# Detecting and describing ramification for structured ring spectra

Birgit Richter, eCHT research seminar, April 22 2021

Joint work with Eva Höning

Let  $K \subset L$  be an extension of number fields and let  $\mathcal{O}_K \to \mathcal{O}_L$  be the corresponding extension of rings of integers.

Let  $K \subset L$  be an extension of number fields and let  $\mathcal{O}_K \to \mathcal{O}_L$  be the corresponding extension of rings of integers. A prime ideal  $\mathfrak{p} \subset \mathcal{O}_K$  ramifies in L, if  $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$  in  $\mathcal{O}_L$  and  $e_i > 1$  for at least one  $1 \leq i \leq s$ .

Let  $K \subset L$  be an extension of number fields and let  $\mathcal{O}_K \to \mathcal{O}_L$  be the corresponding extension of rings of integers.

A prime ideal  $\mathfrak{p} \subset \mathcal{O}_K$  ramifies in L, if  $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$  in  $\mathcal{O}_L$ and  $e_i > 1$  for at least one  $1 \leq i \leq s$ .

The ramification is tame when the ramification indices  $e_i$  are all relatively prime to the residue characteristic of p

Let  $K \subset L$  be an extension of number fields and let  $\mathcal{O}_K \to \mathcal{O}_L$  be the corresponding extension of rings of integers.

A prime ideal  $\mathfrak{p} \subset \mathcal{O}_K$  ramifies in L, if  $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$  in  $\mathcal{O}_L$ and  $e_i > 1$  for at least one  $1 \leq i \leq s$ .

The ramification is tame when the ramification indices  $e_i$  are all relatively prime to the residue characteristic of p and it is wild otherwise.

Let  $K \subset L$  be an extension of number fields and let  $\mathcal{O}_K \to \mathcal{O}_L$  be the corresponding extension of rings of integers.

A prime ideal  $\mathfrak{p} \subset \mathcal{O}_K$  ramifies in L, if  $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$  in  $\mathcal{O}_L$ and  $e_i > 1$  for at least one  $1 \leq i \leq s$ .

The ramification is tame when the ramification indices  $e_i$  are all relatively prime to the residue characteristic of p and it is wild otherwise.

Example Consider



Let  $K \subset L$  be an extension of number fields and let  $\mathcal{O}_K \to \mathcal{O}_L$  be the corresponding extension of rings of integers.

A prime ideal  $\mathfrak{p} \subset \mathcal{O}_K$  ramifies in L, if  $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$  in  $\mathcal{O}_L$ and  $e_i > 1$  for at least one  $1 \leq i \leq s$ .

The ramification is tame when the ramification indices  $e_i$  are all relatively prime to the residue characteristic of p and it is wild otherwise.

Example Consider



Then  $\mathbb{Z}[i] \supset (2) = (1+i)^2$ 

Let  $K \subset L$  be an extension of number fields and let  $\mathcal{O}_K \to \mathcal{O}_L$  be the corresponding extension of rings of integers.

A prime ideal  $\mathfrak{p} \subset \mathcal{O}_K$  ramifies in L, if  $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$  in  $\mathcal{O}_L$ and  $e_i > 1$  for at least one  $1 \leq i \leq s$ .

The ramification is tame when the ramification indices  $e_i$  are all relatively prime to the residue characteristic of p and it is wild otherwise.

Example Consider

$$\mathbb{Q} \longrightarrow \mathbb{Q}(i)$$

$$\uparrow \qquad \uparrow$$

$$\mathbb{Z} \longrightarrow \mathbb{Z}[i]$$

Then  $\mathbb{Z}[i] \supset (2) = (1+i)^2$  and 2 is the characteristic of the residue field  $\mathbb{F}_2$ , so (2) is wildy ramified.

If  $K \subset L$  is a *G*-Galois extension, then  $\mathcal{O}_K \to \mathcal{O}_L$  is unramified, if and only if  $\mathcal{O}_K \to \mathcal{O}_L$  is a Galois extension of commutative rings

If  $K \subset L$  is a *G*-Galois extension, then  $\mathcal{O}_K \to \mathcal{O}_L$  is unramified, if and only if  $\mathcal{O}_K \to \mathcal{O}_L$  is a Galois extension of commutative rings and this in turn says that  $\mathcal{O}_L^G = \mathcal{O}_K$  and  $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$  if *G* is the Galois group of  $K \subset L$ .

If  $K \subset L$  is a *G*-Galois extension, then  $\mathcal{O}_K \to \mathcal{O}_L$  is unramified, if and only if  $\mathcal{O}_K \to \mathcal{O}_L$  is a Galois extension of commutative rings and this in turn says that  $\mathcal{O}_L^G = \mathcal{O}_K$  and  $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$  if *G* is the Galois group of  $K \subset L$ .

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$$

via the map  $x \otimes y \mapsto (xg(y))_{g \in G}$ .

If  $K \subset L$  is a *G*-Galois extension, then  $\mathcal{O}_K \to \mathcal{O}_L$  is unramified, if and only if  $\mathcal{O}_K \to \mathcal{O}_L$  is a Galois extension of commutative rings and this in turn says that  $\mathcal{O}_L^G = \mathcal{O}_K$  and  $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$  if *G* is the Galois group of  $K \subset L$ .

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$$

via the map  $x \otimes y \mapsto (xg(y))_{g \in G}$ .

Plan for today:

If  $K \subset L$  is a *G*-Galois extension, then  $\mathcal{O}_K \to \mathcal{O}_L$  is unramified, if and only if  $\mathcal{O}_K \to \mathcal{O}_L$  is a Galois extension of commutative rings and this in turn says that  $\mathcal{O}_L^G = \mathcal{O}_K$  and  $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$  if *G* is the Galois group of  $K \subset L$ .

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$$

via the map  $x \otimes y \mapsto (xg(y))_{g \in G}$ .

Plan for today:

What are ramified extensions of ring spectra?

If  $K \subset L$  is a *G*-Galois extension, then  $\mathcal{O}_K \to \mathcal{O}_L$  is unramified, if and only if  $\mathcal{O}_K \to \mathcal{O}_L$  is a Galois extension of commutative rings and this in turn says that  $\mathcal{O}_L^G = \mathcal{O}_K$  and  $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$  if *G* is the Galois group of  $K \subset L$ .

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$$

via the map  $x \otimes y \mapsto (xg(y))_{g \in G}$ .

Plan for today:

- What are ramified extensions of ring spectra?
- When is an extension tame or wild?

If  $K \subset L$  is a *G*-Galois extension, then  $\mathcal{O}_K \to \mathcal{O}_L$  is unramified, if and only if  $\mathcal{O}_K \to \mathcal{O}_L$  is a Galois extension of commutative rings and this in turn says that  $\mathcal{O}_L^G = \mathcal{O}_K$  and  $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$  if *G* is the Galois group of  $K \subset L$ .

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$$

via the map  $x \otimes y \mapsto (xg(y))_{g \in G}$ .

Plan for today:

- What are ramified extensions of ring spectra?
- When is an extension tame or wild?
- Examples, examples, examples.

▶ The map from A to the homotopy fixed points of B with respect to the G-action,  $i: A \rightarrow B^{hG}$ , is a weak equivalence.

- ▶ The map from A to the homotopy fixed points of B with respect to the G-action,  $i: A \rightarrow B^{hG}$ , is a weak equivalence.
- The map

$$h\colon B\wedge_{\mathcal{A}}B\to\prod_{\mathcal{G}}B$$

is a weak equivalence.

- ▶ The map from A to the homotopy fixed points of B with respect to the G-action,  $i: A \rightarrow B^{hG}$ , is a weak equivalence.
- The map

$$h\colon B\wedge_{\mathcal{A}}B\to\prod_{\mathcal{G}}B$$

is a weak equivalence.

Here, h is right adjoint to the composite map

$$B \wedge_A B \wedge G_+ \longrightarrow B \wedge_A B \longrightarrow B,$$

induced by the G-action and the multiplication on B.

**Example 2** Consider the complexification map c, that sends an  $\mathbb{R}$ -vector bundle to the corresponding complexified  $\mathbb{C}$ -vector bundle.

Example 2 Consider the complexification map c, that sends an  $\mathbb{R}$ -vector bundle to the corresponding complexified  $\mathbb{C}$ -vector bundle.

This map c induces a map of commutative ring spectra from real topological K-theory, KO, to complex topological K-theory, KU:

Example 2 Consider the complexification map c, that sends an  $\mathbb{R}$ -vector bundle to the corresponding complexified  $\mathbb{C}$ -vector bundle.

This map c induces a map of commutative ring spectra from real topological K-theory, KO, to complex topological K-theory, KU:

 $c\colon KO \to KU.$ 

Example 2 Consider the complexification map c, that sends an  $\mathbb{R}$ -vector bundle to the corresponding complexified  $\mathbb{C}$ -vector bundle.

This map c induces a map of commutative ring spectra from real topological K-theory, KO, to complex topological K-theory, KU:

$$c\colon KO\to KU.$$

Complex conjugation gives rise to a  $C_2$ -action on KU.

Example 2 Consider the complexification map c, that sends an  $\mathbb{R}$ -vector bundle to the corresponding complexified  $\mathbb{C}$ -vector bundle.

This map *c* induces a map of commutative ring spectra from real topological K-theory, *KO*, to complex topological K-theory, *KU*:

$$c: KO \rightarrow KU.$$

Complex conjugation gives rise to a  $C_2$ -action on KU. Rognes [2008]: This turns  $KO \rightarrow KU$  into a  $C_2$ -Galois extension.

$$\pi_*(KO) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(KU)$$
  
with  $y \mapsto 2u^2$ .

$$\pi_*(\mathcal{KO}) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(\mathcal{KU})$$

*·* · ·

with  $y \mapsto 2u^2$ . So as a graded commutative  $\pi_*(KO)$ -algebra  $\pi_*(KU)$  is really bad.

$$\pi_*(\mathcal{KO}) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(\mathcal{KU})$$

with  $y \mapsto 2u^2$ .

So as a graded commutative  $\pi_*(KO)$ -algebra  $\pi_*(KU)$  is really bad.

Other important Galois extensions:

$$\pi_*(\mathcal{KO}) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(\mathcal{KU})$$

with  $y \mapsto 2u^2$ .

So as a graded commutative  $\pi_*(KO)$ -algebra  $\pi_*(KU)$  is really bad.

Other important Galois extensions:

For p an odd prime:  $KU_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2i} L$  and  $L_p \to KU_p$  is a  $C_{p-1}$ -Galois extension [Rognes 2008].

$$\pi_*(\mathcal{KO}) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(\mathcal{KU})$$

with  $y \mapsto 2u^2$ .

So as a graded commutative  $\pi_*(KO)$ -algebra  $\pi_*(KU)$  is really bad. Other important Galois extensions:

- ► For *p* an odd prime:  $KU_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2i} L$  and  $L_p \to KU_p$  is a  $C_{p-1}$ -Galois extension [Rognes 2008].
- ▶  $TMF_0(3)_{(2)} \rightarrow TMF_1(3)_{(2)}$  is C<sub>2</sub>-Galois [Mathew-Meier 2015].

$$\pi_*(\mathsf{KO}) = \mathbb{Z}[\eta, \mathsf{y}, \omega^{\pm 1}] / (2\eta, \eta^3, \eta \mathsf{y}, \mathsf{y}^2 - 4\omega) \xrightarrow{\pi_*(\mathsf{c})} \mathbb{Z}[u^{\pm 1}] = \pi_*(\mathsf{KU})$$

with  $y \mapsto 2u^2$ .

So as a graded commutative  $\pi_*(KO)$ -algebra  $\pi_*(KU)$  is really bad. Other important Galois extensions:

- ► For *p* an odd prime:  $KU_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2i} L$  and  $L_p \to KU_p$  is a  $C_{p-1}$ -Galois extension [Rognes 2008].
- ▶  $TMF_0(3)_{(2)} \rightarrow TMF_1(3)_{(2)}$  is C<sub>2</sub>-Galois [Mathew-Meier 2015].
- ►  $TMF[1/n] \rightarrow TMF(n)$  is  $GL_2(\mathbb{Z}/n\mathbb{Z})$ -Galois [MM-2015].

•  $B \rightarrow THH^{A}(B)$  is a weak equivalence and

- ▶  $B \rightarrow THH^A(B)$  is a weak equivalence and
- $\blacktriangleright TAQ(B|A) \simeq *.$

#### • $B \rightarrow THH^{A}(B)$ is a weak equivalence and

• 
$$TAQ(B|A) \simeq *$$
.

Here,  $THH^{A}(B)$  is topological Hochschild homology of B with respect to A
•  $B \rightarrow THH^{A}(B)$  is a weak equivalence and

• 
$$TAQ(B|A) \simeq *$$
.

Here,  $THH^{A}(B)$  is topological Hochschild homology of B with respect to A and TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

•  $B \rightarrow THH^{A}(B)$  is a weak equivalence and

• 
$$TAQ(B|A) \simeq *$$
.

Here,  $THH^{A}(B)$  is topological Hochschild homology of B with respect to A and TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

If  $B \simeq THH^A(B)$  or if  $\pi_n TAQ(B|A) \neq 0$  for some *n*, then we know that there has to be ramification.

•  $B \rightarrow THH^{A}(B)$  is a weak equivalence and

• 
$$TAQ(B|A) \simeq *$$
.

Here,  $THH^{A}(B)$  is topological Hochschild homology of B with respect to A and TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

If  $B \not\simeq THH^A(B)$  or if  $\pi_n TAQ(B|A) \neq 0$  for some *n*, then we know that there has to be ramification. If  $\mathcal{O}_K \to \mathcal{O}_L$  is an extension of number rings with corresponding extension of number fields  $K \subset L$ , then

$$\pi_0 TAQ(H\mathcal{O}_L|H\mathcal{O}_K) \cong \Omega^1_{\mathcal{O}_L|\mathcal{O}_K}$$

is the classical module of Kähler differentials.

•  $B \rightarrow THH^{A}(B)$  is a weak equivalence and

• 
$$TAQ(B|A) \simeq *$$
.

Here,  $THH^{A}(B)$  is topological Hochschild homology of B with respect to A and TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

If  $B \not\simeq THH^A(B)$  or if  $\pi_n TAQ(B|A) \neq 0$  for some *n*, then we know that there has to be ramification. If  $\mathcal{O}_K \to \mathcal{O}_L$  is an extension of number rings with corresponding extension of number fields  $K \subset L$ , then

$$\pi_0 TAQ(H\mathcal{O}_L|H\mathcal{O}_K) \cong \Omega^1_{\mathcal{O}_L|\mathcal{O}_K}$$

is the classical module of Kähler differentials.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.

•  $B \rightarrow THH^{A}(B)$  is a weak equivalence and

• 
$$TAQ(B|A) \simeq *$$
.

Here,  $THH^{A}(B)$  is topological Hochschild homology of B with respect to A and TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

If  $B \not\simeq THH^A(B)$  or if  $\pi_n TAQ(B|A) \neq 0$  for some *n*, then we know that there has to be ramification. If  $\mathcal{O}_K \to \mathcal{O}_L$  is an extension of number rings with corresponding extension of number fields  $K \subset L$ , then

$$\pi_0 TAQ(H\mathcal{O}_L|H\mathcal{O}_K) \cong \Omega^1_{\mathcal{O}_L|\mathcal{O}_K}$$

is the classical module of Kähler differentials.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.

So, in particular, connective covers of Galois extensions are rarely Galois extensions

•  $B \rightarrow THH^{A}(B)$  is a weak equivalence and

• 
$$TAQ(B|A) \simeq *$$
.

Here,  $THH^{A}(B)$  is topological Hochschild homology of B with respect to A and TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

If  $B \not\simeq THH^A(B)$  or if  $\pi_n TAQ(B|A) \neq 0$  for some *n*, then we know that there has to be ramification. If  $\mathcal{O}_K \to \mathcal{O}_L$  is an extension of number rings with corresponding extension of number fields  $K \subset L$ , then

$$\pi_0 TAQ(H\mathcal{O}_L|H\mathcal{O}_K) \cong \Omega^1_{\mathcal{O}_L|\mathcal{O}_K}$$

is the classical module of Kähler differentials.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.

So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples.

Hurewicz theorem for topological André-Quillen homology [Basterra 1999]:

#### Hurewicz theorem for topological André-Quillen homology

[Basterra 1999]: Let  $\varphi \colon A \to B$  be an *n*-equivalence, where A and B are connective and  $n \ge 1$ . Then TAQ(B|A) is *n*-connected and there is a map of A-modules  $f \colon C\varphi \to TAQ(B|A)$  for which  $f_* \colon \pi_{n+1}C\varphi \cong \pi_{n+1}TAQ(B|A)$ .

### Hurewicz theorem for topological André-Quillen homology

[Basterra 1999]: Let  $\varphi: A \to B$  be an *n*-equivalence, where A and B are connective and  $n \ge 1$ . Then TAQ(B|A) is *n*-connected and there is a map of A-modules  $f: C\varphi \to TAQ(B|A)$  for which  $f_*: \pi_{n+1}C\varphi \cong \pi_{n+1}TAQ(B|A)$ . With this result it is easy to show:

$$\blacktriangleright \pi_2 TAQ(ku_{(p)}|\ell) \cong \mathbb{Z}_{(p)}.$$

#### Hurewicz theorem for topological André-Quillen homology

[Basterra 1999]: Let  $\varphi \colon A \to B$  be an *n*-equivalence, where A and B are connective and  $n \ge 1$ . Then TAQ(B|A) is *n*-connected and there is a map of A-modules  $f \colon C\varphi \to TAQ(B|A)$  for which  $f_* \colon \pi_{n+1}C\varphi \cong \pi_{n+1}TAQ(B|A)$ . With this result it is easy to show:

▶  $\pi_2 TAQ(ku_{(p)}|\ell) \cong \mathbb{Z}_{(p)}$ . Here,  $\ell \to ku_{(p)}$  is the inclusion of the Adams summand into *p*-localized complex K-theory, for an odd prime *p*.

#### Hurewicz theorem for topological André-Quillen homology

[Basterra 1999]: Let  $\varphi \colon A \to B$  be an *n*-equivalence, where A and B are connective and  $n \ge 1$ . Then TAQ(B|A) is *n*-connected and there is a map of A-modules  $f \colon C\varphi \to TAQ(B|A)$  for which  $f_* \colon \pi_{n+1}C\varphi \cong \pi_{n+1}TAQ(B|A)$ . With this result it is easy to show:

π<sub>2</sub> TAQ(ku<sub>(p)</sub>|ℓ) ≅ ℤ<sub>(p)</sub>. Here, ℓ → ku<sub>(p)</sub> is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.

$$\blacktriangleright \ \pi_2 TAQ(ku|ko) \cong \mathbb{Z}.$$

#### Hurewicz theorem for topological André-Quillen homology

[Basterra 1999]: Let  $\varphi \colon A \to B$  be an *n*-equivalence, where A and B are connective and  $n \ge 1$ . Then TAQ(B|A) is *n*-connected and there is a map of A-modules  $f \colon C\varphi \to TAQ(B|A)$  for which  $f_* \colon \pi_{n+1}C\varphi \cong \pi_{n+1}TAQ(B|A)$ . With this result it is easy to show:

 π<sub>2</sub> TAQ(ku<sub>(p)</sub>|ℓ) ≅ Z<sub>(p)</sub>. Here, ℓ → ku<sub>(p)</sub> is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.

$$\blacktriangleright \ \pi_2 TAQ(ku|ko) \cong \mathbb{Z}.$$

•  $\pi_2 TAQ(tmf_1(3)_{(2)}|tmf_0(3)_{(2)}) \cong \mathbb{Z}_{(2)}.$ 

#### Hurewicz theorem for topological André-Quillen homology

[Basterra 1999]: Let  $\varphi \colon A \to B$  be an *n*-equivalence, where A and B are connective and  $n \ge 1$ . Then TAQ(B|A) is *n*-connected and there is a map of A-modules  $f \colon C\varphi \to TAQ(B|A)$  for which  $f_* \colon \pi_{n+1}C\varphi \cong \pi_{n+1}TAQ(B|A)$ . With this result it is easy to show:

 π<sub>2</sub> TAQ(ku<sub>(p)</sub>|ℓ) ≅ Z<sub>(p)</sub>. Here, ℓ → ku<sub>(p)</sub> is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.

$$\blacktriangleright \ \pi_2 TAQ(ku|ko) \cong \mathbb{Z}.$$

- $\pi_2 TAQ(tmf_1(3)_{(2)}|tmf_0(3)_{(2)}) \cong \mathbb{Z}_{(2)}.$
- $\pi_4 TAQ(tmf_0(2)_{(3)}|tmf_{(3)}) \cong \mathbb{Z}_{(3)}.$

#### Hurewicz theorem for topological André-Quillen homology

[Basterra 1999]: Let  $\varphi \colon A \to B$  be an *n*-equivalence, where A and B are connective and  $n \ge 1$ . Then TAQ(B|A) is *n*-connected and there is a map of A-modules  $f \colon C\varphi \to TAQ(B|A)$  for which  $f_* \colon \pi_{n+1}C\varphi \cong \pi_{n+1}TAQ(B|A)$ . With this result it is easy to show:

 π<sub>2</sub> TAQ(ku<sub>(p)</sub>|ℓ) ≅ Z<sub>(p)</sub>. Here, ℓ → ku<sub>(p)</sub> is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.

$$\blacktriangleright \ \pi_2 TAQ(ku|ko) \cong \mathbb{Z}.$$

- $\pi_2 TAQ(tmf_1(3)_{(2)}|tmf_0(3)_{(2)}) \cong \mathbb{Z}_{(2)}.$
- $\pi_4 TAQ(tmf_0(2)_{(3)}|tmf_{(3)}) \cong \mathbb{Z}_{(3)}.$

We *do* have ramification, but we don't see yet, whether it's tame or wild.

Classically: A finite generically étale extension  $A \rightarrow B$  of Dedekind domains is tame if and only if the trace  $B \rightarrow A$  is surjective.

Classically: A finite generically étale extension  $A \to B$  of Dedekind domains is tame if and only if the trace  $B \to A$  is surjective. For  $\mathcal{O}_K \subset \mathcal{O}_L$ : This extension is tamely ramified if the norm map is surjective: If G is the Galois group of  $K \subset L$ , then the norm is

$$N_G \colon \mathcal{O}_L \to \mathcal{O}_K, \quad x \mapsto \sum_{g \in G} gx.$$

Classically: A finite generically étale extension  $A \to B$  of Dedekind domains is tame if and only if the trace  $B \to A$  is surjective. For  $\mathcal{O}_K \subset \mathcal{O}_L$ : This extension is tamely ramified if the norm map is surjective: If G is the Galois group of  $K \subset L$ , then the norm is

$$N_G\colon \mathcal{O}_L o \mathcal{O}_K, \quad x\mapsto \sum_{g\in G} gx.$$

The norm map induces a map  $H_0(G; \mathcal{O}_L) \to H^0(G; \mathcal{O}_L)$ . Its deviation from being an isomorphism is measured by *Tate* cohomology,  $\hat{H}^*(G; \mathcal{O}_L)$ .

Classically: A finite generically étale extension  $A \to B$  of Dedekind domains is tame if and only if the trace  $B \to A$  is surjective. For  $\mathcal{O}_K \subset \mathcal{O}_L$ : This extension is tamely ramified if the norm map is surjective: If G is the Galois group of  $K \subset L$ , then the norm is

$$N_G\colon \mathcal{O}_L o \mathcal{O}_K, \quad x\mapsto \sum_{g\in G} gx.$$

The norm map induces a map  $H_0(G; \mathcal{O}_L) \to H^0(G; \mathcal{O}_L)$ . Its deviation from being an isomorphism is measured by *Tate* cohomology,  $\hat{H}^*(G; \mathcal{O}_L)$ .

Homotopy theoretic version:

Classically: A finite generically étale extension  $A \to B$  of Dedekind domains is tame if and only if the trace  $B \to A$  is surjective. For  $\mathcal{O}_K \subset \mathcal{O}_L$ : This extension is tamely ramified if the norm map is surjective: If G is the Galois group of  $K \subset L$ , then the norm is

$$N_G\colon \mathcal{O}_L o \mathcal{O}_K, \quad x\mapsto \sum_{g\in G} gx.$$

The norm map induces a map  $H_0(G; \mathcal{O}_L) \to H^0(G; \mathcal{O}_L)$ . Its deviation from being an isomorphism is measured by *Tate* cohomology,  $\hat{H}^*(G; \mathcal{O}_L)$ .

Homotopy theoretic version:

If B is a G-spectrum, then the Tate construction of B with respect

to G is the cofiber  $B^{tG}$  of  $B_{hG} \xrightarrow{N_G} B^{hG} \longrightarrow B^{tG}$ .

Classically: A finite generically étale extension  $A \to B$  of Dedekind domains is tame if and only if the trace  $B \to A$  is surjective. For  $\mathcal{O}_K \subset \mathcal{O}_L$ : This extension is tamely ramified if the norm map is surjective: If G is the Galois group of  $K \subset L$ , then the norm is

$$N_G\colon \mathcal{O}_L o \mathcal{O}_K, \quad x\mapsto \sum_{g\in G} gx.$$

The norm map induces a map  $H_0(G; \mathcal{O}_L) \to H^0(G; \mathcal{O}_L)$ . Its deviation from being an isomorphism is measured by *Tate* cohomology,  $\hat{H}^*(G; \mathcal{O}_L)$ .

Homotopy theoretic version:

If B is a G-spectrum, then the Tate construction of B with respect  $N_{C}$ 

to *G* is the cofiber  $B^{tG}$  of  $B_{hG} \xrightarrow{N_G} B^{hG} \longrightarrow B^{tG}$ . Here,  $B_{hG}$  is the homotopy orbit spectrum and  $B^{hG} = F_G((EG)_+, B)$  is the homotopy fixed point spectrum. Classically, this can be used as a criterion for tame ramification:

Classically, this can be used as a criterion for tame ramification: The map  $\mathcal{O}_K \to \mathcal{O}_L$  is tamely ramified iff  $\pi_*(H\mathcal{O}_L)^{tG} = 0$ . Classically, this can be used as a criterion for tame ramification: The map  $\mathcal{O}_K \to \mathcal{O}_L$  is tamely ramified iff  $\pi_*(\mathcal{HO}_L)^{tG} = 0$ . There is a spectral sequence

$$E_2^{s,t} = \hat{H}^{-s}(G; \pi_t B) \Rightarrow \pi_{s+t}(B^{tG}),$$

where  $\hat{H}^*(G; \pi_t B)$  is the Tate cohomology of G with coefficients in the G-module  $\pi_t B$ .

Classically, this can be used as a criterion for tame ramification: The map  $\mathcal{O}_K \to \mathcal{O}_L$  is tamely ramified iff  $\pi_*(\mathcal{HO}_L)^{tG} = 0$ . There is a spectral sequence

$$E_2^{s,t} = \hat{H}^{-s}(G; \pi_t B) \Rightarrow \pi_{s+t}(B^{tG}),$$

where  $\hat{H}^*(G; \pi_t B)$  is the Tate cohomology of G with coefficients in the G-module  $\pi_t B$ .

If  $B = H\mathcal{O}_L$ , then the spectral sequence collapses and  $\hat{H}^*(G; \mathcal{O}_L) \cong \pi_{-*}(H\mathcal{O}_L)^{tG}$ .

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras.

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$h\colon B\wedge_A B \xrightarrow{\sim} F(G_+,B),$$

then  $B^{tG} \simeq *$ .

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$h: B \wedge_A B \xrightarrow{\sim} F(G_+, B),$$

then  $B^{tG} \simeq *$ .

In algebra, faithfulness is *not* an extra assumption but comes for free!

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$h: B \wedge_A B \xrightarrow{\sim} F(G_+, B),$$

then  $B^{tG} \simeq *$ .

In algebra, faithfulness is *not* an extra assumption but comes for free!

Anyway: We always have to assume that our maps  $A \rightarrow B$  are faithful, if we want to measure ramification and not just noise.

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$h: B \wedge_A B \xrightarrow{\sim} F(G_+, B),$$

then  $B^{tG} \simeq *$ .

In algebra, faithfulness is *not* an extra assumption but comes for free!

Anyway: We always have to assume that our maps  $A \to B$  are faithful, if we want to measure ramification and not just noise. Beware! If  $A \to B$  is a map between connective commutative ring spectra, then often  $B^{hG} \not\simeq A$ , but  $A \to \tau_{\geq 0} B^{hG}$  might be an equivalence (e.g.  $ko \simeq \tau_{\geq 0} k u^{hC_2}$ ).

Definition Assume that  $A \rightarrow B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

Definition Assume that  $A \to B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If  $A \simeq B^{hG}$  (or  $A \simeq \tau_{\geq 0}B^{hG}$  if A and B are connective), then we call  $A \to B$  tamely ramified if  $B^{tG} \simeq *$ . Otherwise,  $A \to B$  is wildly ramified.

Definition Assume that  $A \rightarrow B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If  $A \simeq B^{hG}$  (or  $A \simeq \tau_{\geq 0} B^{hG}$  if A and B are connective), then we call  $A \rightarrow B$  tamely ramified if  $B^{tG} \simeq *$ . Otherwise,  $A \rightarrow B$  is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form  $G_+ \wedge W$ , then  $X^{tG} \simeq *$ ,

Definition Assume that  $A \rightarrow B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If  $A \simeq B^{hG}$  (or  $A \simeq \tau_{\geq 0} B^{hG}$  if A and B are connective), then we call  $A \rightarrow B$  tamely ramified if  $B^{tG} \simeq *$ . Otherwise,  $A \rightarrow B$  is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form  $G_+ \wedge W$ , then  $X^{tG} \simeq *$ , so in particular, if *B* has a normal basis,  $B \simeq G_+ \wedge A$ , then  $B^{tG} \simeq *$ .

Definition Assume that  $A \rightarrow B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If  $A \simeq B^{hG}$  (or  $A \simeq \tau_{\geq 0}B^{hG}$  if A and B are connective), then we call  $A \rightarrow B$  tamely ramified if  $B^{tG} \simeq *$ . Otherwise,  $A \rightarrow B$  is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form  $G_+ \wedge W$ , then  $X^{tG} \simeq *$ , so in particular, if *B* has a normal basis,  $B \simeq G_+ \wedge A$ , then  $B^{tG} \simeq *$ .

Can we determine  $B^{tG}$  for
Definition Assume that  $A \rightarrow B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If  $A \simeq B^{hG}$  (or  $A \simeq \tau_{\geq 0}B^{hG}$  if A and B are connective), then we call  $A \rightarrow B$  tamely ramified if  $B^{tG} \simeq *$ . Otherwise,  $A \rightarrow B$  is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form  $G_+ \wedge W$ , then  $X^{tG} \simeq *$ , so in particular, if *B* has a normal basis,  $B \simeq G_+ \wedge A$ , then  $B^{tG} \simeq *$ .

Can we determine  $B^{tG}$  for

$$\blacktriangleright B = ku \text{ and } G = C_2?$$

Definition Assume that  $A \rightarrow B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If  $A \simeq B^{hG}$  (or  $A \simeq \tau_{\geq 0} B^{hG}$  if A and B are connective), then we call  $A \rightarrow B$  tamely ramified if  $B^{tG} \simeq *$ . Otherwise,  $A \rightarrow B$  is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form  $G_+ \wedge W$ , then  $X^{tG} \simeq *$ , so in particular, if *B* has a normal basis,  $B \simeq G_+ \wedge A$ , then  $B^{tG} \simeq *$ .

Can we determine  $B^{tG}$  for

► B = ku and  $G = C_2$ ?  $ku^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{4i} H\mathbb{Z}/2\mathbb{Z}$  [Rognes].

Definition Assume that  $A \rightarrow B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If  $A \simeq B^{hG}$  (or  $A \simeq \tau_{\geq 0}B^{hG}$  if A and B are connective), then we call  $A \rightarrow B$  tamely ramified if  $B^{tG} \simeq *$ . Otherwise,  $A \rightarrow B$  is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form  $G_+ \wedge W$ , then  $X^{tG} \simeq *$ , so in particular, if *B* has a normal basis,  $B \simeq G_+ \wedge A$ , then  $B^{tG} \simeq *$ .

Can we determine  $B^{tG}$  for

B = ku and G = C<sub>2</sub>? ku<sup>tC<sub>2</sub></sup> ≃ V<sub>i∈Z</sub> Σ<sup>4i</sup> HZ/2Z [Rognes].
 For B = tmf<sub>1</sub>(3)<sub>(2)</sub> and G = C<sub>2</sub>?

Definition Assume that  $A \rightarrow B$  is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If  $A \simeq B^{hG}$  (or  $A \simeq \tau_{\geq 0}B^{hG}$  if A and B are connective), then we call  $A \rightarrow B$  tamely ramified if  $B^{tG} \simeq *$ . Otherwise,  $A \rightarrow B$  is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form  $G_+ \wedge W$ , then  $X^{tG} \simeq *$ , so in particular, if *B* has a normal basis,  $B \simeq G_+ \wedge A$ , then  $B^{tG} \simeq *$ .

Can we determine  $B^{tG}$  for

B = ku and G = C<sub>2</sub>? ku<sup>tC<sub>2</sub></sup> ≃ V<sub>i∈ℤ</sub> Σ<sup>4i</sup> Hℤ/2ℤ [Rognes].
 For B = tmf<sub>1</sub>(3)<sub>(2)</sub> and G = C<sub>2</sub>?
 For B = tmf(2)<sub>(3)</sub> and G = GL<sub>2</sub>(𝔽<sub>2</sub>) ≅ Σ<sub>3</sub>?

• 
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

• 
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

• 
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i\in\mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

• 
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and  
•  $tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}$ .

The first result can be deduced from calculations of Mahowald and Rezk for  $\pi_* TMF_1(3)_{(2)}^{hC_2} = \pi_* TMF_0(3)_{(2)}$  via a spectral sequence calculation.

• 
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and  
•  $tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}$ .

The first result can be deduced from calculations of Mahowald and Rezk for  $\pi_* TMF_1(3)_{(2)}^{hC_2} = \pi_* TMF_0(3)_{(2)}$  via a spectral sequence calculation. This gives the answer on the level of homotopy groups.

• 
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

• 
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i\in\mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

The first result can be deduced from calculations of Mahowald and Rezk for  $\pi_* TMF_1(3)_{(2)}^{hC_2} = \pi_* TMF_0(3)_{(2)}$  via a spectral sequence calculation. This gives the answer on the level of homotopy groups. A result by Hopkins and Mahowald implies that  $tmf_1(3)_{(2)}^{tC_2}$  is a generalized Eilenberg-MacLane spectrum.

• 
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and  
•  $tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}$ .

The first result can be deduced from calculations of Mahowald and Rezk for  $\pi_* TMF_1(3)_{(2)}^{hC_2} = \pi_* TMF_0(3)_{(2)}$  via a spectral sequence calculation. This gives the answer on the level of homotopy groups. A result by Hopkins and Mahowald implies that  $tmf_1(3)_{(2)}^{tC_2}$  is a generalized Eilenberg-MacLane spectrum.

The proof of the second claim uses Stojanoska's calculation of  $Tmf(2)_{(3)}^{t\Sigma_3} \simeq *$  via the Tate spectral sequence

$$E_{n.m}^{2} = \hat{H}^{-n}(\Sigma_{3}, \pi_{m}(Tmf(2)_{(3)})) \Longrightarrow \pi_{n+m}(Tmf(2)_{(3)}^{t\Sigma_{3}}).$$

# ▶ So $KO \rightarrow KU$ is $C_2$ -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.

- ▶ So  $KO \rightarrow KU$  is  $C_2$ -Galois [Rognes], but  $ko \rightarrow ku$  is wildly ramified.
- ▶  $L_p \rightarrow KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \rightarrow ku_p$  is tamely ramified.

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ►  $L_p \rightarrow KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \rightarrow ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ▶  $L_p \to KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \to ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .
- $TMF_0(3) \rightarrow TMF_1(3)$  is  $C_2$ -Galois [Mathew-Meier]

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ▶  $L_p \to KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \to ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .
- ▶  $TMF_0(3) \rightarrow TMF_1(3)$  is  $C_2$ -Galois [Mathew-Meier]  $Tmf_0(3) \rightarrow Tmf_1(3)$  is also  $C_2$ -Galois [Mathew-Meier]

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ▶  $L_p \to KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \to ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .
- ▶  $TMF_0(3) \rightarrow TMF_1(3)$  is  $C_2$ -Galois [Mathew-Meier]  $Tmf_0(3) \rightarrow Tmf_1(3)$  is also  $C_2$ -Galois [Mathew-Meier] but  $tmf_1(3)_{(2)}^{tC_2} \neq *$ .

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ▶  $L_p \rightarrow KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \rightarrow ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .
- ▶  $TMF_0(3) \rightarrow TMF_1(3)$  is  $C_2$ -Galois [Mathew-Meier]  $Tmf_0(3) \rightarrow Tmf_1(3)$  is also  $C_2$ -Galois [Mathew-Meier] but  $tmf_1(3)_{(2)}^{tC_2} \neq *$ . But here, we don't know whether  $tmf_1(3)_{(2)}$  is faithful as a  $tmf_0(3)_{(2)}$ -module.

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ▶  $L_p \rightarrow KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \rightarrow ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .
- ▶  $TMF_0(3) \rightarrow TMF_1(3)$  is  $C_2$ -Galois [Mathew-Meier]  $Tmf_0(3) \rightarrow Tmf_1(3)$  is also  $C_2$ -Galois [Mathew-Meier] but  $tmf_1(3)_{(2)}^{tC_2} \neq *$ . But here, we don't know whether  $tmf_1(3)_{(2)}$  is faithful as a  $tmf_0(3)_{(2)}$ -module. Lennart Meier: It is *not* dualizable.

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ▶  $L_p \rightarrow KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \rightarrow ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .
- ▶  $TMF_0(3) \rightarrow TMF_1(3)$  is  $C_2$ -Galois [Mathew-Meier]  $Tmf_0(3) \rightarrow Tmf_1(3)$  is also  $C_2$ -Galois [Mathew-Meier] but  $tmf_1(3)_{(2)}^{tC_2} \neq *$ . But here, we don't know whether  $tmf_1(3)_{(2)}$  is faithful as a  $tmf_0(3)_{(2)}$ -module. Lennart Meier: It is *not* dualizable.
- $TMF[1/n] \rightarrow TMF(n)$  is a  $GL_2(\mathbb{Z}/n\mathbb{Z})$ -Galois extension

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ▶  $L_p \rightarrow KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \rightarrow ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .
- ▶  $TMF_0(3) \rightarrow TMF_1(3)$  is  $C_2$ -Galois [Mathew-Meier]  $Tmf_0(3) \rightarrow Tmf_1(3)$  is also  $C_2$ -Galois [Mathew-Meier] but  $tmf_1(3)_{(2)}^{tC_2} \neq *$ . But here, we don't know whether  $tmf_1(3)_{(2)}$  is faithful as a  $tmf_0(3)_{(2)}$ -module. Lennart Meier: It is *not* dualizable.
- TMF[1/n] → TMF(n) is a GL<sub>2</sub>(ℤ/nℤ)-Galois extension and the Tate spectrum Tmf(n)<sup>tGL<sub>2</sub>(ℤ/nℤ)</sup> is contractible [Mathew-Meier, Stojanoska],

- So KO → KU is C<sub>2</sub>-Galois [Rognes], but ko → ku is wildly ramified.
- ▶  $L_p \rightarrow KU_p$  is  $C_{p-1}$ -Galois [Rognes] and  $\ell_p \rightarrow ku_p$  is tamely ramified. Here,  $ku_p^{tC_{p-1}} \simeq *$  because p-1 is invertible in  $\pi_0 ku_p$ .
- ▶  $TMF_0(3) \rightarrow TMF_1(3)$  is  $C_2$ -Galois [Mathew-Meier]  $Tmf_0(3) \rightarrow Tmf_1(3)$  is also  $C_2$ -Galois [Mathew-Meier] but  $tmf_1(3)_{(2)}^{tC_2} \neq *$ . But here, we don't know whether  $tmf_1(3)_{(2)}$  is faithful as a  $tmf_0(3)_{(2)}$ -module. Lennart Meier: It is *not* dualizable.
- TMF[1/n] → TMF(n) is a GL<sub>2</sub>(ℤ/nℤ)-Galois extension and the Tate spectrum Tmf(n)<sup>tGL<sub>2</sub>(ℤ/nℤ)</sup> is contractible [Mathew-Meier, Stojanoska], but tmf<sub>(3)</sub> → tmf(2)<sub>(3)</sub> is wildly ramified.

Meier shows that tmf(n) is a perfect tmf[1/n]-module spectrum and hence dualizable.

Theorem [Höning-R] We have  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$  if and only if the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$ , is a unit in  $\mathbb{Z}[\frac{1}{n}]$ .

Theorem [Höning-R]

We have  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$  if and only if the order of

 $GL_2(\mathbb{Z}/n\mathbb{Z})$ , is a unit in  $\mathbb{Z}[\frac{1}{n}]$ . In particular, if  $n \ge 2$  and  $2 \nmid n$  or if  $n = 2^k$  for  $k \ge 1$ , then  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \not\simeq *$ .

Theorem [Höning-R] We have  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$  if and only if the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$ , is a unit in  $\mathbb{Z}[\frac{1}{n}]$ . In particular, if  $n \ge 2$  and  $2 \nmid n$  or if  $n = 2^k$  for  $k \ge 1$ , then  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \not\simeq *$ .

Theorem [Höning-R] We have  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$  if and only if the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$ , is a unit in  $\mathbb{Z}[\frac{1}{n}]$ . In particular, if  $n \ge 2$  and  $2 \nmid n$  or if  $n = 2^k$  for  $k \ge 1$ , then  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \not\simeq *$ .

For many *n* the Tate construction  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})}$  is actually trivial.

▶ If  $n = 2^k 3^\ell$  with  $k, \ell \ge 1$  for instance, the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$  is invertible in  $\mathbb{Z}[\frac{1}{n}]$ .

Theorem [Höning-R] We have  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$  if and only if the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$ , is a unit in  $\mathbb{Z}[\frac{1}{n}]$ . In particular, if  $n \ge 2$  and  $2 \nmid n$  or if  $n = 2^k$  for  $k \ge 1$ , then  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \not\simeq *$ .

- ▶ If  $n = 2^k 3^\ell$  with  $k, \ell \ge 1$  for instance, the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$  is invertible in  $\mathbb{Z}[\frac{1}{n}]$ .
- Similarly, if n = p<sub>1</sub> · . . . · p<sub>r</sub> for primes p<sub>i</sub>, then |GL<sub>2</sub>(ℤ/nℤ)| is invertible in ℤ[<sup>1</sup>/<sub>n</sub>] if for all p<sub>i</sub> the numbers p<sub>i</sub> − 1 and p<sub>i</sub> + 1 are invertible in ℤ[<sup>1</sup>/<sub>n</sub>].

Theorem [Höning-R] We have  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$  if and only if the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$ , is a unit in  $\mathbb{Z}[\frac{1}{n}]$ . In particular, if  $n \ge 2$  and  $2 \nmid n$  or if  $n = 2^k$  for  $k \ge 1$ , then  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \not\simeq *$ .

- ▶ If  $n = 2^k 3^\ell$  with  $k, \ell \ge 1$  for instance, the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$  is invertible in  $\mathbb{Z}[\frac{1}{n}]$ .
- Similarly, if n = p<sub>1</sub> · . . . · p<sub>r</sub> for primes p<sub>i</sub>, then |GL<sub>2</sub>(ℤ/nℤ)| is invertible in ℤ[<sup>1</sup>/<sub>n</sub>] if for all p<sub>i</sub> the numbers p<sub>i</sub> − 1 and p<sub>i</sub> + 1 are invertible in ℤ[<sup>1</sup>/<sub>n</sub>].
- ► This is for instance the case if n = 2 · 3 · ... · p<sub>m</sub> is the product of the first m prime numbers for any m ≥ 2

Theorem [Höning-R] We have  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$  if and only if the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$ , is a unit in  $\mathbb{Z}[\frac{1}{n}]$ . In particular, if  $n \ge 2$  and  $2 \nmid n$  or if  $n = 2^k$  for  $k \ge 1$ , then  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \not\simeq *$ .

- ▶ If  $n = 2^k 3^\ell$  with  $k, \ell \ge 1$  for instance, the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$  is invertible in  $\mathbb{Z}[\frac{1}{n}]$ .
- Similarly, if n = p<sub>1</sub> · . . . · p<sub>r</sub> for primes p<sub>i</sub>, then |GL<sub>2</sub>(ℤ/nℤ)| is invertible in ℤ[<sup>1</sup>/<sub>n</sub>] if for all p<sub>i</sub> the numbers p<sub>i</sub> − 1 and p<sub>i</sub> + 1 are invertible in ℤ[<sup>1</sup>/<sub>n</sub>].
- ► This is for instance the case if n = 2 · 3 · ... · p<sub>m</sub> is the product of the first m prime numbers for any m ≥ 2

• or for 
$$n = 2 \cdot 3 \cdot 7$$

Theorem [Höning-R] We have  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$  if and only if the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$ , is a unit in  $\mathbb{Z}[\frac{1}{n}]$ . In particular, if  $n \ge 2$  and  $2 \nmid n$  or if  $n = 2^k$  for  $k \ge 1$ , then  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \not\simeq *$ .

For many *n* the Tate construction  $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})}$  is actually trivial.

- ▶ If  $n = 2^k 3^\ell$  with  $k, \ell \ge 1$  for instance, the order of  $GL_2(\mathbb{Z}/n\mathbb{Z})$  is invertible in  $\mathbb{Z}[\frac{1}{n}]$ .
- Similarly, if n = p<sub>1</sub> · . . . · p<sub>r</sub> for primes p<sub>i</sub>, then |GL<sub>2</sub>(ℤ/nℤ)| is invertible in ℤ[<sup>1</sup>/<sub>n</sub>] if for all p<sub>i</sub> the numbers p<sub>i</sub> − 1 and p<sub>i</sub> + 1 are invertible in ℤ[<sup>1</sup>/<sub>n</sub>].
- ► This is for instance the case if n = 2 · 3 · ... · p<sub>m</sub> is the product of the first m prime numbers for any m ≥ 2

• or for  $n = 2 \cdot 3 \cdot 7$  but not for  $n = 2 \cdot 3 \cdot 11$ .

• What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher n?

▶ What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher *n*? Behrens-Ormsby [2016]:  $TMF_1(5)^{tC_4} \simeq *$ .

- ▶ What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher *n*? Behrens-Ormsby [2016]:  $TMF_1(5)^{tC_4} \simeq *$ .
- For higher n, Lennart Meier constructs suitable models of tmf₁(n) as E∞-ring spectra.

- ▶ What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher *n*? Behrens-Ormsby [2016]:  $TMF_1(5)^{tC_4} \simeq *$ .
- For higher n, Lennart Meier constructs suitable models of tmf₁(n) as E∞-ring spectra.
- Classically, tamely ramified extensions correspond to log-étale extensions. Sagave [2014]: ℓ<sub>p</sub> → ku<sub>p</sub> is log-étale.
- ▶ What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher *n*? Behrens-Ormsby [2016]:  $TMF_1(5)^{tC_4} \simeq *$ .
- For higher n, Lennart Meier constructs suitable models of tmf₁(n) as E∞-ring spectra.
- Classically, tamely ramified extensions correspond to log-étale extensions. Sagave [2014]: ℓ<sub>p</sub> → ku<sub>p</sub> is log-étale. We can show that ko → ku is not log-étale.

- ▶ What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher *n*? Behrens-Ormsby [2016]:  $TMF_1(5)^{tC_4} \simeq *$ .
- For higher n, Lennart Meier constructs suitable models of tmf₁(n) as E∞-ring spectra.
- Classically, tamely ramified extensions correspond to log-étale extensions. Sagave [2014]: ℓ<sub>p</sub> → ku<sub>p</sub> is log-étale. We can show that ko → ku is not log-étale.
- We study the discriminant  $\mathfrak{d}_{B|A}$ :  $B \to F_A(B, A)$ .

- ▶ What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher *n*? Behrens-Ormsby [2016]:  $TMF_1(5)^{tC_4} \simeq *$ .
- For higher n, Lennart Meier constructs suitable models of tmf₁(n) as E∞-ring spectra.
- Classically, tamely ramified extensions correspond to log-étale extensions. Sagave [2014]: ℓ<sub>p</sub> → ku<sub>p</sub> is log-étale. We can show that ko → ku is not log-étale.
- We study the discriminant  $\mathfrak{d}_{B|A}: B \to F_A(B, A)$ . For  $\ell_p \to ku_p$  this has as a non-trivial cofiber  $\bigvee_{i=1}^{p-2} \Sigma^{-2p+2i+2} H\mathbb{Z}_p$ .

- ▶ What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher *n*? Behrens-Ormsby [2016]:  $TMF_1(5)^{tC_4} \simeq *$ .
- For higher n, Lennart Meier constructs suitable models of tmf₁(n) as E∞-ring spectra.
- Classically, tamely ramified extensions correspond to log-étale extensions. Sagave [2014]: ℓ<sub>p</sub> → ku<sub>p</sub> is log-étale. We can show that ko → ku is not log-étale.
- We study the discriminant  $\mathfrak{d}_{B|A}$ :  $B \to F_A(B, A)$ . For  $\ell_p \to ku_p$  this has as a non-trivial cofiber  $\bigvee_{i=1}^{p-2} \Sigma^{-2p+2i+2} H\mathbb{Z}_p$ . For  $ko \to ku$  there is a cofiber sequence  $ku \xrightarrow{\mathfrak{d}_{ku|ko}} F_{ko}(ku, ko) \longrightarrow \Sigma^{-2} H\mathbb{Z}$ .

- ▶ What about  $tmf_0(n) \rightarrow tmf_1(n)$  for higher *n*? Behrens-Ormsby [2016]:  $TMF_1(5)^{tC_4} \simeq *$ .
- For higher n, Lennart Meier constructs suitable models of tmf₁(n) as E∞-ring spectra.
- Classically, tamely ramified extensions correspond to log-étale extensions. Sagave [2014]: ℓ<sub>p</sub> → ku<sub>p</sub> is log-étale. We can show that ko → ku is not log-étale.
- We study the discriminant  $\mathfrak{d}_{B|A}: B \to F_A(B, A)$ . For  $\ell_p \to ku_p$  this has as a non-trivial cofiber  $\bigvee_{i=1}^{p-2} \Sigma^{-2p+2i+2} H\mathbb{Z}_p$ . For  $ko \to ku$  there is a cofiber sequence  $ku \xrightarrow{\mathfrak{d}_{ku|ko}} F_{ko}(ku, ko) \longrightarrow \Sigma^{-2} H\mathbb{Z}$ .

Thank you!