Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2024

Exercise sheet no 5

due: 3rd of May 2024, 11:45h in H2

1 (5-Lemma revisited) (1 + 1 points)

Consider the following commutative diagram of exact sequences

$$A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} A_{4} \xrightarrow{\alpha_{4}} A_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} B_{4} \xrightarrow{\beta_{4}} B_{5}$$

Under which assumptions on f_1, f_2, f_4, f_5 can we deduce that the map f_3 is a monomorphism or an epimorphism?

2 (Trivial versus actual gluing) (2 + 2 points)

- (1) Are the homology groups of $\mathbb{S}^1 \times \mathbb{S}^1$ and $\mathbb{S}^2 \vee \mathbb{S}^1 \vee \mathbb{S}^1$ isomorphic?
- (2) What about the homology of the Klein bottle versus the homology of $\mathbb{S}^2 \vee \mathbb{S}^1 \vee \mathbb{S}^1$?

3 (More linear algebra) (2 points)

Let $A \in O(n+1)$. Then multiplication by A induces a continuous self-map on \mathbb{S}^n . (Why?) What is its degree?

4 (Degrees) (3 + 3 points)

- (1) Prove the Brouwer fixed-point theorem: Let X be a closed ball $B_R(x) \subset \mathbb{R}^n$ for $n \ge 1$, r > 0, $x \in \mathbb{R}^n$, and let f be a continuous map $f: B_R(x) \to B_R(x)$. Show that f has a fixed point.
- (2) Use this to show that every $(a_{ij}) = A \in M(n \times n; \mathbb{R})$ with non-negative a_{ij} must have an eigenvector with non-negative coordinates. Hint: Consider a suitable standard simplex instead of $B_R(x)$.