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Abstract. We offer a complete description of THH(E(2)) under the assumption that the
Johnson-Wilson spectrum E(2) at a chosen odd prime carries an E∞-structure. We also place

THH(E(2)) in a cofiber sequence E(2) → THH(E(2)) → THH(E(2)) and describe THH(E(2))
under the assumption that E(2) is an E3-ring spectrum. We state general results about the
K(i)-local behaviour of THH(E(n)) for all n and 0 6 i 6 n. In particular, we compute
K(i)∗THH(E(n)).

1. Introduction

The first Johnson-Wilson spectrum E(1) at a prime p is the Adams summand of p-local
periodic complex topological K-theory KU(p). It is known that it carries a unique E∞-structure
[MS93,BR05], thus THH(E(1)) is a commutative E(1)-algebra spectrum. McClure and Staffeldt
show that the unit map E(1) → THH(E(1)) is a K(1)-local equivalence, hence its cofiber
THH(E(1)) is a rational spectrum. It is easy to calculate the rational homology of THH(E(1))
as

HQ∗THH(E(1)) ∼= Q[v±1
1 ]⊗Q ΛQ(dv1)

using the Bökstedt spectral sequence with E2-term

E2
∗,∗ = HHQ

∗,∗(Q[v±1
1 ]).

There is a map
Σ2p−1E(1)→ THH(E(1))→ THH(E(1))

that factors through Σ2p−1E(1)Q → THH(E(1)) since THH(E(1)) is rational, and that is defined
such that the latter map is an equivalence detecting the HQ∗E(1)-summand generated by dv1.
Since the unit map E(1)→ THH(E(1)) splits, this yields a splitting [MS93, Theorem 8.1]

THH(E(1)) ' E(1) ∨ Σ2p−1E(1)Q

as E(1)-modules. This computation was also carried out for KU(p) [Aus05], and pushed further
to provide formulas for THH(KU) as a commutative KU -algebra by Stonek [Sto].

In this paper, we consider the higher Johnson-Wilson spectrum E(n) with coefficient ring

E(n)∗ = Z(p)[v1, . . . , vn−1, vn, v
−1
n ]

for an arbitrary value of n > 1 and p an odd prime. A main motivation here is to investi-
gate whether the spectrum THH(E(n)) also splits into copies of E(n) and its lower chromatic
localizations, generalizing McClure and Staffeldt’s intriguing transchromatic result.

As a first step, we compute the Hochschild homology HH
K(i)∗
∗ (K(i)∗E(n)) of K(i)∗E(n),

where K(i) is the ith Morava K-theory, for 0 6 i 6 n, at an odd prime, see Theorem 3.4.
We shy away from the prime 2 because Morava K-theory is not homotopy commutative at the
prime 2. Theorem 3.4 yields a computation of K(i)∗THH(E(n)) under the modest assumption
that E(n) admits an E3-structure.
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We then focus on E(2), and show in Theorem 5.4 that under the same commutativity as-
sumption THH(E(2)) sits in a cofiber sequence

E(2)→ THH(E(2))→ Σ2p−1L1E(2) ∨ Σ2p2−1E(2)Q ∨ Σ2p2+2p−2E(2)Q ,

where L1E(2) denotes the Bousfield localization of E(2) with respect to E(1). If the unit
E(2)→ THH(E(2)) splits, we then get a decomposition of THH(E(2)) into four summands, a
higher analogue of McClure-Staffeldt’s formula for THH(E(1)).

Remark 1.1. To study THH(E(n)) by means of the Bökstedt spectral sequence, we need suffi-
cient commutativity of E(n). In this remark, we summarize what is known about multiplicative
structures on E(n) and related spectra. Basterra and Mandell showed [BM13] that the Brown-
Peterson spectrum BP admits an E4 structure. The Johnson-Wilson spectra E(n) are built out
of the BP 〈n〉 = BP/(vi|i > n + 1) by inverting vn. In [Law18, Theorem 1.1.2] Tyler Lawson
shows that the Brown-Peterson spectrum BP and the spectra BP 〈n〉 for n > 4 at the prime
2 do not possess an E12-structure. Andrew Senger [Sen, Theorem 1.2] extends Lawson’s result
to odd primes p, and shows that BP and the BP 〈n〉’s (for n > 4) do not have an E2(p2+2)-
structure. In particular, the BP 〈n〉’s are not E∞-ring spectra at any prime for n > 4. Hence
if E(n) actually possesses an E∞-structure for n > 4, then this structure does not come from
one on the BP 〈n〉’s. In [Ric06, Proposition 8.2] it is proven that E(n) at a prime p possesses at
least a (2p− 1)-stage structure. It is unclear how such a structure relates to the En-hierarchy,
but Barwick conjectures [Bar18, p. 1948] that a (2p − 1)-stage structure corresponds to an

A2p−1
2p -structure which in turn is a filtration piece of an E2p−1-structure.

At the prime 2, Lawson and Naumann [LN12] show that there is an E∞-model of BP 〈2〉
and Hill and Lawson [HL10] prove that BP 〈2〉 at the prime 3 possesses a model as an E∞-
ring spectrum. With [MNN15, Theorem A.1] this yields E∞-structures on the corresponding
Johnson-Wilson spectra E(2) at these primes.
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2. Rationalized E(n)

For n > 1 the homotopy algebra of LK(0)E(n) = E(n)Q is Q[v1, . . . , vn−1, v
±1
n ] and its algebra

of cooperations is

π∗(E(n)Q ∧ E(n)Q) ∼= π∗E(n)Q ⊗Q π∗E(n)Q ∼= Q[v1, . . . , vn−1, v
±1
n , v′1, . . . , v

′
n−1, v

′
n
±1

].

This implies the following result.

Lemma 2.1. There is a unique E∞-ring structure on E(n)Q for all n > 1.

Proof. The obstruction groups for such an E∞-ring structure on E(n)Q are contained in the
Gamma cohomology groups of π∗(E(n)Q∧E(n)Q) as a π∗E(n)Q-algebra [Rob03, Theorem 5.6].
As we work in characteristic zero, Gamma cohomology agrees with André-Quillen cohomol-
ogy [RW02, Corollary 6.6]. The algebra Q[v1, . . . , vn−1, v

±1
n , v′1, . . . , v

′
n−1, v

′
n
±1] is smooth over

Q[v1, . . . , vn−1, v
±1
n ] and therefore André-Quillen cohomology is concentrated in cohomological

degree zero where it consists of derivations. The obstructions for existence and uniqueness of
an E∞-ring structure on E(n)Q are concentrated in degrees bigger than zero. �
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As E∞-ring structures can be rigidified to commutative ring structures (see e.g., [EKMM97,
II.3]), we pass to the world of commutative ring spectra from now on.

Topological Hochschild homology of a ring spectrum A can be modelled as the geometric
realization of a simplicial spectrum. Using the inclusion of the 1-skeleton, McClure and Staffeldt
[MS93, §3] construct a map

σ : ΣA→ THH(A) . (2.1)

For a commutative ring spectrum A the multiplication maps from A∧n+1 to A give rise to a
map of commutative A-algebra spectra from THH(A) to A. Composing this map with the map
A→ THH(A) gives the identity, hence we obtain a splitting of A-modules

THH(A) ' A ∨ THH(A)

where THH(A) is the cofiber. The latter spectrum inherits the structure of a non-unital com-
mutative A-algebra. In our case this implies the following result.

Corollary 2.2. The topological Hochschild homology of E(n)Q splits, as an E(n)Q-module, as

THH(E(n)Q) ' E(n)Q ∨ THH(E(n))Q

where THH(E(n))Q is the cofiber of the unit map E(n)Q → THH(E(n)Q) ' THH(E(n))Q.

Moreover, the spectrum THH(E(n))Q is a non-unital commutative E(n)Q-algebra.

In the sequel, we follow Loday [Lod98, Definition E.1] for the definition of étale algebras. It
is straightforward to calculate the topological Hochschild homology of E(n)Q.

Proposition 2.3.

π∗THH(E(n))Q ∼= Q[v1, . . . , vn−1, v
±1
n ]⊗ ΛQ(dv1, . . . , dvn) (2.2)

with |dvi| = 2pi − 1.

Proof. The Bökstedt spectral sequence for π∗(THH(E(n))Q) ∼= HQ∗THH(E(n)) is of the form

E2
∗,∗ = HHQ

∗,∗(π∗E(n)Q)⇒ π∗(THH(E(n))Q).

As Q[v1, . . . , vn−1, v
±1
n ] is étale over Q[v1, . . . , vn−1, vn] and as Q[v1, . . . , vn−1, vn] is smooth, we

get

HHQ
∗,∗(π∗E(n)Q) ∼= Q[v1, . . . , vn−1, v

±1
n ]⊗ ΛQ(dv1, . . . , dvn)

with dvi having homological degree one and internal degree 2pi − 2. As the Bökstedt spectral
sequence is multiplicative and as the algebra generator cannot support any differentials for
degree reasons, the spectral sequence collapses at E2. There are no multiplicative extensions
and hence we get the result. �

Remark 2.4. As we work rationally, THH(E(n))Q is a commutative HQ-algebra spectrum and
hence corresponds to a commutative differential graded Q-algebra (see [Shi07] or [RS17]).

3. K(i)∗E(n) and K(i)∗THH(E(n))

In the following we assume that p is an odd prime, and that n and i are integers with 1 6 i 6 n.
The Hopf algebroid (BP∗, BP∗BP ) represents the groupoid of strict isomorphisms of p-typical
formal group laws [Lan75] (see also [Rav86, Theorem A2.1.27]). There are isomorphisms of
graded Z(p)-algebras

BP∗ ∼= Z(p)[v1, v2, . . . ] and BP∗BP ∼= BP∗[t1, t2, . . . ] ,

where |vi| = |ti| = 2(pi − 1). By convention v0 = p and t0 = 1. The ith Morava K-theory K(i)
is complex oriented, and its formal group law Fi (the Honda formal group law) corresponds to
the map BP∗ → K(i)∗ = Fp[v±i ] sending vi to vi and vk for k 6= i to zero. The p-typical formal
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group law Gn over E(n)∗ comes from the map BP∗ → E(n)∗ that kills all vi with i > n and
inverts vn. Since E(n) is a Landweber exact homology theory, we obtain an isomorphism

K(i)∗E(n) ∼= K(i)∗ ⊗BP∗ BP∗BP ⊗BP∗ E(n)∗. (3.1)

Note that K(i)∗E(n) is trivial for i > n and that the Bousfield class of E(n), 〈E(n)〉, is
〈K(0) ∨ . . . ∨K(n)〉.

We first treat the case i = n.

Proposition 3.1. For all n > 1 the canonical map E(n)→ THH(E(n)) is a K(n)-local equiv-
alence.

Proof. The algebra K(n)∗E(n) is known as Σ(n) and it is of the form

K(n)∗[t1, t2, . . .]/(vnt
pn

i − v
pi

n ti, i > 1),

see [Rav86, 6.1.16]. If we set

C
(k)
∗ := K(n)∗[t1, . . . , tk]/(vnt

pn

i − v
pi

n ti, 1 6 i 6 k)

then C
(k)
∗ is étale over K(n)∗ and K(n)∗E(n) is the directed colimit of the C

(k)
∗ ’s.

The K(n)∗-Bökstedt spectral sequence for THH(E(n)) has as an E2-term

HH
K(n)∗
∗ (K(n)∗E(n)) ∼= K(n)∗E(n)

concentrated in homological degree zero. Thus K(n)∗THH(E(n)) ∼= K(n)∗E(n) and the isomor-
phism is induced by the map E(n) → THH(E(n)). Therefore, this map is a K(n)-equivalence
and thus K(n)-locally THH(E(n)) is equivalent to E(n). �

We calculate K(i)∗E(n) for 1 6 i 6 n − 1 using the following description of morphisms of
graded commutative BP∗-algebras from K(i)∗E(n) to some graded commutative ring B∗. For
n = 2 we had an argument that was rather involved and Paul Goerss suggested the following
simpler proof.

We consider the map g : BP∗BP → K(i)∗E(n) of graded commutative Z(p)-algebras given
by

BP∗BP → K(i)∗ ⊗BP∗ BP∗BP ⊗BP∗ E(n)∗ ∼= K(i)∗E(n)

which uses the canonical maps BP∗ → K(i)∗ and BP∗ → E(n)∗ and the isomorphism from
(3.1). By [Rav86, Theorem A2.1.27] this map corresponds to a triple ((ηL)∗Fi, (ηR)∗Gn, f)
where ηL : K(i)∗ → K(i)∗E(n) is the left unit, ηR : E(n)∗ → K(i)∗E(n) is the right unit and
(ηL)∗Fi and (ηR)∗Gn are the p-typical formal group laws that are given by the corresponding
change of coefficients. Here, f is a strict isomorphism between the p-typical formal group laws
(ηL)∗Fi and (ηR)∗Gn over K(i)∗E(n). By [Rav86, Lemma A2.1.26] such a strict isomorphism
is always of the form

f(x) =
∑
j

(ηR)∗Gntjx
pj .

The p-series of the Honda formal group law Fi is

[p]Fi(x) = vix
pi

and the same is true for [p](ηL)∗Fi
[x] because the left unit just embeds K(i)∗ into K(i)∗E(n).

The p-series of (ηR)∗Gn is

[p](ηR)∗Gn
(x) = w1x

p +(ηR)∗Gn
. . .+(ηR)∗Gn

wnx
pn

for wi = ηR(vi).
First, we state an elementary lemma about powers of p.

Lemma 3.2. Let m > 2, let r, `1, . . . , `m be natural numbers bigger or equal to 1, and assume
that `j 6= `k for j 6= k. Then pr cannot be written as a sum p`1 + . . .+ p`m.
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Proof. Assume

pr = p`1 + . . .+ p`m .

Without loss of generality let `1 be minimal among the `j ’s. Then

pr = p`1(1 + p`2−`1 + . . .+ p`m−`1).

This is only possible if all the `j − `1 are equal to zero and if m = pr−`1 . But `j − `1 = 0 for all
2 6 j 6 m implies that all the `j ’s are equal to `1 and this contradicts our assumption. �

Proposition 3.3. For all 1 6 i 6 n K(i)∗E(n) is a colimit of étale K(i)∗[wi+1, . . . , w
±1
n ]-

algebras.

Proof. In the following we fix i and n. We denote by B(i, n)∗ the graded commutative K(i)∗-
algebra K(i)∗[wi+1, . . . , wn−1, w

±1
n ]. For a given m > 1 consider the graded commutative BP∗-

subalgebra BP∗[t1, . . . , tm] of BP∗BP and define

Bm = Image
(
B(i, n)∗[t1, . . . , tm]→ K(i)∗E(n)

)
.

Thus we can express Bm as B(i, n)∗[t1, . . . , tm]/ ∼ where ∼ denotes the quotient that arises
from the relations that the tr’s and wj ’s satisfy in K(i)∗E(n). Note that Bm+1 is free as a
Bm-module for all m > 1. Indeed, in each step we adjoin a new polynomial generator x to a
graded commutative ring R∗ that satisfies relations of the form xp

r −ux−y with a unit u ∈ R×∗
and y ∈ R∗.

The strict isomorphism f(x) =
∑

j
(ηR)∗Gntjx

pj satisfies

[p](ηR)∗Gn
(f(x)) = f([p](ηL)∗Fi

(x))

and this yields the equality

w1(f(x))p +(ηR)∗Gn
. . .+(ηR)∗Gn

wn(f(x))p
n

= f(vix
pi) =

∑
j

(ηR)∗Gntj(vix
pi)p

j
. (3.2)

On the right hand side in
∑

j
(ηR)∗Gntjv

pj

i x
pi+j

the relations for the tr are detected by the

powers xp
i+r

. Lemma 3.2 ensures that for a given xp
i+r

we only have to consider the coefficient

tjv
pj

i with i + j = i + r coming from the linear term of the (ηR)∗Gn-sum
∑

j
(ηR)∗Gntjv

pj

i x
pi+j

and this is trv
pr

i .

As the right hand side starts with xp
i
, it is a direct consequence that w1, . . . , wi−1 = 0 and

from the coefficients of xp
i

we obtain that wi = vi in K(i)∗E(n).
We prove that B1 is étale over B(i, n)∗ and that for every m, Bm is étale over Bm−1. It

follows that the algebras Bm are étale over B(i, n)∗.
Thus we have to show that the modules of relative Kähler differentials Ω1

B1|B(i,n)∗
and

Ω1
Bm|Bm−1

are trivial for all m > 2.

For m = 1 we compare the coefficients of xp
i+1

in (3.2). In this case only the linear terms of
the (ηR)∗Gn-sums contribute something and we obtain

vit
pi

1 + wi+1t0 = t1v
p
i

and therefore t1 = v−pi (vit
pi

1 + wi+1). This gives a flat extension and the Kähler differential on
t1 is equal to

dt1 = 0 + v−pi dwi+1

and hence B1 is étale over B(i, n)∗.
Consider Bm. Then the first relation for tm is given by the relation of the coefficients for

xp
i+m

.
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We know that the formal group law Gn(x, y) is of the form

Gn(x, y) = x+ y +
∑
i,j>1

ai,jx
iyj

where the ai,j ∈ E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ]. Equation (3.2) relates power series with

coefficients in K(i)∗E(n), hence the coefficients āi,j of (ηR)∗Gn are now considered in K(i)∗E(n)
and are elements of Fp[wi, . . . , wn−1, w

±1
n ]. On the left hand side of (3.2) we get coefficients that

involve some polynomials of āi,j ’s, some pth powers of tj ’s and some expressions in wk’s. For

m+ i 6 n we actually get a coefficient wm+it
pm+i+0

0 = wi+m.
The āi,j ’s are in B(i, n)∗, so they don’t contribute anything to the relative Kähler differentials.

The Kähler differentials on the tp
k

j are trivial because we are over Fp. Hence we can express the

Kähler differential dtm up to a factor of vp
m

i = wp
m

i via Kähler differentials in the wk’s. As vp
m

i

is invertible in B(i, n)∗, the relative Kähler differentials Ω1
Bm|Bm−1

are trivial for all m > 1. �

Theorem 3.4. For all 1 6 i 6 n we have an isomorphism of K(i)∗E(n)-algebras

HH
K(i)∗
∗ (K(i)∗E(n)) ∼= K(i)∗E(n)⊗Fp ΛFp(dwi+1, . . . , dwn).

Proof. We have shown that K(i)∗E(n) is the sequential colimit of the Bm’s. As the K(i)∗-
algebras Bm are étale over B(i, n)∗ and as Hochschild homology commutes with localization we
can rewrite HH∗(Bm) as

HH∗(Bm) ∼= Bm ⊗B(i,n)∗ HH
K(i)∗
∗ (B(i, n)∗)

∼= Bm ⊗B(i,n)∗ (B(i, n)∗ ⊗Fp ΛFp(dwi+1, . . . , dwn))

∼= Bm ⊗Fp ΛFp(dwi+1, . . . , dwn))

using [WG91] and the Hochschild-Kostant-Rosenberg theorem. Hochschild homology commutes
with colimits, hence we obtain

HH
K(i)∗
∗ (K(i)∗E(n)) ∼= colimmHH

K(i)∗
∗ (Bm) ∼= K(i)∗E(n)⊗Fp ΛFp(dwi+1, . . . , dwn) .

�

Theorem 3.5. Assume that p is an odd prime and that E(n) is an E3-ring spectrum. Then,
for all 1 6 i 6 n, we have an isomorphism of K(i)∗E(n)-algebras

K(i)∗THH(E(n)) ∼= K(i)∗E(n)⊗Fp ΛFp(dwi+1, . . . , dwn).

Proof. We use the Bökstedt spectral sequence [Bök], [EKMM97, IX.2.9], with E2-term

E2
r,s = (HHK(i)∗

r (K(i)∗E(n)))s ,

where r denotes the homological and s the internal degree. By a result of Angeltveit and
Rognes [AR05, Prop. 4.3], an E3-structure on E(n) implies that this spectral is one of com-
mutative K(i)∗E(n)-algebras. The multiplicative generators dwj for i 6 j 6 n sit in bidegree
(1, 2pj − 2) and hence they cannot carry any non-trivial differentials. Therefore the spectral
sequence collapses at the E2-term. As the abutment is a free graded commutative K(i)∗E(n)-
algebra, there cannot be any multiplicative extensions. �

Remark 3.6. Note if E(n) admits an E2 structure, the Bökstedt spectral sequence is one of
K(i)∗-algebras by [AR05, Prop. 4.3]. It therefore collapses since all K(i)∗-algebra generators
lie in columns 0 and 1. This gives the same formula for K(i)∗THH(E(n)) as a K(i)∗-module,
but not as a K(i)∗-algebra, since there is now room for K(i)∗-algebra extensions.
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4. Blue-shift for THH(E(n))

If we assume that p is an odd prime and that E(n) is an E∞-ring spectrum, then THH(E(n))
is a commutative E(n)-algebra spectrum and the cofiber of the unit map

THH(E(n)) = cofiber
(
E(n)→ THH(E(n))

)
is a non-unital commutative E(n)-algebra spectrum. If E(n) carries an E3-structure, then by
[BFV07, §3.3], [BM11] the morphism E(n) → THH(E(n)) is an E2-map. This implies the
following useful fact:

Lemma 4.1. If E(n) is an E3-spectrum, then THH(E(n)) is an E(n)-module spectrum and in
particular, THH(E(n)) is E(n)-local.

Let Ln denote the localization at E(n), and in particular L0 is the rationalization. Recall
that there is a well-known chromatic fracture square

LnX //

��

LK(n)X

��
Ln−1X // Ln−1LK(n)X.

It is shown for instance in [ACB, Example 3.3] and [Bau14, Proposition 2.2] that the homotopy
pullback of

LK(n)X

��
Ln−1X // Ln−1LK(n)X.

is an E(n)-localization of X. The statement in [Bau14, Proposition 2.2] is more general and
[ACB] work out far more general local-to-global statements.

We always know from Proposition 3.1 that the unit map is a K(n)-local equivalence. The
chromatic square for THH(E(n)) is:

THH(E(n)) = LK(n)∨E(n−1)THH(E(n)) //

��

LK(n)THH(E(n))

��
LE(n−1)THH(E(n)) // LE(n−1)(LK(n)THH(E(n))) .

The K(n)-homology of THH(E(n)) is zero by Proposition 3.1. It follows that the localization
LK(n)THH(E(n)) is trivial, and hence LE(n−1)(LK(n)THH(E(n))) is also trivial. Therefore the
vertical map on the left hand side is an equivalence and we obtain a nice example of blue-shift:

Lemma 4.2. If E(n) is an E3-spectrum, then the cofiber THH(E(n)) is E(n− 1)-local.

5. Topological Hochschild homology of E(2)

In this section, we discuss in more detail the topological Hochschild homology of E(2), which
we will denote by E = E(2) to simplify the notation. As explained in the proof of Lemma 5.1,
the computations of Theorem 3.5 for E(2) can be expressed as follows:

K(0)∗THH(E) ∼= K(0)∗E ⊗ ΛQ(dt1, dt2), (5.1)

K(1)∗THH(E) ∼= K(1)∗E ⊗ ΛFp(dt1), (5.2)

K(2)∗THH(E) ∼= K(2)∗E. (5.3)

Notice that these computations do not require the assumption that E is an E3-ring spectrum:
for the rational case we have a commutative structure anyhow, while in the K(1) and K(2)
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cases, the E2 page of the Bökstedt spectral sequences is concentrated on columns 0 and 1
(respectively 0).

Lemma 5.1. For i = 1, 2, there exist classes λi ∈ THH2pi−1(E) with the following properties.
Under the Hurewicz homomorphism

(a) the class λi maps to dti ∈ K(0)2pi−1THH(E), for i = 1, 2;
(b) the class λ1 maps to dt1 ∈ K(1)2p2−1THH(E).

Proof. We use McClure-Staffeldt’s computation of THH∗(BP ) in [MS93, Remark 4.3], which
has been validated by the proof [BM13] that BP admits an E4 structure. We briefly recall the
computation. The integral, rational and mod p homology of BP are given as

HZ∗BP ∼= Z(p)[ti | i > 1], K(0)∗BP ∼= Q[ti | i > 1] and HFp∗BP ∼= Z[ξ̄i | i > 1],

where the class ti ∈ HZ2pi−1BP maps to ξ̄i under mod (p) reduction [Rav86, Proof of Theorem
5.2.8] and to the class with same name ti under rationalization. The associated Bökstedt spectral
sequences collapse, providing isomorphisms

HZ∗THH(BP ) ∼= HZ∗BP ⊗ ΛZ(p)
(dti | i > 1),

K(0)∗THH(BP ) ∼= K(0)∗BP ⊗ ΛQ(dti | i > 1) and

HFp∗THH(BP ) ∼= HFp∗BP ⊗ ΛFp(dξ̄i | i > 1),

with dx = σ∗(x), where σ : ΣBP → THH(BP ) is the map given in (2.1). There is an isomor-
phism

THH∗(BP ) ∼= BP∗ ⊗ ΛZ(p)
(λi | i > 1),

and the Hurewicz homomorphism

THH∗(BP )→ HZ∗THH(BP )

is an inclusion mapping λi to dti. In particular, the classes dti (integral and rational) and
dξ̄i are spherical: they are the image of λi under the Hurewicz homomorphism mapping from
THH∗(BP ). For i > 1, let us define

λi ∈ THH2pi−1(E)

as the image of the class with same name under the natural map

THH∗(BP )→ THH∗(E).

In the rational case, we have
ηR(vi) ≡ αiti

modulo decomposables in K(0)∗BP , where αi ∈ Q is a unit. We deduce that

K(0)∗E ∼= Q[t1, t2][ηR(v2)−1]

and the Bökstedt spectral sequence recovers

K(0)∗THH(E) ∼= K(0)∗E ⊗ ΛQ(dt1, dt2).

By naturality, comparing with the case of BP , we deduce that the Hurewicz homomorphism
THH∗(E)→ K(0)∗THH(E) maps λi to dti.

For K(1)∗-homology, we argue similarly, using the commutative square

THH∗(BP ) //

��

K(1)∗THH(BP )

��
THH∗(E) // K(1)∗THH(E).

We have K(1)∗BP ∼= K(1)∗[ti | i > 1], and the Bökstedt spectral sequence yields

K(1)∗THH(BP ) ∼= K(1)∗BP ⊗ ΛFp(dti | i > 1).
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Comparing the Bökstedt spectral sequences for HZ∗THH(BP ) and K(1)∗THH(BP ), we deduce
that the class λ1 ∈ THH∗(BP ) maps to dt1 ∈ K(1)∗THH(BP ). Recall that

K(1)∗E = K(1)∗[ti | i > 1][ηR(v2)−1]/(ηR(vj) | j > 3)

is a colimit of étale algebras over K(1)∗[w2, w
−1
2 ], where

w2 = ηR(v2) = vp1t1 − v1t
p
1.

In particular dw2 = vp1dt1, and the Bökstedt spectral sequence provides the formula given above
for K(1)∗THH(E). Now obviously dt1 ∈ K(1)∗THH(BP ) maps to dt1 ∈ K(1)∗THH(E). This
implies assertion (b) of the lemma. �

Remark 5.2. Note that the above proof does not require the map BP → E(n) to be an E3-map.

The class λ1 ∈ THH2p−1(E) of Lemma 5.1 corresponds to a map λ1 : S2p−1 → THH(E).
Smashing with E, using the E-module structure of THH(E) (assuming an E3 structure on E),
and composing with the cofiber THH(E)→ THH(E) of the unit, we obtain a map

j1 : Σ2p−1E ∼= E ∧ S2p−1 → E ∧ THH(E)→ THH(E)→ THH(E).

In the same fashion, we obtain a map j2 : Σ2p2−1E → THH(E) corresponding to the class λ2.

Lemma 5.3. The map j1 factors through a map

j̄1 : Σ2p−1L1E → THH(E)

that is a K(1)∗-isomorphism, and whose cofiber C(j̄1) is a rational spectrum.

Proof. Recall from Lemma 4.2 that the cofiber THH(E) of the unit map is E(1)-local. In
particular, the map j1 factors through a map

j̄1 : Σ2p−1L1E → THH(E).

The localization map E → L1E is a K(1)∗-isomorphism, and therefore so are the induced maps
` : THH(E) → THH(L1E) and ¯̀: THH(E) → THH(L1E), by convergence of the K(1)-based
Bökstedt spectral sequence. Hence, to prove the claim, it suffices to show that the composition

Σ2p−1L1E
j̄1−→ THH(E)

¯̀
−→ THH(L1E) (5.4)

is a K(1)∗-isomorphism. The K(1)-based Bökstedt spectral sequence for L1E is identical to the
one of E, computed above as

E2
∗,∗ = K(1)∗E ⊗ ΛFp(dt1)⇒ K(1)∗THH(E),

where K(1)∗E is in filtration degree zero and K(1)∗E{dt1} is in filtration degree 1, and where
all differentials are zero. By definition of the map j1, if 1 ∈ K(1)0E is the unit, then j1∗(Σ

2p−11)
is represented modulo lower filtration by the permanent cycle dt1 in E2

1,∗. Since this is a spectral

sequence of K(1)∗E-modules, the composition (5.4) induces a map in K(1) homology that is
represented modulo lower filtration by the isomorphism Σ2p−1K(1)∗E → E2

1,∗ = K(1)∗E{dt1}
sending a class Σ2p−1w to wdt1. It is therefore a K(1)∗-isomorphism, proving the claim.

Now we consider the cofiber C(j̄1) of j̄1, sitting in an exact triangle

Σ2p−1L1E
j̄1−→ THH(E)

k−→ C(j̄1)
δ−→ Σ2pL1E. (5.5)

Since j̄1 is a K(1)∗-isomorphism, we know that K(1)∗C(j̄1) = 0, and since THH(E) and thus
C(j̄1) are E(1)-local, we deduce (as in Lemma 4.2) that C(j̄1) is E(0)-local (i.e., rational). �

We now define a map λ12 : L0S
2p2−2p−2 → C(j̄1) as a composition over the cofibers

L0S
2p2−2p−2 → L0THH(E)→ L0THH(E)→ C(j̄1),
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where the first map above realizes the class dt1dt2 ∈ K(0)∗THH(E). Smashing λ12 with E and
using the module structure we obtain a map

j12 : Σ2p2−2p−2L0E → C(j̄1).

Similarly, λ2 induces a map

j2 : Σ2p2−1L0E → C(j̄1).

Theorem 5.4. Let p be an odd prime such that E = E(2), the second Johnson-Wilson spectrum
at p, is an E3-ring spectrum. Then the map j2 ∨ j12 lifts to a map

j̄2 ∨ j̄12 : Σ2p2−1L0E ∨ Σ2p2−2p−2L0E → THH(E)

and the sum β of j̄1, j̄2 and j̄12 is a weak equivalence of E-modules

β : Σ2p−1L1E ∨ Σ2p2−1L0E ∨ Σ2p2+2p−2L0E → THH(E).

Proof. The composition δ ◦ (j2 ∨ j12) is trivial, so that j2 ∨ j12 lifts to a map j̄2 ∨ j̄12:

Σ2p2−1L0E ∨ Σ2p2+2p−2L0E

j̄2∨j̄12

uu
j2∨j12
��

'∗

))
THH(E)

k // C(j̄1)
δ // Σ2pL1E.

Indeed, Σ2pL1E fits in the chromatic fracture pullback diagram

Σ2pL1E //

��

Σ2pLK(1)E

��
Σ2pL0E // Σ2pL0(LK(1)E).

The composition of δ ◦ (j2 ∨ j12) with the left vertical map to Σ2pL0E is trivial, since it factors
over the composition

L0THH(E) −→ L0C(j̄1) −→ Σ2pL0E

of two consecutive maps in the (E(0)-localized) cofiber sequence (5.5). The composition of
δ ◦ (j2 ∨ j12) with the top map to Σ2pLK(1)E is trivial as well; indeed, there is no non-trivial
map from a K(1)-acyclic to a K(1)-local spectrum. This finishes the proof that δ ◦ (j2 ∨ j12) is
trivial and that the lift exists. We now define β as the sum

β = j̄1 ∨ j̄2 ∨ j̄12 : Σ2p−1L1E ∨ Σ2p2−1L0E ∨ Σ2p2+2p−2L0E → THH(E).

Finally, we claim that β is a K(0)∗-isomorphism: this is analogous to the proof above that j̄1 is
a K(1)∗-isomorphism, working this time with the K(0)-based Bökstedt spectral sequence. Since
β is a K(0)∗- and a K(1)∗-isomorphism of E(1)-local spectra, it is a weak equivalence. �

Assume now that in addition to E being an E3-ring spectrum, the unit map E → THH(E)
splits in the homotopy category (this holds for example if E is an E∞-ring spectrum). We then
have a weak equivalence of E-modules E ∨THH(E)→ THH(E). On the other hand, summing
β with the identity of E gives a weak equivalence

id ∨ β : E ∨ Σ2p−1L1E ∨ Σ2p2−1L0E ∨ Σ2p2+2p−2L0E → E ∨ THH(E).

This implies the following corollary of Theorem 5.4.

Corollary 5.5. Assume that p is an odd prime, and that the second Johnson-Wilson spectrum
E = E(2) admits an E3-structure. If the unit map E → THH(E) splits in the homotopy
category, then the maps above provide a weak equivalence of E-modules

E ∨ Σ2p−1L1E ∨ Σ2p2−1L0E ∨ Σ2p2+2p−2L0E → THH(E).
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Remark 5.6. Corollary 5.5 implies that

- the 20 summand of K(2)∗E in K(2)∗THH(E) indexed by 1,
- the 21 summands of K(1)∗E in K(1)∗THH(E) indexed by 1 and dt1,
- the 22 summands of K(0)∗E in K(0)∗THH(E) indexed by 1, dt1, dt2 and dt1dt2

assemble, in THH(E), into

- the 20 summand E indexed by 1 and detected by K(0)∗, K(1)∗ and K(2)∗,
- the 21 − 20 summand L1E indexed by dt1 and detected by K(0)∗ and K(1)∗, and
- the 22 − 21 summands L0E indexed by dt2 and dt1dt2 and detected by K(0)∗.

Notice that Bruner and Rognes [BR] obtain very similar computations for K(i)∗THH(tmf) for
i = 0, 1, 2, where tmf denotes the connective spectrum of topological modular form.

We can picture the summands of THH(E) in a 2-dimensional cube of local pieces (up to
suspensions, where E = L2E):

1 dt1

1 E L1E

dt2 L0E L0E

We conjecture that this picture extends to describe a decomposition of THH(E(n)) into 2n sum-
mands, with summands placed in an n-dimensional cube, where the ith edge has two coordinates
1 and dti. We formulate this as follows.

Conjecture 5.7. If p is an odd prime such that E(n) is a sufficiently commutative S-algebra,
then THH(E(n)) decomposes as a sum of 2n factors, namely 2n−i−1 suspended copies of LiE(n)
for each 0 6 i 6 n−1, plus one copy of E(n). More precisely, the LiE(n) summands are indexed
by the 2n−i−1 monomial generators

ω ∈ ΛQ(dt1, . . . , dtn−i−1){dtn−i} ⊂ K(0)∗THH(E(n)),

and the summand corresponding to such a monomial ω is Σ|ω|LiE(n).
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Clément, 93430 Villetaneuse, France

Email address: ausoni@math.univ-paris13.fr

URL: http://www.math.univ-paris13.fr/~ausoni/

Fachbereich Mathematik der Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Email address: birgit.richter@uni-hamburg.de

URL: http://www.math.uni-hamburg.de/home/richter/


