Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2019

Exercise sheet no 12

1 (Cup pairing)

a) What are the cup pairings on \mathbb{S}^4 , $\mathbb{S}^2 \times \mathbb{S}^2$ and $\mathbb{C}P^2$?

b) What can you say about the symmetry of the cup pairing if the dimension of the manifold is 4n or 4n + 2?

2 (Transfer or Umkehr maps) Assume that M is an m-dimensional and N is an n-dimensional topological manifold and both are connected, compact, closed and oriented with fundamental classes [M] and [N]. Assume that $f: M \to N$ is continuous. Define $f^!: H^{m-p}(M) \to H^{n-p}(N)$ and $f_!: H_{n-p}(N) \to H_{m-p}(M)$ as

$$f^{!}(\alpha) = \mathsf{PD}_{N}^{-1} \circ H_{*}(f) \circ \mathsf{PD}_{M}(\alpha) \text{ and } f_{!}(a) = \mathsf{PD}_{M}(H^{*}(f)(\mathsf{PD}_{N}^{-1}(a)))$$

So these map go the wrong way – and this is why they are sometimes also called *wrong-way maps*.

- a) Draw diagrams in order to understand how these maps work.
- b) Show that $f^!(f^*(\alpha) \cup \beta) = \alpha \cup f^!(\beta)$ and also $f_!(\alpha \cap a) = f^*(\alpha) \cap f_!(a)$.
- c) Let $f: \mathbb{S}^1 \to \mathbb{S}^1$ be a map of degree n > 1. What is the effect of f! and $f_!$ in degree 1?

3 (Easy applications of duality)

- (1) Prove that every homotopy equivalence $f: \mathbb{C}P^{2n} \to \mathbb{C}P^{2n}$ must be orientation preserving.
- (2) Let $n > m \ge 1$ and show that every continuous $f \colon \mathbb{R}P^n \to \mathbb{R}P^m$ induces $\pi_1(f) = 0$.

4 (Inverse limits)

a) Consider the short exact sequence of inverse systems

$$0 \to \{p^i \mathbb{Z}\} \to \{\mathbb{Z}\} \to \{\mathbb{Z}/p^i \mathbb{Z}\} \to 0.$$

Determine the inverse limits and the lim¹-terms.

b) Let $\{A_i\}_{i \in \mathbb{N}_0}$ be an inverse system of abelian groups such that the structure maps $A_{i+1} \to A_i$ are monomorphisms. Define a topology on $A = A_0$ by declaring the sets $\{a + A_i\}$ to be open for $a \in A$ and $i \ge 0$. (The A_i are viewed as subsets of A via the monomorphisms.) Show that the inverse limit of the A_i is trivial if A is Hausdorff. When does the lim¹-term vanish?

c) Let k be a commutative ring with unit. Show that the inverse limit of the inverse system $\{k[x]/x^n\}_{n\geq 1}$ is isomorphic to the formal power series ring k[[x]].

due: 10th of July 2019