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Torus homology and iterated trace maps
For a ring R we have trace maps

K (R) // THH(R) // HH(R)

connecting the algebraic K-theory of R to the topological
Hochschild homology of R.

This generalizes in several ways:
Algebraic K-theory of a commutative ring is a commutative ring
spectrum, so we can iterate the construction.

R  K (R) K (K (R)) . . .

This is important in chromatic homotopy theory, because of
Rognes’ red-shift conjecture.
Example: K (C) ' K (HC), where HC is the Eilenberg-MacLane
spectrum HC.
Suslin: K (C)p ' kup, p-completed connective complex topological
K-theory.
Ausoni, Rognes: K (ku) is a form of elliptic cohomology.
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If we end up in ring spectra anyway, we can also start with them,
so from now on R will be a commutative ring spectrum (such as
an Eilenberg-MacLane spectrum of a commutative ring,
topological K-theory, cobordism theories such as MU, MO or
topological modular forms or...).

We can iterate the trace:

K (K (R))→ THH(THH(R)).

THH(THH(R)) is

S1 ⊗ (S1 ⊗ R) ' (S1 × S1)⊗ R.

Why? What is THH(R)?
The simplicial model of the circle S1 has n + 1 points in S1

n :

{0} // {0, 1}oo
oo //

// {0, 1, 2} · · ·
oo
oo
oo

Placing R at each point and smashing these copies together gives
THH(R):

R // R ∧ Roo
oo //

// R ∧ R ∧ R · · ·
oo
oo
oo
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You can do that for any finite simplicial set X :

(X ⊗ R)n =
∧
x∈Xn

R.

There are variants of this construction: If you want to consider
coefficients in an R-module (spectrum) M, then you have to
consider finite pointed simplicial sets.
You can also work in a relative setting. If R → A is a map of
commutative ring spectra and if M is an A-module spectrum, then

LRX (A;M)n = M ∧R
∧

x∈Xn\{∗},R

A.

THH(R;M) is then LS1(R;M)
Direct inspection gives

LRX (LRY (A)) ' LRX×Y (A).
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Back to iterated K-theory: We wanted to understand

THH(THH(R)) = LS1(LS1(R)) ' LS1×S1(R).

Calculating the homotopy groups of LS1×S1(R) is difficult... But
π∗LSn(R) is known for all n in many important cases.
Example: R = HFp. Bökstedt:

π∗(THH(HFp)) ∼= Fp[µ], |µ| = 2.

Theorem [Dundas-Lindenstrauss-R 2018; Mandell]
For all n ≥ 2:

π∗LSn(Fp) ∼= Tor
π∗LSn−1 (Fp)
∗,∗ (Fp,Fp)

as a graded commutative algebra (with total grading).
If we assume enough cofibrancy, then LX (R) only depends on the
homotopy type of X .
What if it just depended on the homotopy type of Σ(X )?
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As there is a homotopy equivalence

Σ(T n) ' Σ(
n∨

k=1

∨
(nk)

Sk)

we could calculate torus homology from a tensor product of the
π∗LSk (R)s.

BUT
Theorem [Dundas-Tenti 2018]:

π∗LQT 2(Q[t]/t2;Q) � π∗LQS2(Q[t]/t2;Q)⊗ π∗LQS1(Q[t]/t2;Q)⊗2.

This is not an accident:
Theorem [Hedenlund, Klanderman, Lindenstrauss, R, Zou]:
Calculating π∗LQTm(Q[t]/tm;Q) for all m ≥ 2 shows that

π∗LQX (Q[t]/tm;Q) doesn’t just depend on the homotopy type of
ΣX .

Similar results hold for Z[t]/tm for all m ≥ 2 and Fp[t]/tm for
2 ≤ m < p.
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Notions of stability

I Let R → A be a cofibration of commutative S-algebras with
R cofibrant. We call R → A stable if for every pair of pointed
simplicial sets X and Y an equivalence ΣX ' ΣY implies
that LRX (A) ' LRY (A).

I Let R → A be a cofibration of commutative S-algebras with
R cofibrant. We call R → A multiplicatively stable (m-stable)
if for every pair of pointed simplicial sets X and Y an
equivalence ΣX ' ΣY in sSets∗ implies that LRX (A) ' LRY (A)
as commutative augmented A-algebra spectra.
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I Let S //R
α //A

β //B be a sequence of cofibrations of
commutative S-algebras. Then we call R → A→ B
multiplicatively stable (m-stable) if for every pair of pointed
simplicial sets X and Y an equivalence ΣX ' ΣY in sSets∗
implies that LRX (A;B) ' LRY (A;B) and LRX (B) ' LRY (B) as
commutative augmented B-algebras such that the diagram

LRX (A;B)
'

LRX (β)
��

LRY (A;B)

LRX (β)
��

LRX (B)
' LRY (B)

commutes.

An example:
Proposition
If B is an augmented commutative A-algebra, then B → A and
A→ LAΣX (B;A)→ A are m-stable.
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simplicial sets X and Y an equivalence ΣX ' ΣY in sSets∗
implies that LRX (A;B) ' LRY (A;B) and LRX (B) ' LRY (B) as
commutative augmented B-algebras such that the diagram
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Sketch of proof:
Bobkova-Höning-Lindenstrauss-Poirier-R-Zakharevich 2019:

LAΣX (B;A) ' LAΣX (A;A) ∧LLAX (A)
LBX (A) ' LBX (A).

Therefore ΣX ' ΣY implies LBX (A) ' LBY (A).

For the second claim observe that

LAY (LAΣX (B;A);A) ' LAY∧ΣX (B;A) = LAΣY∧X (B;A).
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Some examples

I Schlichtkrull: Determines LX (M(f )) if M(f ) is the Thom
spectrum of an Ω∞-map that starts on a grouplike space.
This implies that such M(f ) are m-stable.

I Generalization by Rasekh, Stonek, Valenzuela to generalized
Thom spectra arising from maps of E∞-groups
f : G → Pic(R) where R is a commutative ring spectrum.

I Hedenlund, Klanderman, Lindenstrauss, R, Zou:
If H is a commutative Hopf algebra spectrum and if
Σ(X+) ' Σ(Y+) is an equivalence in S∗, then there is an
equivalence LX (H) ' LY (H) in CAlg. This generalizes a
result by Berest, Ramadoss, Yeung.

I HR → HR/(a1, . . . , an) is m-stable if R is a commutative ring
and (a1, . . . , an) is a regular sequence.

I Let R → A be a cofibration of commutative S-algebras with R
cofibrant. Then A→ LRΣX (A) is m-stable for all X ∈ sSets∗.
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Inheritance properties

I If f : A→ B is m-stable, then so is
C ∧R f : C ∧R A→ C ∧R B.

I Assume that R → B and R → C are m-stable. Then so is
R → B ∧R C .

I If R → A is m-stable, then so is R → LRZ (A) for any Z .

I If S → A and S → B are cofibrations of commutative
S-algebras and if A and B are m-stable, then if X and Y are
connected and ΣX ' ΣY , then

LSX (A× B) ' LSY (A× B)

as commutative S-algebras.
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But beware, stability is not transitive:

If R → A and A→ B satisfy
stability then this does not imply that R → B has this property.
Example: Q→ Q[t] is m-stable because it is smooth
[Dundas-Tenti], Q[t]→ Q[t]/tm is m-stable because tm is regular,
but Q→ Q[t]/tm is not m-stable.
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Recall Dundas-Tenti: If k → A is smooth, then Hk → HA is stable.

We want an adequate version of this for ring spectra.
Let R be a commutative ring spectrum and let M be an R-module
spectrum. Define

PR(M) =
∨
n≥0

M∧Rn/Σn

with the usual convention that M∧A0/Σ0 = R.
Then PR(M) is the free commutative ring spectrum generated by
M.
A series of adjunctions implies:
For every simplicial set X there is a weak equivalence of
commutative R-algebras

LRX (PR(M)) ' PR(X+ ∧M),

in particular, if ΣX ' ΣY , then LRX (PR(M)) ' LRY (PR(M)) as
commutative R-algebras.
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I Let R → A→ B be a sequence of cofibrations of
commutative S-algebras with R cofibrant. Then this sequence
satisfies étale descent if for all connected X the canonical map

LRX (A) ∧A B → LRX (B)

is an equivalence.

I We call a map of cofibrant S-algebras ϕ : R → A really

smooth if it can be factored as R
iR //PR(M)

f //A where
iR is the canonical inclusion, M is an R-module, and

R
iR //PR(M)

f //A satisfies étale descent.
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Stability of really smooth algebras

Theorem
If R → A is really smooth then ΣX ' ΣY for connected X and Y
implies

LRX (A) ' LRY (A)

as commutative R-algebras.



Étale extensions

Let R → A→ B be a sequence of cofibrations of commutative
S-algebras with R cofibrant. If R → A is multiplicatively stable
and if R → A→ B satisfies étale descent, then if ΣX ' ΣY in
sSets∗ for connected X and Y , then there is a weak equivalence of
augmented commutative B-algebras

LRX (B) ' LRY (B).



KU is stable

Snaith: KU ' (Σ∞+ CP∞)[β−1].

As Σ∞+ (CP∞) is a commutative Thom spectrum, Schlichtkrull’s
result on Thom spectra yields that S → Σ∞+ (CP∞) is stable.
Stonek: The localization at β commutes with LX for connected X .

Theorem
If X and Y are connected and ΣX ' ΣY in sSets∗, then

LSX (KU) ' LSY (KU)

as commutative augmented KU-algebra spectra.
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KO is stable

Rognes: KO → KU is a C2-Galois extension (i.e., KO ' KUhC2

and KU ∧KO KU '
∏

C2
KU).

Theorem
If X and Y are connected simplicial sets with ΣX ' ΣY then
LSX (KO) ' LSY (KO) as commutative KO-algebras.
The proof uses Galois descent. Mathew: KO → KU satisfies étale
descent.
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Advertisement:

Chatham, Hahn, Yuan:
Fix a prime p and consider the infinite loop space

Wh = Ω∞Σ2ν(h)BP〈h〉

where ν(h) = ph+1−1
p−1 .

On the suspension spectrum of Wh they invert a generator x of the
bottom non-trivial homotopy group π2ν(h)(Wh) ∼= Z(p) and obtain
an E∞-ring spectrum

Rh := (Σ∞+ Wh)[x−1]

Theorem [CHY]
Rh has torsion-free homotopy groups that vanish in odd degrees, it
is Landweber exact, and its Morava-K (n) localization LK(n)Rh

vanishes if and only if n > h+ 1, so Rh is of chromatic height h+ 1.
W0 is CP∞, W1 gives a form of elliptic cohomology theory.
Theorem
If X and Y are connected and ΣX ' ΣY in sSets∗, then
LSX (Rh) ' LSY (Rh) as commutative augmented Rh-algebra spectra.
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Questions

I What is the homotopy type of R1 (and of the higher Rhs)?

I Is there a C2 action on the Rhs at the prime 2 with interesting
RhC2
h ?

I Ist HFp stable?
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