
A model for the stable homotopy category I

Birgit Richter, January 6, 2022

1. Generalized cohomology theories

Singular cohomology satisfies the Eilenberg-Steenrod axioms of a cohomology theory :

(1) The assignment (X,A) 7→ Hn(X,A) is a contravariant functor from the category of
CW-pairs to the category of abelian groups.

(2) For any subspace A ⊂ X there is a natural homomorphism ∂ : Hn(A)→ Hn+1(X,A)
(3) If f, g : (X,A)→ (Y,B) are two homotopic maps of pairs of topological spaces, then

Hn(f) = Hn(g) : Hn(Y,B)→ Hn(X,A).
(4) For any subspace A ⊂ X we get a long exact sequence

. . .
∂ //Hn(X,A) //Hn(X)

Hn(i)
//Hn(A)

∂ // . . .

(5) Excision holds: If X is the union of two subcomplexes A,B, then the inclusion map
(A,A ∩B) ⊂ (X,B) induces an isomorphism Hn(X,B) ∼= Hn(A,A ∩B) for all n.

(6) Let pt be the one-point space, then

Hn(pt) ∼=

{
Z, n = 0,

0, n 6= 0.

This is called the axiom about the coefficients or the dimension axiom.
(7) Additivity:

Hn(
⊔
i∈I

Xi) ∼=
∏
i∈I

Hn(Xi).

For singular cohomology with coefficients in G we have an analoguous set of axioms.
There are important so-called generalized cohomology theories like topological K-theory or
cobordism theories that satisfy all axioms but the dimension axiom.

To every such generalized cohomology theory E∗ we can associate a reduced variant by
considering Ẽ∗(X) := E∗(X, ∗) with ∗ ∈ X0.

Why should one study these? Generalized cohomology theories might be harder to cal-
culate, but they can carry more information. For sake of simplicity we study the absolute
versions E∗(X, ∅).

Typical examples are:

• Topological K-theory. The most common variants are real or complex topological
K-theory, KO∗(X) and KU∗(X). Here you study (real or complex) vector bundles
of finite rank on X. More precisely, you take isomorphism classes of such bundles.
They form an abelian monoid under direct sum of vector bundles and you take
their group completion. That’s KU0(X) (KO0(X)) and you get the other groups
by using suspensions. For KU that’s easy because of Bott periodicity: First set

K̃U
0
(X) = ker(KU0(X)→ Z) and K̃U

2i
(X) := K̃U

0
(X), K̃U

2i+1
(X) := K̃U

0
(ΣX)

for i ∈ Z.
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The Möbius bundle µ : E = [0, 1] × R/ ∼→ S1 with (0, t) ∼ (1,−t) and µ[x, t] =

exp(2πix) gives rise to a generator [µ]− 1 ∈ K̃O(S1). (Here, 1 is the 1-dimensional
trivial bundle on S1, aka, the infinite cylinder.)

For more background on topological K-theory see [Sw, Chapter 11].
• There are various flavors of cobordism theories. For instance for unoriented bordism

classes of manifolds you consider smooth closed manifolds of dimension n up to bor-
dism, so you two such manifolds M1 and M2 if there is an (n+1)-dimensional manifold
W whose boundary is M1 tM2. The corresponding homology theory considers maps
f : M1 → X and g : M2 → X up to bordism, so if there is a map H : W → X whose
restriction to the boundary components gives f and g then these maps are bordant.
This gives MOn(X), the nth bordism group of X. (So instead of throwing standard
simplices into your space, you probe it with manifolds.) There is a dual cohomology
theory.

Important other types of bordisms are oriented bordism, MSO, and stably complex
bordism, MU . For the latter you consider smooth closed n-dimensional manifolds,
M . Instead of asking for a complex structure on M , you require that for some k the
sum TM ⊕ Rk is a complex vector bundle. Here, Rk stands for the trivial bundle of
dimension k over M . Then imposing a suitable equivalence relation on such objects
gives manifolds with stably complex structure and a corresponding homology theory,
MU∗(X). See [Sw, Chapter 12] and [Ma, Chapter 25] for more details.
• There are several variants of elliptic cohomology theories, for instance the cohomology

theory related to topolocial modular forms, tmf. This cohomology theory was used to
decide immersion questions for real projective spaces into euclidean spaces. It plays
an important role for realizing the Witten genus and has several other connections
to mathematical physics.

2. Spectra

Working with cohomology theories is important, but just having a bunch of abelian groups,
En(X), doesn’t give you many tools. What one wants to do, it do work with cohomology
theories as topological objects. First we define spectra and their associated homology and
cohomology theories and then later, we’ll go backwards, representing cohomology theories
by spectra.

The suspension of a space X, ΣX, is defined as the quotient of X × [0, 1] by collapsing
its top X × {1} and its bottom X × {0}. If X has a basepoint x ∈ X, then one often
considers the reduced suspension, where one builds ΣX/{x} × [0, 1]. We agree to use the
reduced suspension in the pointed setting, but we’ll still denote it by ΣX.

Definition A spectrum E is a sequence of pointed topological spaces En, n ∈ N0 together
with structure maps

σn : ΣEn → En+1.

There are some technical issues here. Working with arbitrary spaces is not a good idea.
At least they should be well-pointed, but if you want to be on the safe side, then you might
want to assume that all the Ens are CW complexes and that the basepoint is a zero simplex.

Definition A spectrum E is an Ω-spectrum, if the adjoints of the structure maps

%n : En → ΩEn+1
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are weak equivalences.

(1) You know an example of an Ω-spectrum: Let A be an abelian group. Then we defined
the Eilenberg-Mac Lane space of type (A, n) as a topological space of the homotopy
type of a CW complex K(A, n) with

πi(K(A, n)) =

{
A, i = n

0, otherwise.

By adjunction the homotopy groups of ΩK(A, n+ 1) are

πiΩK(A, n+ 1) = πi+1(K(A, n+ 1)) =

{
A, i = n

0, otherwise.

Therefore ΩK(A, n + 1) is a K(A, n). One can jazz that argument up to obtain an
Ω-spectrum HA whose nth space is a HAn = K(A, n). This spectrum is called the
Eilenberg-Mac Lane spectrum of A.

(2) A spectrum that is not an Ω-spectrum is the sphere spectrum S = (Sn, n ∈ N0). As
ΣSn ∼= Sn+1, the structure maps σn are actually homeomorphisms in this case.

(3) If X is a pointed CW-complex, then we can define its suspension spectrum Σ∞X as

(Σ∞X)n := ΣnX

where ΣnX denotes the n-fold reduced suspension of X. So S = Σ∞S0.

Definition Let E = (En)n∈N0 be a spectrum.
The ith reduced homology group of a pointed CW space X with respect to E is

Ẽi(X) := colimnπn+i(En ∧X).

If E is an Ω-spectrum, then the ith reduced cohomology group of X with respect to E is

Ẽi(X) = [X,Ei].

There is also a definition of E-cohomology if E is not an Ω-spectrum, but that needs more
background.

Why do these definitions make sense? For homology, the maps that define the colimit are
as follows. If α : Sn+i → En ∧X represents a class in πn+i(En ∧X), then the suspension of
α is a map Σ(α) : ΣSn+i → ΣEn ∧X. We identify ΣSn+i with Sn+i+1 and use the structure
map σn : ΣEn → En+1 to obtain a class in πn+1+i(En+1 ∧X)

These theories have suspension isomorphisms: For cohomology, this is visible as

Ẽi+1(ΣX) = [ΣX,Ei+1] ∼= [X,ΩEi+1] ∼= [X,Ei] ∼= Ẽi(X).

We’ll see next, why this also holds for homology.

3. Stable homotopy groups of spheres

Definition A pointed space (X, x) is k-connected, if πi(X, x) = 0 for i ≤ k.
So a 0-connected space is path-connected and a 1-connected space is simply connected.
An n-sphere for n ≥ 1 is (n − 1)-connected; its bottom non-trivial homotopy group is

πn(Sn) = Z. One can choose the generator as a suspension of the standard generator for
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π1(S
1) whose representative is the identity on S1, or if you prefer, the induced map on the

quotient given on [0, 1] by t 7→ exp(2πit).

Freudenthal suspension theorem Let X be an (n − 1)-connected CW complex for
n ≥ 1. Then the suspension Σ induces an isomorphism πi(X) → πi+1(ΣX) for i < 2n − 1
and an epimorphism for i = 2n− 1.

Definition The kth stable homotopy group of the sphere is

πs
k = colimnπn+k(Sn).

Thanks to the Freudenthal Theorem this limit stabilizes at a finite stage:

πs
k
∼= πn+k(Sn) for n > k + 1.

The first stable homotopy groups are

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

πs
i Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 (Z/2)2 (Z/2)3 Z/6 Z/504 0 Z/3

Here, πs
0 comes from the suspensions of π1(S

1) ∼= Z. Note that the generator of π3(S
2)

comes from the Hopf fibration η : S3 → S2 and generates a copy of Z, coming from the long
exact sequence of homotopy groups associated to the fibration S1 → S3 → S2: π3(S

3) ∼=
π3(S

2). So this class isn’t stable yet but its suspensions generate πs
1. The suspensions of the

higher Hopf fibration S3 → S7 → S4 and S7 → S15 → S8 give the generators of πs
3 and πs

7.
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