Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2019

Exercise sheet no 9 due: 19th of June 2019

- **1** (Vector spaces) Let X be a finite CW complex. Show that $H_n(X;k)$ is a k vector space for every field k. Is $\dim_{\mathbb{Q}} H_n(X;\mathbb{Q}) = \dim_{\mathbb{R}} H_n(X;\mathbb{R})$? What about $\dim_{\mathbb{Q}} H_n(X;\mathbb{Q})$ and $\dim_{\mathbb{F}_n} H_n(X;\mathbb{F}_p)$ for a prime p?
- 2 Cap products
- a) Let $\alpha \in H^1(\mathbb{R}P^2; \mathbb{Z}/2\mathbb{Z})$ and $a \in H_1(\mathbb{R}P^2; \mathbb{Z}/2\mathbb{Z})$ be generators. What is $\alpha \cap a$?
- b) Take the meridian $b \subset \mathbb{S}^1 \times \mathbb{S}^1 =: T$ and consider the class $\beta \in H^1(T)$ dual to $[b] \in H_1(T)$. We know that $H_2(T) \cong \mathbb{Z}$ and we denote the generator by σ . Show that $\beta \cap \sigma$ can be represented by the longitude $a \subset T$.
- **3** (Relative variant of the cap-product) Let A and B be subspaces of a topological space X such that the inclusion $S_*^{\mathfrak{U}}(A \cup B) \hookrightarrow S_*(A \cup B)$ induces an isomorphism in homology (with $\mathfrak{U} = \{A, B\}$). Show that there is a variant of the cap-product

$$\cap: H^q(X,A) \otimes H_n(X,A \cup B) \to H_{n-q}(X,B).$$

- 4 (Cap products and de Morgan)
 - a) Show the following variant of excision: If (X, A) is a pair of spaces and if $Y \subset X$ with $\mathring{Y} \cup \mathring{A} = X$, then $H_*(Y, Y \cap A) \cong H_*(X, A)$.
- b) Use this to show the following de Morgan isomorphisms for homology: If X_1, X_2 are open in $X_1 \cup X_2$, then there are isomorphisms

$$j_1: H_*(X_1, X_1 \cap X_2) \cong H_*(X_1 \cup X_2, X_2),$$

 $j_2: H_*(X_2, X_1 \cap X_2) \cong H_*(X_1 \cup X_2, X_1).$

c) Let now A_1, A_2 be open in $A_1 \cup A_2 \subset X$. Show that the following diagram commutes:

$$H^{q}(X, A_{2}) \otimes H_{n}(X, A_{1} \cup A_{2}) \xrightarrow{\cap} H_{n-q}(X, A_{1})$$

$$\downarrow^{\delta} \downarrow^{\delta}$$

$$H^{q}(A_{1}, A_{1} \cap A_{2}) \otimes H_{n-1}(A_{1} \cup A_{2}, A_{2}) \xrightarrow{\cong} H^{q}(A_{1}, A_{1} \cap A_{2}) \otimes H_{n-1}(A_{1}, A_{1} \cap A_{2}) \xrightarrow{\cap} H_{n-q-1}(A_{1})$$

Here, the δ 's are suitable connecting homomorphisms and i is an inclusion.