Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2017

Exercise sheet no 4

For the exercise class on the 22nd of May 2017

1 (Mapping degree)

- (1) Show that the degree map deg: $[\mathbb{S}^n, \mathbb{S}^n] \to \mathbb{Z}$ is surjective for all $n \ge 1$. (What about n = 0?)
- (2) Prove the Brouwer fixed-point theorem: Let X be a closed ball $B_R(x) \subset \mathbb{R}^n$ for $n \ge 1$ and let f be a continuous map $f: B_R(x) \to B_R(x)$. Prove that f has a fixed point.
- (3) Use this to show that every $(a_{ij}) = A \in M(n \times n; \mathbb{R})$ with non-negative a_{ij} must have an eigenvector with non-negative coordinates.

2 (More linear algebra) Let $A \in O(n+1)$. Then multiplication by A induces a continuous self-map on \mathbb{S}^n . What is the degree?

3 (Euler characteristic) Let X be a finite CW complex. The *Euler characteristic* of X, $\chi(X)$, is then defined as

$$\chi(X) := \sum_{n \ge 0} (-1)^n \operatorname{rk}(H_n(X;\mathbb{Z})).$$

Here, rk denotes the rank of a finitely generated abelian group, *i.e.*, the number of its free summands. a) Why is $\chi(X)$ well-defined?

b) What is $\chi(X)$ for a torus, a sphere or a general oriented compact closed surface of genus g, F_g ?

c) What can you say about $\chi(X \sqcup Y)$ for two finite CW complexes X and Y? What about $\chi(X \cup Y)$ if X and Y are not necessarily disjoint? Assume that $X \cap Y$ is a subcomplex of X and Y.

d) Let $c_n(X)$ denote the number of *n*-cells of X. Prove that

$$\chi(X) = \sum_{n \ge 0} (-1)^n c_n(X).$$

e) For finite CW complexes X and Y, show that $\chi(X \times Y) = \chi(X)\chi(Y)$ using d).

4 (Products)

- (1) Give a CW model of $\mathbb{S}^n \times \mathbb{S}^m$.
- (2) If you start with $\mathbb{S}^1 \vee \mathbb{S}^1$ how many 2-cells do you have to glue in to get the torus $\mathbb{S}^1 \times \mathbb{S}^1$?
- (3) Compute the homology groups of $\mathbb{S}^1 \times \mathbb{S}^1$ and of $\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^2$. Are they isomorphic? What about the homology groups of their universal covering spaces?