Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2019

Exercise sheet no 2

due: 17th of April 2019

1 (Induced maps)

a) Let X and Y be topological spaces. Is every chain map $f_* \colon S_*(X) \to S_*(Y)$ induced by a map of topological spaces?

b) Let $p: \tilde{X} \to X$ be a covering map. We know that the induced map on fundamental groups is a monomorphism. Is that also true for $H_1(p)$?

2 (Cones)

Let $f: A_* \to B_*$ be a chain map. The mapping cone of f, C(f), is a chain complex with $C(f)_n = A_{n-1} \oplus B_n$ and whose differential is D(a,b) = (-da, db - f(a)). Prove that this is a chain complex. Show that f_* is null-homotopic if and only if f_* extends over $C(\operatorname{id}_{A_*})$.

3 (Klein bottle and surfaces)

a) Let F_g denote the closed orientable surface of genus g. Use the Seifert van Kampen theorem to determine the fundamental group of F_g and then apply the Hurewicz theorem to calculate $H_1(F_g)$.

b) Do the same for the Klein bottle, K.

4 (Exactness)

Let C_* be an arbitrary chain complex and let p be a prime. Is it always true that the sequence of chain complexes

 $0 \longrightarrow C_* \xrightarrow{p} C_* \xrightarrow{\pi} C_* / pC_* \longrightarrow 0$

is exact? Give a proof or a counterexample.