Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter

Summer term 2017

Exercise sheet no 9

For the exercise class on the 3rd of July 2017

1 (Manifolds with boundary) Let

 $\mathbb{R}^m_- := \{ (x_1, \dots, x_m), x_i \in \mathbb{R}, x_1 \leq 0 \}$

be an m-dimensional half-space. Its topological boundary is

 $\partial \mathbb{R}^m_- = \{ (x_1, \dots, x_m), x_i \in \mathbb{R}, x_1 = 0 \}.$

An *m*-dimensional topological manifold with boundary, M with ∂M , is a Hausdorff space with a countable basis of its topology together with homeomorphisms $h_i: U_i \to V_i$. Here $U_i \subset M$ and $V_i \subset \mathbb{R}^m_-$ are open and the U_i 's cover M.

An $x \in M$ is a boundary point of M if there is a homeomorphism $h: U \to V$ with U open in M, V open in \mathbb{R}^m_- , $x \in U$ and h(x) in $\partial \mathbb{R}^m_-$. The set of boundary points of M is denoted by ∂M .

What is ∂M in the following examples:

a) $\partial(\mathbb{D}^2 \times \mathbb{S}^1)$,

b) $\partial(\mathbb{D}^2 \times \mathbb{D}^2)$,

c) $\partial([0,1])$ and

d) $\partial((\mathbb{S}^1 \times \mathbb{S}^1) \setminus \mathbb{D}^2_{\epsilon})$, where \mathbb{D}^2_{ϵ} is a small open 2-disk, that is suitably embedded into the torus.

e) Can you find a general formula for $\partial(M \times N)$ if M and N are manifolds with boundary?

2 (Exactness of direct limits) Prove the remaining two bits that establish that direct limits map short exact sequences of directed systems of R-modules to short exact sequences of R-modules (proof of lemma 7.3).

 $\mathbf{3}$ (Compact support)

If X is a path-connected, non-compact space, what is $H^0_c(X)$?

4 (3-manifolds) Let M be a compact connected 3-manifold without boundary. Its first homology group is a finitely generated abelian group and is hence of the form

$$H_1(M) \cong \mathbb{Z}^n \oplus T$$

where T denotes the torsion part of $H_1(M)$.

a) Determine $H_2(M)$ if M is orientable.

b) Does $\pi_1(M)$ determine $H_*(M)$ in this case?

c) What happens if we drop the assumption that M is orientable? What do you get for $H_2(M)$?