow Z_{p} \otimes C_{q}^{\prime} \longrightarrow Z_{p} \otimes B_{q-1}^{\prime} \rightarrow 0
$$

is a short exact sequence and this implies that $Z_{p} \otimes Z_{q}^{\prime}$ is the subgroup of cycles in $Z_{p} \otimes C_{q}^{\prime}=C_{p} \otimes C_{q}^{\prime}$. Summation over $p+q=n$ yields that the n-cycles in $C_{*} \otimes C_{*}^{\prime}$ are

$$
Z_{n}\left(C_{*} \otimes C_{*}^{\prime}\right)=\bigoplus_{p+q=n} Z_{p} \otimes Z_{q}^{\prime}
$$

and the n-boundaries are given by

$$
B_{n}\left(C_{*} \otimes C_{*}^{\prime}\right)=\bigoplus_{p+q=n} Z_{p} \otimes B_{q}^{\prime}
$$

The sequence

$$
0 \rightarrow B_{q}^{\prime} \longrightarrow Z_{q}^{\prime} \longrightarrow H_{q}\left(C_{*}^{\prime}\right) \rightarrow 0
$$

is exact by definition. Tensoring with Z_{p} and summing over $p+q=n$ then yields due to the freeness of Z_{p} that

$$
0 \rightarrow \bigoplus_{p+q=n} Z_{p} \otimes B_{q}^{\prime} \longrightarrow \bigoplus_{p+q=n} Z_{p} \otimes Z_{q}^{\prime} \longrightarrow \bigoplus_{p+q=n} Z_{p} \otimes H_{q}\left(C_{*}^{\prime}\right) \rightarrow 0
$$

is exact. Our identification of $Z_{n}\left(C_{*} \otimes C_{*}^{\prime}\right)$ and $B_{n}\left(C_{*} \otimes C_{*}^{\prime}\right)$ yields that the right-most term is isomorphic to the nth homology group of $C_{*} \otimes C_{*}^{\prime}$ and therefore

$$
H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right) \cong \bigoplus_{p+q=n} Z_{p} \otimes H_{q}\left(C_{*}^{\prime}\right)=\bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right)
$$

Proof of Theorem 14.13. We consider again the short exact sequence $0 \rightarrow Z_{p} \longrightarrow C_{p} \longrightarrow B_{p-1} \rightarrow 0$ and tensor it with C_{q}^{\prime} and sum over $p+q=n$. As B_{p-1} is free, the original sequence is split and hence the resulting sequence is exact.

We define two chain complexes Z_{*} and D_{*} via

$$
\left(Z_{*}\right)_{p}=Z_{p},\left(D_{*}\right)_{p}=B_{p-1}
$$

Then Z_{*} and D_{*} are free chain complexes with trivial differential and the exact sequence

$$
0 \rightarrow \bigoplus_{p+q=n} Z_{p} \otimes C_{q}^{\prime} \longrightarrow \bigoplus_{p+q=n} C_{p} \otimes C_{q}^{\prime} \longrightarrow \bigoplus_{p+q=n} B_{p-1} \otimes C_{q}^{\prime} \rightarrow 0
$$

can be interpreted as a short exact sequence of complexes and this gives a long exact sequence
$\ldots \longrightarrow H_{n+1}\left(D_{*} \otimes C_{*}^{\prime}\right) \xrightarrow{\delta_{n+1}} H_{n}\left(Z_{*} \otimes C_{*}^{\prime}\right) \longrightarrow H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right) \longrightarrow H_{n}\left(D_{*} \otimes C_{*}^{\prime}\right) \xrightarrow{\delta_{n}} H_{n-1}\left(Z_{*} \otimes C_{*}^{\prime}\right) \longrightarrow \ldots$
Lemma 14.14 gives us a description of $H_{*}\left(D_{*} \otimes C_{*}^{\prime}\right)$ and $H_{*}\left(Z_{*} \otimes C_{*}^{\prime}\right)$ and therefore we can consider δ_{n+1} as a map

with $j: B_{p} \hookrightarrow Z_{p}$. We can cut the long exact sequence in homology into short exact pieces and obtain that

$$
0 \rightarrow \operatorname{coker}\left(\delta_{n+1}\right) \longrightarrow H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right) \longrightarrow \operatorname{ker}\left(\delta_{n}\right) \rightarrow 0
$$

is exact. The cokernel of δ_{n+1} is isomorphic to $\bigoplus_{p+q=n}\left(Z_{p} / B_{p}\right) \otimes H_{q}\left(C_{*}^{\prime}\right)$ because the tensor functor is right exact, thus

$$
\operatorname{coker}\left(\delta_{n+1}\right) \cong \bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right)
$$

As $0 \rightarrow B_{p} \longrightarrow Z_{p} \longrightarrow H_{p}\left(C_{*}\right) \rightarrow 0$ is a free resolution of $H_{p}\left(C_{*}\right)$ we obtain that

$$
\operatorname{Tor}\left(H_{p}\left(C_{*}\right), H_{q}\left(C_{*}^{\prime}\right)\right) \cong \operatorname{ker}\left(j \otimes \mathrm{id}: B_{p} \otimes H_{q}\left(C_{*}^{\prime}\right) \rightarrow Z_{p} \otimes H_{q}\left(C_{*}^{\prime}\right)\right)
$$

and therefore

$$
\bigoplus_{p+q=n-1} \operatorname{Tor}\left(H_{p}\left(C_{*}\right), H_{q}\left(C_{*}^{\prime}\right)\right) \cong \operatorname{ker}\left(\delta_{n}\right)
$$

which proves the exactness of the Künneth sequence.
We will prove that the Künneth sequence is split in the case where both chain complexes, C_{*} and C_{*}^{\prime}, are free. In that case the sequences

$$
0 \rightarrow Z_{p} \rightarrow C_{p} \rightarrow B_{p-1} \rightarrow 0, \quad 0 \rightarrow Z_{q}^{\prime} \rightarrow C_{q}^{\prime} \rightarrow B_{q-1}^{\prime} \rightarrow 0
$$

are split and we denote by $r: C_{p} \rightarrow Z_{p}$ and $r^{\prime}: C_{q}^{\prime} \rightarrow Z_{q}^{\prime}$ chosen retractions. Consider the two compositions

$$
C_{p} \xrightarrow{r} Z_{p} \longrightarrow H_{p}\left(C_{*}\right), \quad C_{q}^{\prime} \xrightarrow{r^{\prime}} Z_{q}^{\prime} \longrightarrow H_{q}\left(C_{*}^{\prime}\right)
$$

and view $H_{*}\left(C_{*}\right)$ and $H_{*}\left(C_{*}^{\prime}\right)$ as chain complexes with trivial differential. Then these compositions yield a chain map

$$
r \otimes r^{\prime}: C_{*} \otimes C_{*}^{\prime} \rightarrow H_{*}\left(C_{*}\right) \otimes H_{*}\left(C_{*}^{\prime}\right)
$$

which on homology is

$$
H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right) \longrightarrow H_{n}\left(H_{*}\left(C_{*}\right) \otimes H_{*}\left(C_{*}^{\prime}\right)\right)=\bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right)
$$

This map gives the desired splitting.
In the cases we are interested in (singular or cellular chains), the complexes will be free. Be careful! The splitting of the Künneth sequence is not natural. We have chosen a splitting of the short exact sequences in the proof and usually, there is no canonical choice possible.

