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Taylor towers for I'-modules
by Birgit Richter

Abstract

We consider Taylor approximation for functors from the small cat-
egory of finite pointed sets I' to modules and give an explicit descrip-
tion for the homology of the layers of the Taylor tower. These layers
are shown to be fibrant objects in a suitable closed model category
structure. Explicit calculations are presented in characteristic zero
including an application to higher order Hochschild homology and a
spectral sequence for the homology of the homotopy fibres of this ap-
proximation is provided. T

1 Introduction

Similarly to the Taylor series for smooth functions in differential calculus T.
Goodwillie [G] associates a Taylor tower
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to endofunctors of topological spaces F which preserve weak homotopy equiv-
alences. This approximation converges to F' and the P, F' are n-excisive func-
tors, i.e. they can be thought of as degree n approximations of the functor
F.

In this paper we will consider endofunctors of simplicial sets, which arise
from I'-modules, i.e. functors from the category of finite pointed sets I' to
the category of R-modules, for some ring R. Any [-module can be extended
to an endofunctor of simplicial sets by extending it degreewise to a functor
from pointed simplicial sets to simplicial modules.

Working in the category of I'-modules has the advantage that one can
use the tools of homological algebra in order to understand the homology of
the approximation steps Hy P, F' : I' — R and the homology of the homotopy
fibre D, F' := hfib(P,F' — P,_1F) and to describe these homologies in terms
of derived functors.

Fitting to the Taylor tower there exist a tower of model category struc-
tures, which are localizations of the usual model structure for I'-chain com-
plexes at the functors P,(—). Homologically degree n functors are then the
fibrant objects in the n-th model category structure.

The homology of the homotopy fibre can be determined in characteristic
zero for an important family (¢), of I-modules. This leads to an explicit
calculation of higher order Hochschild homology of the truncated polynomial
algebra K[z|/z?.

As an important example we consider the functor St : ' — F, — Vect
from finite pointed sets to F,-vector spaces given by St[n] := Fy{F,[n]}.
The homotopy of this functor when prolonged to pointed simplicial sets
gives the Fy-homology of Eilenberg-MacLane spaces. With the isomorphism
H.P(St)[1] = #(St) we see that H.Pi(St)[1] is the dual of the Steenrod
algebra over ;.

We prove that this functor splits as St = @ ¢,. We calculate the homol-
ogy of the homotopy fibres D,, () in the approximation of these functors for
£ small and for a certain range of approximation with the help of a spectral
sequence which we develop in section 7.

Acknowledgements — This work is part of my thesis and I would like
to thank C.-F. Bodigheimer, V. Franjou and T. Pirashvili for supporting
this project. It is a pleasure to thank the referee for his corrections and
suggestions.
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2 I'-modules

Let I' be the category of finite pointed sets and pointed maps. We assume
that the objects of I' are the pointed sets [n] = {0,1,... ,n} with 0 as a
basepoint. If the cardinality of the set is not important we denote an object
of I' by X, where X is a finite set and + is an added basepoint. We call
functors F' from I' in a category of R-modules just I'-modules. Here R is a
commutative ring with unit. For an arbitrary set S we denote by R{S} the
free R-module generated by S.

2.1 Examples

1. The functors I'" : I' = R-mod, n > 0, which take [m] € I' to the free
R-module generated by the morphisms from [n] to [m]

["[m] = R{I([n], [m])}

are projective generators of the category of all I'-modules. The con-
travariant representable functors I, are defined analogously

I [m] = R{I'([m],[r])}.
2. The cokernel of the transformation from I'° to I'!
L := coker(I'" — T'")

sends a finite pointed set [n] to the free R-module generated by the
elements of {1,... ,n}.

3. The pointwise tensor product of two [-modules F' and G is defined as

(F @ G)[n] := Fln] @ G[n].

Important examples of I-modules are the n-fold tensor product L®" of
L, the n-th exterior product A™ o L and the n-th symmetric product
Sym” o L.
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2.2 Prolongation to simplicial sets

Every I'module F' gives rise to a functor from pointed simplicial sets to sim-
plicial R-modules: On an arbitrary pointed set X, the functor F' is defined
via colimits

F(X;) = colims,cx, F(Sy),

Sy l<eo

and for a pointed simplicial set X, the simplicial R-module F'(X), is defined
as F(X), = F(X,).

2.3 Cross-effects

The n-th cross-effect er, F' of a I'-module F' is a functor

crp,F:I'x ... xI' = R — mod
———

n

which is defined as

cr, F(XY, ..., X}) := Image (Z(—l)”_k Z F(W(Xilv...vXjrk))>

k=1 11 <. <0

Here {iy,... ,ix} is a subset of {1,... ,n} and the

T XX h) F(X,V...VX}) = F(X;V...vX])
are the projection maps on the components Xfﬁ, ey Xj_k. An alternative
and useful definition is the following: Let r; : [n] — [n — 1] be the map which
is given by
Jy J<u
ri(j) = 0, j=1
J—1 7>
Then the above definition of the n-th cross-effect evaluated on ([1],...,[1])
is equivalent to er, FI([1],...,[1]) = (i, kerF(r;).

The functor cr, ' measures the failure of F' to be of degree n — 1. For
endofunctors of abelian groups cross-effects are defined in [E-M2, §§8.9].

Examples Linear functors F' from I' to abelian groups give rise to Eilenberg-
MacLane spectra: The evaluation of such an F' on a simplicial model of the
n-sphere S™ is a K(F[1],n). Typical degree n functors are L*", A" o L and
Sym” o L.
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2.4 Dold-Kan correspondence

Let € denote the category of nonempty finite sets and surjections. We denote
the objects of @ by n = {1,... ,n}. Thereis a Dold-Kan correspondence (see
[P2]) between the category of functors from I' to R-mod and the category of
functors from € to R-mod. For every -module F': I' —+ R-mod there is a
corresponding functor er(F') :  — R-mod defined by

er(T)(n) = er,T([1],...,[1]).

A surjection f : n — m gives rise to a map of finite pointed sets f* and such a
map sends the intersection of the kernels of the 7'(r;) again to an intersection
of such kernels and hence f induces a map cr(f*) : er(F)(n) — cr(F)(m).
In [P2, 3.1] Pirashvili shows that this transformation

er i R— mod" — R — mod"

is an equivalence of categories.

3 Taylor approximation for I'-modules

Let Ch(R) denote the category of non-negative chain complexes of R-modules.
We will build an approximation tower for I'-modules:

o= PP, F—---— PAF — FRF
where the functors P, F : I' — Ch(R) are homologically of degree n.

Definition 3.1 A functor F': I' — Ch(R) is called homologically of degree
<n if erpy1(F) is acyclic.

We will give an explicit construction of this tower for I'-modules. The prop-
erties of the approximation are straighforward to see with the help of the
cotriple approach of Johnson and McCarthy [J-McC2, 2.8]:

e The n-th approximation P, F'is homologically of degree n.
e The map P, F — P,P,F is a weak equivalence.

o A I'-chain complex is homologically of degree n ifft ' — P, I is a weak
equivalence.

The transformation P, : R — mod" — Ch(R)! is exact.
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3.1 Construction of the approximation steps

The construction we give here is similar to the one in [J-McCl1] and for the
readers who are familiar with the work of B. Johnson and R. McCarthy we
cite the corresponding definitions and statements from [J-McC1] in the ap-
propriate places. Before we define the approximation steps P, F' we will give
an unnormalized version P! F. The unnormalized approximation in degree n
is a functor P! F' from I' to chain complexes whose k-dimensional component
is given by
PLF(Xy ), = F(\/ X4).
[n]*

We define (P! F(X4))o as F'(X4). The boundary map

§:PF( X )p=F \/X+ —>F\/X+ F(X 4 )he

is induced by maps on set level

VX=X,
[]* [

Let ﬂ{ be the projection,

7T{ : \/ Xy — \/ Xy

[n1]x...x[n;]X...X[ng] [n1]x...X[n;—1]x...x [ng]

which maps all components X, with labels (z1,... 21,1, &j41,... ,%k)
to the basepoint and let ﬁg be the map that projects everything labelled by
(T1,..., xj_1,m; — 1, 2j49,. .. ,2;) to the basepoint. All other elements are
mapped identically. In addition we consider 74 which overlaps the compo-
nents with labels n; and n; — 1 in the j-th place and is the identity on all
other elements (compare [J-McC1, Def. 1.1,1.2]).

Now define the j-th part of the boundary ¢ as
b = —F(rd) = F(x) + F().
The full boundary map

F(\/X+) — F( \/ X5)
[n]* [n]F—t
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is the alternating sum of n-fold iterations of d;

k

5= (=1)d}.

i=1

A proof that this defines in fact a boundary map for the unnormalized
approximation P’F' is an easy modification of the proof in [J-McCl1, Prop.
1.4] and can be found in [R, pp. 31,32].

Example For n =2 the boundary map d : (PyF); — (P4 F)o is induced by
the projections 7{ and 7} and the map 1 which folds the second and third
component

X, X, X,

v v N VoS

X, X, X, X, X, X,
V V V V V V

Xi— X+ Xy—Xp+ Xi—X,

and by the iteration of these maps.

We normalize the chain complexes P! F'(X ) and build the quotient con-
cerning “i-slabs” and “diagonal” elements. Let us denote the corresponding
subsets in [n]* with the same name. The family of subsets which build i-slabs
are

Sii={(x1,...,e) |wi# 5}, 0<j<n

whereas the diagonals are the subsets of the form

D;:={(z1,...,2) | @i = 231}

Definition 3.2 The n-th Taylor approximation P,F of an I'-module F in
dimension k is the cokernel

(P,F(X,))s := coker b rFVx)—FC\ Xy
Te{{s;}{D:}} t€T s€[n]*
The maps for this cokernel are induced by the inclusions T C [n]*.

Remark 3.3 It is straightforward to check that the boundary map ¢ is well-
defined on the quotient (see [J-McC1, Lemma 1.11]).
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Remark 3.4 This normalization is necessary for the properties the P,F
should have: The unnormalized approzimation P! is given by evaluating F
on a sum. From the definition of the cross-effect it follows that such a term
is tsomorphic to a sum of cross-effects. If we consider the normalized term
P, F then in the {-th chain degree this is isomorphic to

(PuF)e = @ ersiF

SC[n]t

where S runs over all non-degenerate subsets, i.e. subsets which are neither
slabs nor diagonals, of [n]* (see [J-McC1, Prop. 3.8]). As a subset S with
|S| < n is always degenerate, this ensures among other things that F' — P, F
is a weak equivalence iff ' is of homological degree n.

3.2 The cubical construction

Let A be an abelian group. We consider the functor F = Z{A{—}}, which
maps a finite pointed set [n] to the free abelian group generated by the ele-
ments of A”. The Eilenberg-MacLane cubical construction Q(A) which was
defined in [E-M1, § 12, p.321] is the first Taylor approximation of Z{A{—}}
evaluated on [1] € I':

PZ{A{=}})[1] = Q.(A).

Hence Q.(A) is a chain complex of abelian groups which is a quotient of
Z{A*} in degree m.

In degree zero the nontrivial generators are of the form (a) with 0 # a €
A; in degree one the generators are (a,b) with a,b # 0. In degrees zero, one
and two the boundary map looks as follows:

d(a) = 0,

d(a,6) = (a+0b)—(a)=(b),

5(2) = —(a,b) = (c,;d) + (a+c,b+d)
+(a,c)+ (b,d) — (a + b,c+ d).

We abbreviate the n-th Taylor approximation of F' = Z{A{—}} evaluated at
[1] with B
Q2(A) = Po(Z{A{-} D[]

and call this chain complex the n-th cubical construction on A.
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3.3 The connections inside the tower

As in the additive case there are natural transformations ¢ — P,F and
P,F — P, 1 F for every n (compare [J-McCl, Lemma 1.15]). From now
on we assume that our functors F' are reduced i.e. F[0] = 0. This is no
actual restriction because the part F[0] always splits as a direct summand
and we can consider the reduced part F’ defined by F(X;) = F'(X) & FI0].
The Taylor approximation of F' is then essentially the one of F’ because

P.F = F[0]® P, F'.

Proposition 3.5 The maps F([{]) — (P, F([{]))o induce natural transfor-
mations

pn F'— P, F.
|

The different layers of the Taylor tower can be connected by the following
maps:

Proposition 3.6 There are natural transformations
Gn: PoF — P, 1 F

such that the triangles
P.F

]

F—— P, F commute.

Proof In degree zero the map g, is just the identity because the modules
(PoF(X4))o and (P,—1 F(X4))o are the same. For degree k greater than 0

we define the map

(@) (PoF) = (Poci F)y

as the following composition:

(gn)i = 610+ 0 .

It is easy to see, that these maps are in fact chain maps. A proof can be
found in [R]. It works similar to the proof of [J-McC1, Lemma 1.7]. O
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4 Homology of the approximation steps

4.1 Higher cubical constructions in the set context

For the interpretation of the homology of the usual Eilenberg-MacLane cubi-
cal construction (), it was helpful to introduce an auxiliary complex S@Q.. T.
Pirashvili related in [P1] this complex to the homology of (Q).(A) - which is
the homology of the first approximation P, applied to the functor Z{A{—}}
- and to the stable homology of Eilenberg-MacLane spaces. The general-
ized version of S(Q). which we introduce in this section will help us to gain a
description of the homology of the higher cubical constructions.

Let X, € I'. Define 5@;?()(” to be the free module generated by
[n]®-tuples of pairwise disjoint subsets of X, i.e. %én)(X+) is generated
by (5),S C X and 5@(171)()(” has elements like x = (So,...,S,) with
SinS; =0, (i #37),S; CX asa basis. We denote elements of 5@:”()(.9

as functions x(ey,...,ex) with &; € [n]. The value of x on such a k-tuple is
the corresponding subset of X.

The functor 5@(*71) is contravariant: For a morphism f : X; — Y, the

induced map from @in)(Y+) to 5@9()(9 takes the preimage of the subsets.
The case n = 1 has already been defined in [P1].

The boundary map ¢ : S?QECn)(X_F) — @Ln_)l (X;) is defined analogously

to the one for P, F and we use similar projection maps: The map 7! removes

all subsets in g@;ﬁ()ﬁ.) with label n in the i-th coordinate whereas
removes the ones labelled by n — 1 in the i-th place. The map 7’ takes the
union of the subsets labelled by n and n — 1 in the coordinate ¢;. Again let
§; denote 7l — m} — mh. The boundary ¢ is the alternating sum of the n-fold

iterations of the &;:
k

5= (~1)6r.

=1

For k =1 and n = 2, § maps a generator (5,7, U) to:
(S, T\ U)=(SUTUU)—=(SUT)—=(SUU)—=(TUU)+(S)+ (T)+ (U).

The final complex SQ;;”(X.Q is the quotient of @in)(X+) by all ele-

ments, which have the empty set as a value in one hyperplane, i.e. genera-
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tors x with x(e1,...,€i-1,7,€i41,-.. ,€k) = 0 for a j € [r] and by diagonal
elements, i.e. x with x(e1,... ,ex) = 0 if (e1,...,ex) € [n]*, and &; # ciy1.

4.2 The homological degree of SQ&")

The higher cubical constructions in the set context SQ(*TL) are crucial for the
calculation of the homology of the higher cubical constructions for functors.
Recall from 3.1 that a functor is homologically of degree < n if its (n + 1)-st
cross-effect is acyclic.

Proposition 4.1 The functor SQ(*H) : 17 — Ch(R) is homologically of de-
gree n.

Proof There is an explicit chain homotopy which proves the claim. For a
generator

xlen, . e) € SQU(XO V... v XT)
we define a map H to SQE;:_)I(X_? V...V X%) via
HOX) iy er,. .. en) = xler, ... ,ex) N XY for 0 <4 <.

This gives a homotopy between the zero map and the map whose image is
the (n + 1)st cross-effect. O

4.3 The homology of the higher ()-constructions

Definition 4.2 The n-th Q-construction of a functor F' : I' — R-mod s
defined as
QUW(F) := SQ\” @r F € Ch(R).

It is easy to see that
P F[1) 2 QUM (F)

*

because S?CTQ;TL) @r F = Ty @r F = F([n]') and the submodules generated
by the relations map isomorphically.

The homology of the n-th )-construction Q(*n)(F) has an interpretation
as a lor-functor, because SQ(*n) is a projective resolution of a functor, which
we define now:

Let B, : ' = R-mod be the functor which maps a finite pointed set S
to the free module generated by all nonempty subsets of S with cardinality
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less or equal to n. On morphisms B, (f) takes the image of a set if the image
does not contain zero; if 0 € im(f) then the induced map is zero. Now define

t": I'? — R-mod as the dual functor of B, i.e. t*(S;) = Homg(B,(5+), R).
Lemma 4.3 The functor t™ is of degree n.

Proof We will prove this claim by an inductive argument. For n = 1 it is
obvious that ¢ = ¢! is additive. Consider the canonical exact sequence

0—B,-1 — B, — B,/B.,-1 = 0.

The dual of this sequence is again exact. Hence the functors t" fit in the
following exact sequence of functors from I'? to R-mod

0—0" —t" — "1 50

where 6" is the dual of the quotient B, /B,_1, i.e. 67(S5;) is dual to the
free module generated by subsets of S of cardinality exactly n. Clearly the
functor 6" is of degree n. With the exactness of the cross-effect it follows
that er,41t" = 0.

O

Lemma 4.4 The I'-chain complex SQ(*TL) is a projective resolution of a degree
n functor which is isomorphic to t".

Proof The projectivity of the SQ(*TL) is clear because they are quotients of
the projective generators I's with S = [n]* where I's(X;) = R{['(X,,S5)}

and there is a section from SQ(*R) to 5;@(:) (compare the argument in [J-P],

2.3). We have to prove that the homology of Skan) vanishes in positive
dimensions and that its zeroth homology is a functor isomorphic to ¢”.
It follows from the definition of S Q*n) that

SQ™M=0 Vi>0 and (<n

In general S Q(*n) has only homology in degree 0 because its homology is
polynomial of degree n and for [1],...,[n] there is no homology in higher
degrees.

We now prove that

HoSQM = »
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With the Dold-Kan correspondence of 2.4 we have to show that this
zeroth homology and t" have the same cross effects. On an object X, € T’

the module HO(SQ,(kn))(X+) is generated by subsets S C X with cardinality
S| < n. If f: Xy — Y, is a morphism in I', then the induced map
f HO(SQ(*n))(Y+) — HO(SQ(*R))()Q_) takes the equivalence class of the
preimages: If the cardinality of f~'(S) is less or equal to n, then f*(S) =
F7H(9); otherwise f~1(S) € HO(SQ,(kn)) is equivalent to some alternating sum
of subsets with cardinality < n. The degree of HOSQ(*n) is n. Its i-th cross
effect anO(SQ(*n))(Xi, ..., X) is given by the cokernel of

P Ho(5QU) (X2 v v X v v x) T (sQU (XS v v ).
7=0

It is easy to see that the cross effects cri(Ho(Skan)))([l], ..., [1]) are one-
dimensional for : < n. They vanish for ¢ > n because HO(SQ(*H)) is of
degree n. The identification of {1,... 7} in cri(Ho(SQ(*n))) with {1,...,7}*
in er;(t") induces a natural isomorphism.

O

As we have this projective resolution the homology of the higher ¢)-con-
structions is given by:

Theorem 4.5
H,QU(F) = H(SQ™ @r F) = Torl (1", F)
O

For a chain complex C, we denote by sh;C, the shifted chain complex, i.e.

(sth*)k = Ck—l-

Definition 4.6 The n-th homotopy fibre of the Taylor tower is defined as
D, F. = cone.y1(q, : P, F — P, F).

Proposition 4.7 The homology of the n-th homotopy fibre D, F, is given as
a derived functor of a I'-module of degree n, namely

H.(D,F[1]) = Tork (6", ).
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Proof We will prove that the functor F' — H.(D, F[1]) fulfills the universal
properties of the Tor-functor, i.e. we have to show

1) Ho(D,(=)[1]) maps short exact sequences of functors to long exact se-
quences.

2) The functors H,(D,(—)[1]) and Tor, (6", —) coincide on projective objects.

1) Let 0 = F' — F — F" — 0 be a short exact sequence of functors. We
have to show that H.(D,(—)[1]) maps this sequence to a long exact sequence
o — Hepa (D (F")[1])
— H(Du(F)[1])  — H(Dn(F)[1]) —  Ho(Dn(F")[1])
— Hi (D, (F)[1]) — :

The functor F' +— P, F[1] is exact, hence for every short exact sequence
as above we have the following array of commutative diagrams:

0 0 0
0—= P F'[1] —> P, F[1] — P,_ F"[1] — 0
0 — shy Dy F'[1] — shy Dy, F[1] — shy D, F"[1] — 0

0 — > shy P, F'[1] — > sh; P, F[1] — shy P, F"[1] — 0

0 0 0

As the composition D, F'[1] — D, F"[1] vanishes, we can apply the 3 x 3-
lemma and obtain that 0 — D, F'[1] = D,F[l] — D,F"[1] — 0 is a short
exact sequence of chain complexes and the claim is proved.

2) To make the two functors coincide we have to show that they have the
same value on projectives. The short exact sequence

0— P, F[1] = D, F[l] = P,F[1] = 0
leads to the usual long exact sequence in homology

— Hy P, F[l] — HiD,F[l] — H;P,F[l] —
—  HyP,,F[l] —
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Thus it is clear that HyD, F[1] vanishes for & > 0 if F' is projective. For
k = 0 we obtain that HyD, F[1] = (t" @r F)/(t"~' @r F) and this can be
identified with 8™ @r F.

O

5 Model category structures

The aim of this part is to give model category structures on I'-chain com-
plexes, which fit to the Taylor tower, i.e. the n-th approximation step should
be fibrant in the right setting.

For I'-chain complexes there is a standard model category structure, be-
cause the category of I'-chain complexes is the same as the category of chain
complexes of I'-modules and this category has the usual structure such that

e weak equivalences are isomorphisms in homology,

e cofibrations are degreewise splitting monomorphisms with projective
cokernel and

e fibrations are morphisms which are surjective in positive degrees.

So typically the cokernel of a cofibration is a direct sum of standard
projective generators I'®.

Remark 5.1 [t is straightforward to see that this model category structure
1S proper.

5.1 Model category structures fitting to the Taylor
tower

We want to define a fitting model category structure for each approximation
step in the Taylor tower. ”Fitting” means that the weak equivalences should
be the H,P,-isomorphisms. To this end we have to localize the standard
model category on I'-chain complexes. O. Renaudin gained in [Re] similar
structures via constructing localizing subcategories.

The model category of I'-chain complexes is proper. We change the model
structure and call a map f a P,(—)-equivalence if P, (f) is a weak equivalence
in the standard structure. A map f is a P,-fibration if it has the right lifting
property concerning all ordinary cofibrations which are P,(—)-equivalences.
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We denote this structure by 7,. The functors P,(—) have three especially
good properties:

1. The functors P,(—) preserve weak equivalences.

2. The maps (pn)p,(r) : Pal’ — P, P, F are weak equivalences.

3. The class of the P,(—)-equivalences is closed concerning pullbacks
along P,(—)-fibrations and pushouts along cofibrations.

The third property is a consequence of the exactness of the functors
P.(—); hence H.P,(—) is a homology theory. In this situation 7, is again
a proper model category. Bousfield and Friedlander [B-F| proved this for
simplicial model categories; Goerss and Jardine give a more general proof in

[Go-J].

Theorem 5.2 [Go-J, X, Theorem /.1] Given a closed and proper model cat-
egory C and giwen an endofunctor () : C — C with a natural transformation
n: Id — @ and with the properties 1,2 and 3 above, there is a proper and
closed model category structure on C, so that the weak equivalences are the
Q(—)-equivalences, the cofibrations stay as they were in the former structure
and the fibration are determined by the right lifting property.

The fibrant objects in the model category for () = P, are exactly the
functors F', for which the transformation (p,)r : F' — P, F' is a weak equiva-
lence of I'-chain complexes (see [Go-J], X,Corollary 4.12), hence the functors
of homological degree n are fibrant. In particular the approximation steps

P, I" are fibrant in 7,,.

6 Calculation of Tor,(0™,v,) in characteris-

tic zero

In this section the ground field K is of characteristic zero. We will give a
complete calculation of the homology of the homotopy fibres D,, of the func-
tors ¥, = By /Bp—1. These '-vector spaces possess a Koszul-like resolution

(see [P3]). For odd degrees (m = 2k + 1) one has
05> A*0L®@Sym'oL — - = Sym* " o [ = ¢y — 0
whereas for even degrees (m = 2k) the resolution looks as follows:

0—+A oL A 'oL@Sym?o L — - — Sym* o L — 1)y, — 0.
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The maps At o L @ Sym? o L — A" o L @ Sym?*? o L in the sequences are

(1:0/\.../\332')®(y1---yj)r—>Z(zo/\.../\.fh/\.../\:l;i)®(:ciy1---yj)
h=0

and
Y1 Um — {ylj"' 7ym} mod Bm—l

Proposition 6.1 Let i + j be m. The tensor products which are needed for
the calculation of Tork (6", are

K for m=n,1=0,1

0”®r<NoL®SymfoL>:{ 0 clsc

Proof If m < n then the degree of F; := Aio L ® Sym’ o L with i+ j =m

is m and hence smaller than n. This gives us
0" Kr Fi,j = CT‘(@n) ®Ka CT(FZ'J) = (K XKq CT‘(FZ'J')(Q))/N = 0.
Now let m be greater than n. There is a sequence of surjections
e

—» Sym™ ot —» 0",

As we assumed that the characteristic of K is zero F;; is a direct summand
of L®™ and we obtain a surjection

19" @ LP™ — %" @r F;; —» 0" @r F; ;.

For a contravariant functor 7" the cross-effect is cr,, (1) = coker(@;~, T'[m —
1] = T'[m]). Taking the exact sequence

GBre -1 = L8 0
=1

and tensoring it with T' gives

Ter (@r, ™) —Ter I —T @p L¥" —0

|- lg

Dz, Tim — 1] T'[m]

T @r L¥™ —0
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Thus T' @p L®™ = cr(T)(m). Therefore t¥" @p L™ = cr(t®")(m) = 0
because t®" is of degree n. Therefore the tensor products 8" @r F; ; vanish if
i +j = m # n. The case which is left to consider is m = n. In this case

0" @r Fi; = (K@er(F;)(m)/(f*(z) @y ~ 2@ fuly)) = K®sx,, er(F;;)(m).

Hence this cross-effect gives the coinvariants of the X,,-module er(Af o
L ®Sym? o L)(m). As F; ; is a quotient of L®™ and as taking cross effects is
exact, we get

er(L®™) — er(F; ;) (%)
Lemma 6.2 As a X,,-module cr,,(L®™) is isomorphic to K[%,,].

Proof By definition L®™([n]) is the free vector space generated by all m-
tuples of elementsin {1,... ,n}. The kernel of the map L®™(r;) : L"([n]) —
L®™([n—1]) consists of all m-tupels which contain i, because L™ (r;)((z1, . ..
y&m)) = (ri(z1),...,7i(2,)). Hence the intersection of all of these kernels
are the m-tupels which contain each ¢ € {1,...,m} exactly once. a

Thus the sequence (*) reduces to K[X,,] = ¢rp,,(F; ;). Taking coinvariants
shows that the coinvariants of ¢r,,(F; ;) are isomorphic to K or to 0, because
K —» K®sy,, crm(F; ;). This statement can be made more precise:

Lemma 6.3
K =01

K ®s,, crm(Fi;) = { 0 else.

Proof Let m : L® — Ao L and m : L® —» Sym’ o L be the

T @ .
@m T3 F;; gives a map

on the corresponding cross effects by restriction. But for ¢ > 1 the we get
T @ mo(T1, . v &) = T3 A oo o A2y @ Tygr -+ - Ty Taking coinvariants this
term is equivalent to its negative and hence it vanishes. O

canonical maps. The natural transformation L

This finishes the proof of our proposition and leads to the calculation of
the Koszul resolutions: Applying our results there are only two nontrivial
sequences, namely 0 — " Qr (A' ® Sym(n+1)_2) oL —0"@r Sym" o L —
0" @r ¥,+1 — 0 which gives 0 > K —- 0 — 6" ®r ¥,41 - 0and 0 - K —
0" Qr ¥, — 0 with the K arising from 6" @p Sym™ o L. The corresponding
Tor-groups are

K /=0 m=n
Tor, (0", ¢)={ K £=1 m=n+1

0 else.
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6.1 Application to higher order Hochschild homology

In this section the ground ring K is a field of characteristic zero. For a
commutative K-algebra A and an A-module M let £L(A, M) be the ['-module
which sends a finite pointed set [n] to M @ A®". A morphism f : [n] = [m] in
[ maps an element ao®- - -Qa, in MQA®" to by®@- - -®b,, with b; = Hf(]-):i aj.
Hochschild homology of order d is defined via the evaluation on the simplicial
d-sphere
HIY(A, M) = m.(L(A, M)(SY)).

As a concrete example we will calculate H,Ed](K[x]/IQ, K) for d even. For d

odd the calculation of HyEd](K[x]/xQ, K[z]/z?) is done in [P3], 5.4.
As it is shown in 1.8 of [P3] there is a splitting

L(K[2]/a* K) = @D v

which leads to a decomposition

HY(Kzl/2* K) = @ @ Tori(07, vx)

itdi=n k

for d even. Hence the calculation reduces to the determination of the Tor-
groups which we have just calculated. Thus we proved the following

Theorem 6.4 For d even the Hochschild homology of order d of K[z|/x?
with coefficients in K is

‘ K ifdn
HY(K[z] /2 K) = @) @ Tori (¢07,44) = K ifdn—1
itdj=n k 0 else

7 A spectral sequence for H,D, F|[1]

We saw that the homology of the homotopy fibre D, F.[1] = cone.y1 (P, F —
P,_yF)[1] is determined by Torl (6, F). In [P2] Pirashvili developed a hy-
perhomology spectral sequence with abutment Torg(t, F). A generalization

of this approach leads to a spectral sequence which converges to TorE(G”, F).
In the following part let k& be a field.
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7.1 Iterated partitions

For the definition of the spectral sequence we need the notion of iterated
partitions. The term p-partition is defined inductively. A I-partition (or
simply partition) of some natural number m is a sequence A = (Ay,..., )
with£>1and 1 < X\ < ... < Ay where the A\; add up to m = Ay 4+ -+ + Ap.
Here ( is called the length of the partition A and is denoted by ¢()). For
n > 2 an n-partition is a partition A = (Aq,..., ;) together with (n — 1)-
partitions A* of \; for 1 < i < j. The length of an n-partition is an n-tuple
of natural numbers

() = (L) + -+ LNV), )

The set of p-partitions of ng with length (ny,...n,-1,n) is denoted by
(ng, ... ,np_1,n). For instance a A in 11(7,5,3,2) can be the following:

The partition (3,4) of 7 is refined taking the partition of 3 into (1,2) and the
partition of 4 into (1,1, 2).

We associate to any n-partition a group of permutations: A 1-partition
A= (A1, -+, A) yields the group ¥\ = ¥y, x -+ x X, and to an n-partition
p=(u',... pu?) we associate iteratively the group ¥, =X ,1 x -+ x X,;. In
the example above we obtain ¥, = X1 x ¥y x 31 x ¥; x Yy = ¥y X Y.

7.2 The spectral sequence

In the following we will outline the construction of the hyperhomology spec-
tral sequence. All functors F' will have values in k-vector spaces.

Theorem 7.1 There is a spectral sequence B} —> Torl, (0, F) of the

ptq
following form:

By= @ H(Ser(F)(n).

ng >...>np_1 >n
A€M(ng,... ,np—_1,7n)

Remark 7.2 If we work over k = Q then this spectral sequence just consists
of the zeroth row.
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7.3 A chain complex of right (2-modules

Using the Dold-Kan correspondence between I'-modules and (2-modules, we
can work in the category of 2-modules to calculate TorE(H”, F). The following
result relates these derived functors with Tor-groups for {2-modules.

Proposition 7.3 For I'-modules there is an isomorphism
Torl (T, F) = Tor(er(T), er(F)).

We will only indicate how the proof works. One uses that the equivalence
cr maps the family of reduced projective generators (L®™) to the family
of representable functors in the category of 2-modules. The Yoneda lemma
implies that the assumption holds for these generators. A full proof is given
in [R, Prop. 2.5.1].

An El-category is a small category with all endomorphisms being auto-
morphisms; ) is an El-category with the permutation groups 3, as endo-
morphisms of n. In such a situation there is a standard resolution K.(U) of
every U : Q% — k—Vect (as in [P2, 4.3] or [L]). With Q(n,m) we denote the
morphisms in  from n to m. This set has a canonical right ¥, and a left
Y. action. In degree ¢ the chain complex of right Q-modules K.(U) looks as
follows

Ko(U)(=) =

B U(n) @, k{Qn,1,n0) } @, - - @y b {Q(19, 1)} B,y k{Q(—,10)}

where the sum runs over all ng > ... > ny.
The boundary map d on an element (a; fs, ..., fo) with a € U(n,) is defined

— Z(_mf(a;fé,..., Sy fo) F (=D (F(a); fay ooy fo)

A proof that this complex is a resolution of U can be found in [P2, Lemma
4.4], hence for every :-module F' we obtain a hyperhomology spectral se-
quence

E), = Tor}(K,(U), F) = Tor

p+q

(U, F).
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7.4 Simplification of the spectral sequence for U = 0"

For " : I'? — k-Vect and F' : I' — k-Vect, the above spectral sequence gives
B}, = Tor(K, (cr(07)), er(F)) = Torl, (er(07), cr(F)) = Torl, (07, F).

p+yq p+yq

But we know that ¢r(6™)(z) = 0 if ¢ # n. Hence the above chain complex
reduces to

Ko(U) =
Pk s, k{Qneyyn)} @5, - On,, k{Q(1g,00)} D5, k{Q(=, 1)}
Here the sum is taken over all ng > ... > ny_; > n. According to lemma 4.6

in [P2] we obtain
Tor! (M @y, k{Q(—,n)}.T) = Torz* (M, T'(n))
for all ¥,,-modules M and all 2-modules T'.
We gain an even stronger simplification by applying lemma 4.8 in [P2]: The
Y ,,-module

k@s, k{Q(n,_1,n)} O,

is isomorphic to

o B3, k {9(20721)}

1

@ k [Eno/zz\] .

MeIl(ng,... ,n)

After all these reductions our spectral sequence looks as follows:

E;q = Tor?(le(cr(Q”), er(F)) = @ TorqE"0 (k[Xn, /205 (er(F))(ng))

ng >...>np_1 >n
A€I(ng,... ,np—1,7m)

Using the Shapiro lemma in group homology we obtain

Tng

Tory™ ([0, /Sa]; er(F)(mg)) = Tory™ (ks k[ Sy /51] © er(F) (1))
Hy(Yng, Yoy /30 @ er(F)(ng))

Hy (X, er(F)(ng))

Therefore the final version of our spectral sequence for the homology of the
n-th homotopy fibre TorL (67, F') is

El,= @  H(Z e (F) ().

ng >...>np_1 >n
A€M(ng,... ,np—_1,7n)

1211 1R
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Remark 7.4 Note that the Ej -term for Tor(6",1y,) consists of Tor,(k ®x,
O, er(vy)) = TorqE"(k,cr('lbm)(Q)) x~ Torqz"(k,k‘) iff m = n. Otherwise this

term is trivial.

8 The dual of the Steenrod algebra

8.1 Decomposition as a ['-vector space
As an example for an explicit calculation we will consider the functor

St: I' — Fy —Vect

] = Fo{Fa{[n]}}

from finite pointed sets to Fy-vector spaces, which takes a finite pointed
set to the reduced vector space on the elements and takes then the free
[Fy-vector space of this. Prolonging this functor to simplicial pointed sets
and evaluating it on an arbitrary simplicial model for a sphere leads to the
homology of Eilenberg-MacLane spaces. As m5%(St) = Torl (¢, 5t) (see [P3,
Prop 2.2]), we gain that the homology of the first approximation evaluated
at [1] is nothing but the dual of the Steenrod algebra.

Recall that we denote by B, : I' — Fy-Vect the functor that maps a finite
pointed set S, to the free Fy-vector space which is generated by all nonempty
subsets of S with cardinality less or equal to ¢ and that we abbreviate the
functor By/Bs_1 by .

For our calculations the whole functor St would be too complicated to
deal with, but we can show that this functor splits into homogenous pieces,
namely St is a sum of the functors ¢, which are easier to handle.

Theorem 8.1 As a I'-module St splits into

St = P v,

£>0
where g is the constant functor with value Fy on every object.

We will prove that ¢r(S5t) is a split functor in the category of Q-modules. Let
St,, abbreviate er, St([1],...,[1]).

Proposition 8.2 Fvery map f : n — n—1 in Q induces the trivial map
f* : Stn — Stn_l.
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Lemma 8.3 All vector spaces St,, are of dimension one

dimF2 Stn =1.

12

Proof We will prove cr, St([1],...,[l]) = Fy and er,St([1],...,[1],[%])

F2* ' inductively. In degree one we have that
St0] ® cry St[1] = St[1] = F, [F[1]],
hence cry St[1] = F, and
St[k] = St[0] @ ery St[k] = F?,

so cryStlk] = ]ng_l. Assume the two claims are true for all 7 < n. From the
definition of the cross-effect of St and the assumption we gain

Sty = ery(ern— St([1], .., [1], ))([1], [1])
=~ ker(ery 1 St([1].... . [1].[2]) = Str_1 x St,1)
= ker([ﬁ‘g — [FQ X [FQ)
~ T,

The last isomorphism comes from the fact that the map from F5 to Fy x [,
is surjective. The second claim is also straightforward to see:

erpSt([1], ..., [k]) = ker(er,—1St([1],...,[1],[k +1])
— Stp_q X erp—1 St([1], ..., [1],[£]))
>~ ker(F2' ' 5 F, x B2
~ FQk—l
= I
and hence the proof is completed. a

Proof of the proposition As St, is one dimensional we have only to prove
that the basis element is mapped trivially to St,_;. Let ey,... e, denote
the canonical basis of Fy[n]. Then we claim that the element

Eni=(e1d-te)+ Y (& +en) -+ (e) + + (en)
=1

is a basis of St,. Here the inner sums are taken in F3{n} whereas the sums
outside of the parenthesis are taken in Fo{Fy{—}}. We have to prove that
E, is in the intersections of the kernels of the St(r;). Since £, is symmetric
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with respect to the action of the symmetric group, it is enough to show
that St(r,)(F,) = 0. Let (E,_1 + e,) denote the sum over all summands in
FE,, which contain e, and some term from F£,_;. It is obvious that we can
decompose F, in
E,=(Ep1+e€)+ Eor + (en)

But then it is easy to see that St(r,)(E,) = En,—1 + E,—1 = 0.

Now let f:n — n —1 be a map in . Without loss of generality we can
assume that f(n) = f(n — 1) =n — 1. But then f.(E,) =2FE,_; = 0.

As cr(St) and @ er(v;) have the same values on objects and as they
have only trivial transformations, they coincide. Using the Dold-Kan corre-

spondence between I'-modules and (2-modules we obtain a splitting for St.
O

As a concrete example we will calculate the homology of the homotopy
fibre of the quadratic approximation of the functors vy, for £ = 2,3,4 over

some field k.

8.1.1 Torl (6%, ¢y), (=2,3,4

a) From remark 7.4 we see that Torl(;(Hz, a) = Hy(Yq; k).
b) Tor, (6%, ¢s)

The hyperhomology spectral sequence for Tor£(02, Ps3) is

E,= @@  Hi(Ex(er(is)(ny))

ny >.A.>np>2
A€ll(ny,... ,np,2)

But er(¢s)(n) = 0 unless n = 3. Having remark 7.4 in mind we see that the
spectral sequence consists only of a nontrivial Ellq part, namely

0 @/\en(m) Hy (X5 k) 0

0 @/\EH(S,Q) Ho(X\;k) 0
There is only one partition A € II(3,2) namely A = (1,2) and for this par-
tition we have that >, = ¥; x Xy = 3,. All differentials are trivial in this
case, hence we obtain for all n

Tork (8%, 4)5) = EY = Hooi (325 k).
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¢) Tor, (6%, 4)
From now on all coefficients are taken in k without mentioning them anymore.
In a similar manner as in the above case we obtain that the E'-term for

Tor (62, ¢,) reduces to

E!, = 4 H,(3))

ny >.A.>np>2
A€l (n] =4,... ,np,2)

The resulting £ is

0 Hl(zg) @ HI(EQ X 22) 3H1(22) 0
0 Ho(zg) @ HO(EQ X 22) 3H0(E 0

The differentials arise from the differentials in the chain complex K.(cr(6%)).
Therefore one copy of H,.(¥2) which corresponds to the 2-partition (1,3),
(1,1,2) is horizontally mapped to the summand H.(X3). The boundary of
the other summand which corresponds to the 2-partition (2,2), (1,1,2) is
mapped to H.(Xy x ¥3). The E?*-term that comes out is

0 Hl(Eg)/Hl(Eg)@]-:II(E?XEQ)/Hl(Eg) Hl(:EQ) 0
0 | Ho(S5)/Ho(S2) & Ho(Sy x o)/ Hy(S2) | Ho(2) | 0

Thus the next differential d? ends up in a zero column and hence £? = E*
and

TOF£(927'I7/)4) = Hn
¢ H,

—2(X9; k) ® Hoq (X2 X Xas k) /[ Hoy (Xg; k)
(a5 k) Hy1 (Y23 k)

Remark 8.4 In a similar manner one can use the spectral sequence to com-
pute Tork (07, 4,,) for m =n,n + 1,n + 2.

8.2 Homology of posets of partitions

We saw in section 6 how to compute Tor(6",,,) at least over the rational
numbers. These Tor-groups have an interpretation as the homology of a poset
of certain unordered partitions, namely those partitions arising as layers of
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p-partitions. Let = be a p-partition of n, i.e. Zis a partition A = (A1,..., Ax)
with 1 < A; < ... < Ap and Y A = n together with (p — 1)-partitions of
the A;: (Al,...,A"). The collection ((Af,... , A7), .., (Ahy.-., AZ%)) is no

actual partition in general because it might happen that )\?J > )\}_H.
Definition 8.5 An (-tupel a = (ai,...,as) of natural numbers is an un-
ordered partition of n if 1 < a; and >, a; = n. Then { is called the length of

a.

In a p-partition, (A1,...,Ax) is called the first layer of the p-partition
=, the second layer is ((A{,...,AT"), ..., (AL,... ., A7) and so on. Hence a

p-partition = consists of p layers of unordered partitions.

Definition 8.6 An unordered partition A of n is called grown if A is a layer
of some p-partition =.

Example The unordered partition (1,2, 1, 1,2) is grown because it is a third

P R B

layer of the 3-partition (3,4),(1,2,4) and (1,2,1,1,2). A typical example for
an unordered partition which is not grown is something of the form (n,1)

with n > 1.

Definition 8.7 Let y and v be two grown partitions. Then v is a refinement
of u if there is a p-partition = and v is a higher layer of = than pu.

Let II(m,n) be the set of all grown partitions of m which arise from an
actual partition of length n. We say that A < u for A,y € II(m,n), if A is
a refinement of . The homology of the poset II(m,n) can be described as
follows:

Theorem 8.8

Q =0 m=n
H(O(m,n);Q)=¢ Q *x=1 m=n+1
0 else

Here Q is the constant functor, which assigns the field Q to every unordered
partition.

Proof The spectral sequences which converges to TorE(@”, ¥ ) degenerates
at the E%level over the rational numbers. The E'-term reduces to

E;,o = @ Q

np=m>ng >...>np>n
=€l(m,ng,... ,np,n)
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because the zeroth group homology of any symmetric group Ho(X,Q)) is
Q. The first differential comes from the differential in K.(cr(6™)), hence it
just forgets some layers. But this is exactly what the differential does in the
complex which computes the homology of the poset II(m,n). A p-partition
= € II(m,na,... ,ny,n) is nothing but a p-string of composable morphisms
in (m,n).

O

Remark 8.9 From the proof of the theorem it it clear that for an arbitrary
field k it is still true that the E*-term for Tork (07,1,,) consists of the ho-
mology of the partition poset with coefficients in the functor which takes a
partition to the homology of its corresponding symmetric group.

E;,q = HP(H(m7 n); Hq(z()a k))
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