Detecting and describing ramification for structured ring spectra

Birgit Richter, DMV-OMG Tagung, September 302021

Joint work with Eva Höning

Classical setting

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ be the corresponding extension of rings of integers.

Classical setting

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ be the corresponding extension of rings of integers.
A prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ ramifies in L, if $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{s}^{e_{s}}$ in \mathcal{O}_{L} and $e_{i}>1$ for at least one $1 \leq i \leq s$.

Classical setting

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ be the corresponding extension of rings of integers.
A prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ ramifies in L, if $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{s}^{e_{s}}$ in \mathcal{O}_{L} and $e_{i}>1$ for at least one $1 \leq i \leq s$.
The ramification is tame when the ramification indices e_{i} are all relatively prime to the residue characteristic of \mathfrak{p}

Classical setting

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ be the corresponding extension of rings of integers.
A prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ ramifies in L, if $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{s}^{e_{s}}$ in \mathcal{O}_{L} and $e_{i}>1$ for at least one $1 \leq i \leq s$.
The ramification is tame when the ramification indices e_{i} are all relatively prime to the residue characteristic of \mathfrak{p} and it is wild otherwise.

Classical setting

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ be the corresponding extension of rings of integers.
A prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ ramifies in L, if $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{s}^{e_{s}}$ in \mathcal{O}_{L} and $e_{i}>1$ for at least one $1 \leq i \leq s$.
The ramification is tame when the ramification indices e_{i} are all relatively prime to the residue characteristic of \mathfrak{p} and it is wild otherwise.

Example Consider

Classical setting

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ be the corresponding extension of rings of integers.
A prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ ramifies in L, if $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{S}^{e_{s}}$ in \mathcal{O}_{L} and $e_{i}>1$ for at least one $1 \leq i \leq s$.
The ramification is tame when the ramification indices e_{i} are all relatively prime to the residue characteristic of \mathfrak{p} and it is wild otherwise.

Example Consider

Then $\mathbb{Z}[i] \supset(2)=(1+i)^{2}$

Classical setting

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ be the corresponding extension of rings of integers.
A prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ ramifies in L, if $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{S}^{e_{s}}$ in \mathcal{O}_{L} and $e_{i}>1$ for at least one $1 \leq i \leq s$.
The ramification is tame when the ramification indices e_{i} are all relatively prime to the residue characteristic of \mathfrak{p} and it is wild otherwise.

Example Consider

Then $\mathbb{Z}[i] \supset(2)=(1+i)^{2}$ and 2 is the characteristic of the residue field \mathbb{F}_{2}, so (2) is wildy ramified.

In contrast, if p is an odd prime, then

$$
\mathbb{Z} \rightarrow \mathbb{Z}\left[\zeta_{p}\right]
$$

is tamely ramified.

In contrast, if p is an odd prime, then

$$
\mathbb{Z} \rightarrow \mathbb{Z}\left[\zeta_{p}\right]
$$

is tamely ramified.
Here, using the cyclotomic polynomial one sees that the ideal (p) splits as $\left(1-\zeta_{p}\right)^{p-1}$ in $\mathbb{Z}\left[\zeta_{p}\right]$.

Auslander and Buchsbaum [1959] considered ramification in the setting of general noetherian rings.

Auslander and Buchsbaum [1959] considered ramification in the setting of general noetherian rings.
If $K \subset L$ is a G-Galois extension, then $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is unramified, if and only if $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is a Galois extension of commutative rings

Auslander and Buchsbaum [1959] considered ramification in the setting of general noetherian rings.
If $K \subset L$ is a G-Galois extension, then $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is unramified, if and only if $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is a Galois extension of commutative rings and this in turn says that $\mathcal{O}_{L}^{G}=\mathcal{O}_{K}$ and $\mathcal{O}_{L} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L} \cong \prod_{G} \mathcal{O}_{L}$ if G is the Galois group of $K \subset L$.

Auslander and Buchsbaum [1959] considered ramification in the setting of general noetherian rings.
If $K \subset L$ is a G-Galois extension, then $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is unramified, if and only if $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is a Galois extension of commutative rings and this in turn says that $\mathcal{O}_{L}^{G}=\mathcal{O}_{K}$ and $\mathcal{O}_{L} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L} \cong \prod_{G} \mathcal{O}_{L}$ if G is the Galois group of $K \subset L$.

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$
\mathcal{O}_{L} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L} \cong \prod_{G} \mathcal{O}_{L}
$$

via the map $x \otimes y \mapsto(x g(y))_{g \in G}$.

Auslander and Buchsbaum [1959] considered ramification in the setting of general noetherian rings.
If $K \subset L$ is a G-Galois extension, then $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is unramified, if and only if $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is a Galois extension of commutative rings and this in turn says that $\mathcal{O}_{L}^{G}=\mathcal{O}_{K}$ and $\mathcal{O}_{L} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L} \cong \prod_{G} \mathcal{O}_{L}$ if G is the Galois group of $K \subset L$.

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$
\mathcal{O}_{L} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L} \cong \prod_{G} \mathcal{O}_{L}
$$

via the map $x \otimes y \mapsto(x g(y))_{g \in G}$.
If X is a compact Hausdorff space and G is a finite group of homeomorphisms of X, then $C^{0}(X / G ; \mathbb{R}) \rightarrow C^{0}(X ; \mathbb{R})$ is a G-Galois extension iff G acts fixed-point free on X.

We consider multiplicative cohomology theories,

We consider multiplicative cohomology theories, think of

- singular cohomology with coefficients in a commutative ring $R: H^{*}(-; R)$,

We consider multiplicative cohomology theories, think of

- singular cohomology with coefficients in a commutative ring R : $H^{*}(-; R)$,
- nice cobordims theories, like complex cobordism, $M U^{*}(-)$,

We consider multiplicative cohomology theories, think of

- singular cohomology with coefficients in a commutative ring R : $H^{*}(-; R)$,
- nice cobordims theories, like complex cobordism, $M U^{*}(-)$,
- real or complex topological K-theory, $K O^{*}(-), K U^{*}(-)$,

We consider multiplicative cohomology theories, think of

- singular cohomology with coefficients in a commutative ring R : $H^{*}(-; R)$,
- nice cobordims theories, like complex cobordism, $M U^{*}(-)$,
- real or complex topological K-theory, $K O^{*}(-), K U^{*}(-)$,
- topological modular forms, $\operatorname{TMF}^{*}(-)$.

We consider multiplicative cohomology theories, think of

- singular cohomology with coefficients in a commutative ring R : $H^{*}(-; R)$,
- nice cobordims theories, like complex cobordism, $M U^{*}(-)$,
- real or complex topological K-theory, $K O^{*}(-), K U^{*}(-)$,
- topological modular forms, $\operatorname{TMF}^{*}(-)$.

All these examples and many more can be represented by commutative ring spectra;

We consider multiplicative cohomology theories, think of

- singular cohomology with coefficients in a commutative ring R : $H^{*}(-; R)$,
- nice cobordims theories, like complex cobordism, $M U^{*}(-)$,
- real or complex topological K-theory, $K O^{*}(-), K U^{*}(-)$,
- topological modular forms, TMF $^{*}(-)$.

All these examples and many more can be represented by commutative ring spectra; $H R, M U, K O, K U, T M F, \ldots$

We consider multiplicative cohomology theories, think of

- singular cohomology with coefficients in a commutative ring R : $H^{*}(-; R)$,
- nice cobordims theories, like complex cobordism, $M U^{*}(-)$,
- real or complex topological K-theory, $K O^{*}(-), K U^{*}(-)$,
- topological modular forms, TMF $^{*}(-)$.

All these examples and many more can be represented by commutative ring spectra; $H R, M U, K O, K U, T M F, \ldots$

A ring spectrum A has a product $A \wedge A \rightarrow A$ and a unit $S \rightarrow A$, such that A is a commutative and associative monoid.

We consider multiplicative cohomology theories, think of

- singular cohomology with coefficients in a commutative ring R : $H^{*}(-; R)$,
- nice cobordims theories, like complex cobordism, $M U^{*}(-)$,
- real or complex topological K-theory, $K O^{*}(-), K U^{*}(-)$,
- topological modular forms, TMF $^{*}(-)$.

All these examples and many more can be represented by commutative ring spectra; $H R, M U, K O, K U, T M F, \ldots$

A ring spectrum A has a product $A \wedge A \rightarrow A$ and a unit $S \rightarrow A$, such that A is a commutative and associative monoid.

We want to understand ramification of maps $A \rightarrow B$ in order to understand descent questions in algebraic K-theory: How close is $K(B)^{h G}$ to $K(A)$?
[Ausoni, Rognes, Clausen-Mathew-Naumann-Noel,...]

And why should we care about that?

And why should we care about that?
Example
$K(k u)$ classifies 2 -vector bundles on spaces (e.g. gerbes) [Baas-Dundas-R-Rognes]

And why should we care about that?
Example
$K(k u)$ classifies 2 -vector bundles on spaces (e.g. gerbes) [Baas-Dundas-R-Rognes]

Example

$K(S) \simeq S \vee W h^{\text {Diff }}(*)$ where $W h^{\text {Diff }}(*)$ is the Whitehead spectrum and this in turn is related to the stable smooth h-cobordism space. [Waldhausen, Jahren, Rognes,...]

Definition [Rognes 2008]: A map $A \rightarrow B$ of commutative ring spectra is a G-Galois extension for a finite group G, if certain cofibrancy conditions are satisfied, if G acts on B from the left through commutative A-algebra maps and if the following two conditions are satisfied:

Definition [Rognes 2008]: A map $A \rightarrow B$ of commutative ring spectra is a G-Galois extension for a finite group G, if certain cofibrancy conditions are satisfied, if G acts on B from the left through commutative A-algebra maps and if the following two conditions are satisfied:

- The map from A to the homotopy fixed points of B with respect to the G-action, $i: A \rightarrow B^{h G}$, is a weak equivalence.

Definition [Rognes 2008]: A map $A \rightarrow B$ of commutative ring spectra is a G-Galois extension for a finite group G, if certain cofibrancy conditions are satisfied, if G acts on B from the left through commutative A-algebra maps and if the following two conditions are satisfied:

- The map from A to the homotopy fixed points of B with respect to the G-action, $i: A \rightarrow B^{h G}$, is a weak equivalence.
- The map

$$
h: B \wedge_{A} B \rightarrow \prod_{G} B
$$

is a weak equivalence.

Definition [Rognes 2008]: A map $A \rightarrow B$ of commutative ring spectra is a G-Galois extension for a finite group G, if certain cofibrancy conditions are satisfied, if G acts on B from the left through commutative A-algebra maps and if the following two conditions are satisfied:

- The map from A to the homotopy fixed points of B with respect to the G-action, $i: A \rightarrow B^{h G}$, is a weak equivalence.
- The map

$$
h: B \wedge_{A} B \rightarrow \prod_{G} B
$$

is a weak equivalence.
Here, h is right adjoint to the composite map

$$
B \wedge_{A} B \wedge G_{+} \longrightarrow B \wedge_{A} B \longrightarrow B
$$

induced by the G-action and the multiplication on B.

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum $H R$ and $B=H T$ for some commutative rings R and T such that T carries a G-action via R-algebra maps,

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum $H R$ and $B=H T$ for some commutative rings R and T such that T carries a G-action via R-algebra maps, then $H R \rightarrow H T$ is a G-Galois extension of commutative ring spectra iff $R \rightarrow T$ is a G-Galois extension of commutative rings.

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum $H R$ and $B=H T$ for some commutative rings R and T such that T carries a G-action via R-algebra maps, then $H R \rightarrow H T$ is a G-Galois extension of commutative ring spectra iff $R \rightarrow T$ is a G-Galois extension of commutative rings.

Example 2 Consider the complexification map c, that sends an \mathbb{R}-vector bundle to the corresponding complexified \mathbb{C}-vector bundle.

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum $H R$ and $B=H T$ for some commutative rings R and T such that T carries a G-action via R-algebra maps, then $H R \rightarrow H T$ is a G-Galois extension of commutative ring spectra iff $R \rightarrow T$ is a G-Galois extension of commutative rings.

Example 2 Consider the complexification map c, that sends an \mathbb{R}-vector bundle to the corresponding complexified \mathbb{C}-vector bundle.

This map c induces a map of commutative ring spectra from real topological K-theory, $K O$, to complex topological K-theory, KU:

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum $H R$ and $B=H T$ for some commutative rings R and T such that T carries a G-action via R-algebra maps, then $H R \rightarrow H T$ is a G-Galois extension of commutative ring spectra iff $R \rightarrow T$ is a G-Galois extension of commutative rings.

Example 2 Consider the complexification map c, that sends an \mathbb{R}-vector bundle to the corresponding complexified \mathbb{C}-vector bundle.

This map c induces a map of commutative ring spectra from real topological K-theory, $K O$, to complex topological K-theory, KU:

$$
c: K O \rightarrow K U
$$

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum $H R$ and $B=H T$ for some commutative rings R and T such that T carries a G-action via R-algebra maps, then $H R \rightarrow H T$ is a G-Galois extension of commutative ring spectra iff $R \rightarrow T$ is a G-Galois extension of commutative rings.

Example 2 Consider the complexification map c, that sends an \mathbb{R}-vector bundle to the corresponding complexified \mathbb{C}-vector bundle.

This map c induces a map of commutative ring spectra from real topological K-theory, $K O$, to complex topological K-theory, KU:

$$
c: K O \rightarrow K U
$$

Complex conjugation gives rise to a C_{2}-action on $K U$.

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum $H R$ and $B=H T$ for some commutative rings R and T such that T carries a G-action via R-algebra maps, then $H R \rightarrow H T$ is a G-Galois extension of commutative ring spectra iff $R \rightarrow T$ is a G-Galois extension of commutative rings.

Example 2 Consider the complexification map c, that sends an \mathbb{R}-vector bundle to the corresponding complexified \mathbb{C}-vector bundle.

This map c induces a map of commutative ring spectra from real topological K-theory, $K O$, to complex topological K-theory, KU:

$$
c: K O \rightarrow K U
$$

Complex conjugation gives rise to a C_{2}-action on $K U$. Rognes [2008]: This turns $K O \rightarrow K U$ into a C_{2}-Galois extension.

Note that on homotopy groups we get
$\pi_{*}(K O)=\mathbb{Z}\left[\eta, y, \omega^{ \pm 1}\right] /\left(2 \eta, \eta^{3}, \eta y, y^{2}-4 \omega\right) \xrightarrow{\pi_{*}(c)} \mathbb{Z}\left[u^{ \pm 1}\right]=\pi_{*}(K U)$ with $y \mapsto 2 u^{2}$.

Note that on homotopy groups we get
$\pi_{*}(K O)=\mathbb{Z}\left[\eta, y, \omega^{ \pm 1}\right] /\left(2 \eta, \eta^{3}, \eta y, y^{2}-4 \omega\right) \xrightarrow{\pi_{*}(c)} \mathbb{Z}\left[u^{ \pm 1}\right]=\pi_{*}(K U)$
with $y \mapsto 2 u^{2}$.
So as a graded commutative $\pi_{*}(K O)$-algebra $\pi_{*}(K U)$ is really bad.

Note that on homotopy groups we get
$\pi_{*}(K O)=\mathbb{Z}\left[\eta, y, \omega^{ \pm 1}\right] /\left(2 \eta, \eta^{3}, \eta y, y^{2}-4 \omega\right) \xrightarrow{\pi_{*}(c)} \mathbb{Z}\left[u^{ \pm 1}\right]=\pi_{*}(K U)$
with $y \mapsto 2 u^{2}$.
So as a graded commutative $\pi_{*}(K O)$-algebra $\pi_{*}(K U)$ is really bad.
Other important Galois extensions:

Note that on homotopy groups we get
$\pi_{*}(K O)=\mathbb{Z}\left[\eta, y, \omega^{ \pm 1}\right] /\left(2 \eta, \eta^{3}, \eta y, y^{2}-4 \omega\right) \xrightarrow{\pi_{*}(c)} \mathbb{Z}\left[u^{ \pm 1}\right]=\pi_{*}(K U)$
with $y \mapsto 2 u^{2}$.
So as a graded commutative $\pi_{*}(K O)$-algebra $\pi_{*}(K U)$ is really bad.
Other important Galois extensions:

- For p an odd prime: $K U_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2 i} L$ and $L_{p} \rightarrow K U_{p}$ is a C_{p-1}-Galois extension [Rognes 2008].

Note that on homotopy groups we get
$\pi_{*}(K O)=\mathbb{Z}\left[\eta, y, \omega^{ \pm 1}\right] /\left(2 \eta, \eta^{3}, \eta y, y^{2}-4 \omega\right) \xrightarrow{\pi_{*}(c)} \mathbb{Z}\left[u^{ \pm 1}\right]=\pi_{*}(K U)$
with $y \mapsto 2 u^{2}$.
So as a graded commutative $\pi_{*}(K O)$-algebra $\pi_{*}(K U)$ is really bad.
Other important Galois extensions:

- For p an odd prime: $K U_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2 i} L$ and $L_{p} \rightarrow K U_{p}$ is a C_{p-1}-Galois extension [Rognes 2008].
- $\operatorname{TMF}_{0}(3)_{(2)} \rightarrow \operatorname{TMF}_{1}(3)_{(2)}$ is C_{2}-Galois [Mathew-Meier 2015].

Note that on homotopy groups we get
$\pi_{*}(K O)=\mathbb{Z}\left[\eta, y, \omega^{ \pm 1}\right] /\left(2 \eta, \eta^{3}, \eta y, y^{2}-4 \omega\right) \xrightarrow{\pi_{*}(c)} \mathbb{Z}\left[u^{ \pm 1}\right]=\pi_{*}(K U)$
with $y \mapsto 2 u^{2}$.
So as a graded commutative $\pi_{*}(K O)$-algebra $\pi_{*}(K U)$ is really bad.
Other important Galois extensions:

- For p an odd prime: $K U_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2 i} L$ and $L_{p} \rightarrow K U_{p}$ is a C_{p-1}-Galois extension [Rognes 2008].
- $\operatorname{TMF}_{0}(3)_{(2)} \rightarrow \operatorname{TMF}_{1}(3)_{(2)}$ is C_{2}-Galois [Mathew-Meier 2015].
- TMF[1/n] $\rightarrow \operatorname{TMF}(n)$ is $G L_{2}(\mathbb{Z} / n \mathbb{Z})$-Galois [MM-2015].

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions - these will be our main examples.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions - these will be our main examples.
If $A \rightarrow B$ is unramified, so if $B \wedge_{A} B \simeq \prod_{G} B$, then Rognes showed that $\operatorname{TAQ}(B \mid A) \simeq *$.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions - these will be our main examples.
If $A \rightarrow B$ is unramified, so if $B \wedge_{A} B \simeq \prod_{G} B$, then Rognes showed that $\operatorname{TAQ}(B \mid A) \simeq *$.
$T A Q(B \mid A)$ is a spectrum version of André-Quillen homology, defined and studied by Basterra.
$-\pi_{2} \operatorname{TAQ}\left(k u_{(p)} \mid \ell\right) \cong \mathbb{Z}_{(p)}$.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions - these will be our main examples.
If $A \rightarrow B$ is unramified, so if $B \wedge_{A} B \simeq \prod_{G} B$, then Rognes showed that $\operatorname{TAQ}(B \mid A) \simeq *$.
$T A Q(B \mid A)$ is a spectrum version of André-Quillen homology, defined and studied by Basterra.

- $\pi_{2} \operatorname{TAQ}\left(k u_{(p)} \mid \ell\right) \cong \mathbb{Z}_{(p)}$. Here, $\ell \rightarrow k u_{(p)}$ is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions - these will be our main examples.
If $A \rightarrow B$ is unramified, so if $B \wedge_{A} B \simeq \prod_{G} B$, then Rognes showed that $\operatorname{TAQ}(B \mid A) \simeq *$.
$T A Q(B \mid A)$ is a spectrum version of André-Quillen homology, defined and studied by Basterra.

- $\pi_{2} \operatorname{TAQ}\left(k u_{(p)} \mid \ell\right) \cong \mathbb{Z}_{(p)}$. Here, $\ell \rightarrow k u_{(p)}$ is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.
- $\pi_{2} T A Q(k u \mid k o) \cong \mathbb{Z}$.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions - these will be our main examples.
If $A \rightarrow B$ is unramified, so if $B \wedge_{A} B \simeq \prod_{G} B$, then Rognes showed that $\operatorname{TAQ}(B \mid A) \simeq *$.
$T A Q(B \mid A)$ is a spectrum version of André-Quillen homology, defined and studied by Basterra.

- $\pi_{2} \operatorname{TAQ}\left(k u_{(p)} \mid \ell\right) \cong \mathbb{Z}_{(p)}$. Here, $\ell \rightarrow k u_{(p)}$ is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.
- $\pi_{2} T A Q(k u \mid k o) \cong \mathbb{Z}$.
- $\pi_{2} T A Q\left(t m f_{1}(3)_{(2)} \mid t m f_{0}(3)_{(2)}\right) \cong \mathbb{Z}_{(2)}$.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions - these will be our main examples.
If $A \rightarrow B$ is unramified, so if $B \wedge_{A} B \simeq \prod_{G} B$, then Rognes showed that $\operatorname{TAQ}(B \mid A) \simeq *$.
$T A Q(B \mid A)$ is a spectrum version of André-Quillen homology, defined and studied by Basterra.

- $\pi_{2} \operatorname{TAQ}\left(k u_{(p)} \mid \ell\right) \cong \mathbb{Z}_{(p)}$. Here, $\ell \rightarrow k u_{(p)}$ is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.
- $\pi_{2} \operatorname{TAQ}(k u \mid k o) \cong \mathbb{Z}$.
- $\pi_{2} T A Q\left(t m f_{1}(3)_{(2)} \mid t m f_{0}(3)_{(2)}\right) \cong \mathbb{Z}_{(2)}$.
- $\pi_{4} \operatorname{TAQ}\left(\operatorname{tmf}_{0}(2)_{(3)} \mid \operatorname{tmf} f_{(3)}\right) \cong \mathbb{Z}_{(3)}$.

Mathew 2016: For connective Galois extensions the induced map on homotopy groups is étale in a graded sense.
If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if $\pi_{i}(f): \pi_{i}(b) \cong \pi_{i}(B)$ for $i \geq 0$ and $\pi_{i}(b)=0$ for $i<0$.
So, in particular, connective covers of Galois extensions are rarely Galois extensions - these will be our main examples.
If $A \rightarrow B$ is unramified, so if $B \wedge_{A} B \simeq \prod_{G} B$, then Rognes showed that $\operatorname{TAQ}(B \mid A) \simeq *$.
$T A Q(B \mid A)$ is a spectrum version of André-Quillen homology, defined and studied by Basterra.

- $\pi_{2} \operatorname{TAQ}\left(k u_{(p)} \mid \ell\right) \cong \mathbb{Z}_{(p)}$. Here, $\ell \rightarrow k u_{(p)}$ is the inclusion of the Adams summand into p-localized complex K-theory, for an odd prime p.
- $\pi_{2} T A Q(k u \mid k o) \cong \mathbb{Z}$.
- $\pi_{2} T A Q\left(t m f_{1}(3)_{(2)} \mid t m f_{0}(3)_{(2)}\right) \cong \mathbb{Z}_{(2)}$.
- $\pi_{4} \operatorname{TAQ}\left(\operatorname{tmf}_{0}(2)_{(3)} \mid \operatorname{tmf}_{(3)}\right) \cong \mathbb{Z}_{(3)}$.

We do have ramification, but we don't see yet, whether it's tame or wild.

Wild ramification and Tate cohomology

Classically: A finite generically étale extension $A \rightarrow B$ of Dedekind domains is tame if and only if the trace $B \rightarrow A$ is surjective.

Wild ramification and Tate cohomology

Classically: A finite generically étale extension $A \rightarrow B$ of Dedekind domains is tame if and only if the trace $B \rightarrow A$ is surjective. For $\mathcal{O}_{K} \subset \mathcal{O}_{L}$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$
N_{G}: \mathcal{O}_{L} \rightarrow \mathcal{O}_{K}, \quad x \mapsto \sum_{g \in G} g x
$$

Wild ramification and Tate cohomology

Classically: A finite generically étale extension $A \rightarrow B$ of Dedekind domains is tame if and only if the trace $B \rightarrow A$ is surjective. For $\mathcal{O}_{K} \subset \mathcal{O}_{L}$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$
N_{G}: \mathcal{O}_{L} \rightarrow \mathcal{O}_{K}, \quad x \mapsto \sum_{g \in G} g x
$$

The norm map induces a map $H_{0}\left(G ; \mathcal{O}_{L}\right) \rightarrow H^{0}\left(G ; \mathcal{O}_{L}\right)$. Its deviation from being an isomorphism is measured by Tate cohomology, $\hat{H}^{*}\left(G ; \mathcal{O}_{L}\right)$.

Wild ramification and Tate cohomology

Classically: A finite generically étale extension $A \rightarrow B$ of Dedekind domains is tame if and only if the trace $B \rightarrow A$ is surjective. For $\mathcal{O}_{K} \subset \mathcal{O}_{L}$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$
N_{G}: \mathcal{O}_{L} \rightarrow \mathcal{O}_{K}, \quad x \mapsto \sum_{g \in G} g x
$$

The norm map induces a map $H_{0}\left(G ; \mathcal{O}_{L}\right) \rightarrow H^{0}\left(G ; \mathcal{O}_{L}\right)$. Its deviation from being an isomorphism is measured by Tate cohomology, $\hat{H}^{*}\left(G ; \mathcal{O}_{L}\right)$.

Homotopy theoretic version:

Wild ramification and Tate cohomology

Classically: A finite generically étale extension $A \rightarrow B$ of Dedekind domains is tame if and only if the trace $B \rightarrow A$ is surjective. For $\mathcal{O}_{K} \subset \mathcal{O}_{L}$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$
N_{G}: \mathcal{O}_{L} \rightarrow \mathcal{O}_{K}, \quad x \mapsto \sum_{g \in G} g x
$$

The norm map induces a map $H_{0}\left(G ; \mathcal{O}_{L}\right) \rightarrow H^{0}\left(G ; \mathcal{O}_{L}\right)$. Its deviation from being an isomorphism is measured by Tate cohomology, $\hat{H}^{*}\left(G ; \mathcal{O}_{L}\right)$.

Homotopy theoretic version:
If B is a G-spectrum, then the Tate construction of B with respect
to G is the cofiber $B^{t G}$ of $B_{h G} \xrightarrow{N_{G}} B^{h G} \longrightarrow B^{t G}$.

Wild ramification and Tate cohomology

Classically: A finite generically étale extension $A \rightarrow B$ of Dedekind domains is tame if and only if the trace $B \rightarrow A$ is surjective. For $\mathcal{O}_{K} \subset \mathcal{O}_{L}$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$
N_{G}: \mathcal{O}_{L} \rightarrow \mathcal{O}_{K}, \quad x \mapsto \sum_{g \in G} g x
$$

The norm map induces a map $H_{0}\left(G ; \mathcal{O}_{L}\right) \rightarrow H^{0}\left(G ; \mathcal{O}_{L}\right)$. Its deviation from being an isomorphism is measured by Tate cohomology, $\hat{H}^{*}\left(G ; \mathcal{O}_{L}\right)$.

Homotopy theoretic version:
If B is a G-spectrum, then the Tate construction of B with respect
to G is the cofiber $B^{t G}$ of $B_{h G} \xrightarrow{N_{G}} B^{h G} \longrightarrow B^{t G}$. Here, $B_{h G}$ is the homotopy orbit spectrum and $B^{h G}$ is the homotopy fixed point spectrum.

Classically, this can be used as a criterion for tame ramification:

Classically, this can be used as a criterion for tame ramification: The map $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is tamely ramified iff $\pi_{*}\left(H \mathcal{O}_{L}\right)^{t G}=0$.

Classically, this can be used as a criterion for tame ramification: The map $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is tamely ramified iff $\pi_{*}\left(H \mathcal{O}_{L}\right)^{t G}=0$. There is a spectral sequence

$$
E_{2}^{s, t}=\hat{H}^{-s}\left(G ; \pi_{t} B\right) \Rightarrow \pi_{s+t}\left(B^{t G}\right)
$$

where $\hat{H}^{*}\left(G ; \pi_{t} B\right)$ is the Tate cohomology of G with coeffients in the G-module $\pi_{t} B$.

Classically, this can be used as a criterion for tame ramification: The map $\mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$ is tamely ramified iff $\pi_{*}\left(H \mathcal{O}_{L}\right)^{t G}=0$. There is a spectral sequence

$$
E_{2}^{s, t}=\hat{H}^{-s}\left(G ; \pi_{t} B\right) \Rightarrow \pi_{s+t}\left(B^{t G}\right)
$$

where $\hat{H}^{*}\left(G ; \pi_{t} B\right)$ is the Tate cohomology of G with coeffients in the G-module $\pi_{t} B$.
If $B=H \mathcal{O}_{L}$, then the spectral sequence collapses and $\hat{H}^{*}\left(G ; \mathcal{O}_{L}\right) \cong \pi_{-*}\left(H \mathcal{O}_{L}\right)^{t G}$.

We want to use $\pi_{*} B^{t G}$ for determining whether $A \rightarrow B$ is tamely or wildly ramified.

We want to use $\pi_{*} B^{t G}$ for determining whether $A \rightarrow B$ is tamely or wildly ramified.
Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras.

We want to use $\pi_{*} B^{t G}$ for determining whether $A \rightarrow B$ is tamely or wildly ramified.
Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$
h: B \wedge_{A} B \xrightarrow{\sim} F\left(G_{+}, B\right),
$$

then $B^{t G} \simeq *$.

We want to use $\pi_{*} B^{t G}$ for determining whether $A \rightarrow B$ is tamely or wildly ramified.
Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$
h: B \wedge_{A} B \xrightarrow{\sim} F\left(G_{+}, B\right),
$$

then $B^{t G} \simeq *$.
In algebra, faithfulness is not an extra assumption but comes for free!

We want to use $\pi_{*} B^{t G}$ for determining whether $A \rightarrow B$ is tamely or wildly ramified.
Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$
h: B \wedge_{A} B \xrightarrow{\sim} F\left(G_{+}, B\right),
$$

then $B^{t G} \simeq *$.
In algebra, faithfulness is not an extra assumption but comes for free!
Beware! If $A \rightarrow B$ is a map between connective commutative ring spectra, then often $B^{h G} \nsimeq A$, but $A \rightarrow \tau_{\geq 0} B^{h G}$ might be an equivalence (e.g. $k o \simeq \tau_{\geq 0} k u^{h C_{2}}$).

We propose the following definition:

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$.

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$. Otherwise, $A \rightarrow B$ is wildly ramified.

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$. Otherwise, $A \rightarrow B$ is wildly ramified.
Rognes: If a spectrum with a G-action X is in the thick subcategory generated by spectra of the form $G_{+} \wedge W$, then $X^{t G} \simeq *$,

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$. Otherwise, $A \rightarrow B$ is wildly ramified.
Rognes: If a spectrum with a G-action X is in the thick subcategory generated by spectra of the form $G_{+} \wedge W$, then $X^{t G} \simeq *$, so in particular, if B has a normal basis, $B \simeq G_{+} \wedge A$, then $B^{t G} \simeq *$.

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$. Otherwise, $A \rightarrow B$ is wildly ramified.
Rognes: If a spectrum with a G-action X is in the thick subcategory generated by spectra of the form $G_{+} \wedge W$, then $X^{t G} \simeq *$, so in particular, if B has a normal basis, $B \simeq G_{+} \wedge A$, then $B^{t G} \simeq *$.
Can we determine $B^{t G}$ for

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$. Otherwise, $A \rightarrow B$ is wildly ramified.
Rognes: If a spectrum with a G-action X is in the thick subcategory generated by spectra of the form $G_{+} \wedge W$, then $X^{t G} \simeq *$, so in particular, if B has a normal basis, $B \simeq G_{+} \wedge A$, then $B^{t G} \simeq *$.
Can we determine $B^{t G}$ for

- $B=k u$ and $G=C_{2}$?

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$. Otherwise, $A \rightarrow B$ is wildly ramified.
Rognes: If a spectrum with a G-action X is in the thick subcategory generated by spectra of the form $G_{+} \wedge W$, then $X^{t G} \simeq *$, so in particular, if B has a normal basis, $B \simeq G_{+} \wedge A$, then $B^{t G} \simeq *$.
Can we determine $B^{t G}$ for

- $B=k u$ and $G=C_{2} ? k u^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{4 i} H \mathbb{Z} / 2 \mathbb{Z}$ [Rognes].

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$. Otherwise, $A \rightarrow B$ is wildly ramified.
Rognes: If a spectrum with a G-action X is in the thick subcategory generated by spectra of the form $G_{+} \wedge W$, then $X^{t G} \simeq *$, so in particular, if B has a normal basis, $B \simeq G_{+} \wedge A$, then $B^{t G} \simeq *$.
Can we determine $B^{t G}$ for

- $B=k u$ and $G=C_{2}$? $k u^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{4 i} H \mathbb{Z} / 2 \mathbb{Z}$ [Rognes].
- For $B=\operatorname{tmf}_{1}(3)_{(2)}$ and $G=C_{2}$?

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.
If $A \simeq B^{h G}$ (or $A \simeq \tau_{\geq 0} B^{h G}$ if A and B are connective), then we call $A \rightarrow B$ tamely ramified if $B^{t G} \simeq *$. Otherwise, $A \rightarrow B$ is wildly ramified.
Rognes: If a spectrum with a G-action X is in the thick subcategory generated by spectra of the form $G_{+} \wedge W$, then $X^{t G} \simeq *$, so in particular, if B has a normal basis, $B \simeq G_{+} \wedge A$, then $B^{t G} \simeq *$.
Can we determine $B^{t G}$ for

- $B=k u$ and $G=C_{2} ? k u^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{4 i} H \mathbb{Z} / 2 \mathbb{Z}$ [Rognes].
- For $B=\operatorname{tmf}_{1}(3)_{(2)}$ and $G=C_{2}$?
- For $B=\operatorname{tmf}(2)_{(3)}$ and $G=G L_{2}\left(\mathbb{F}_{2}\right) \cong \Sigma_{3}$?

Theorem [Höning-R]

Theorem [Höning-R]
$-t m f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and

Theorem [Höning-R]
$-t m f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

Theorem [Höning-R]
$-t m f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.

Theorem [Höning-R]
$-t m f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified.

Theorem [Höning-R]
$-t m f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.

Theorem [Höning-R]
$-\operatorname{tmf} f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.
3. $T M F_{0}(3) \rightarrow T M F_{1}(3)$ is C_{2}-Galois [Mathew-Meier]

Theorem [Höning-R]
$-\operatorname{tmf} f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.
3. $T M F_{0}(3) \rightarrow T M F_{1}(3)$ is C_{2}-Galois [Mathew-Meier] $T m f_{0}(3) \rightarrow T m f_{1}(3)$ is also C_{2}-Galois [Mathew-Meier]

Theorem [Höning-R]
$-\operatorname{tmf} f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.
3. $T M F_{0}(3) \rightarrow T M F_{1}(3)$ is C_{2}-Galois [Mathew-Meier] $T m f_{0}(3) \rightarrow \operatorname{Tmf}_{1}(3)$ is also C_{2}-Galois [Mathew-Meier] but $t m f_{1}(3)_{(2)}^{t C_{2}} \not 千 *$.

Theorem [Höning-R]
$-\operatorname{tmf} f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.
3. $\mathrm{TMF}_{0}(3) \rightarrow \mathrm{TMF}_{1}(3)$ is C_{2}-Galois [Mathew-Meier] $T m f_{0}(3) \rightarrow \operatorname{Tmf}_{1}(3)$ is also C_{2}-Galois [Mathew-Meier] but $t m f_{1}(3)_{(2)}^{t C_{2}} \nsim *$. But here, we don't know whether $t m f_{1}(3)_{(2)}$ is faithful as a $\operatorname{tmf} f_{0}(3)_{(2)}$-module.

Theorem [Höning-R]
$-\operatorname{tmf} f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.
3. $\mathrm{TMF}_{0}(3) \rightarrow \mathrm{TMF}_{1}(3)$ is C_{2}-Galois [Mathew-Meier] $T m f_{0}(3) \rightarrow \operatorname{Tmf}_{1}(3)$ is also C_{2}-Galois [Mathew-Meier] but $t m f_{1}(3)_{(2)}^{t C_{2}} \nsim *$. But here, we don't know whether $t m f_{1}(3)_{(2)}$ is faithful as a $\operatorname{tmf} f_{0}(3)_{(2)}$-module.
Lennart Meier: It is not dualizable.

Theorem [Höning-R]
$-\operatorname{tmf} f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.
3. $\mathrm{TMF}_{0}(3) \rightarrow \mathrm{TMF}_{1}(3)$ is C_{2}-Galois [Mathew-Meier] $T m f_{0}(3) \rightarrow \operatorname{Tmf}_{1}(3)$ is also C_{2}-Galois [Mathew-Meier] but $t m f_{1}(3)_{(2)}^{t C_{2}} \nsim *$. But here, we don't know whether $t m f_{1}(3)_{(2)}$ is faithful as a $\operatorname{tmf} f_{0}(3)_{(2)}$-module. Lennart Meier: It is not dualizable.
4. $\operatorname{TMF}[1 / n] \rightarrow \operatorname{TMF}(n)$ is a $G L_{2}(\mathbb{Z} / n \mathbb{Z})$-Galois extension

Theorem [Höning-R]
$-\operatorname{tmf} f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.
3. $\mathrm{TMF}_{0}(3) \rightarrow \mathrm{TMF}_{1}(3)$ is C_{2}-Galois [Mathew-Meier] $T m f_{0}(3) \rightarrow \operatorname{Tmf}_{1}(3)$ is also C_{2}-Galois [Mathew-Meier] but $t m f_{1}(3)_{(2)}^{t C_{2}} \nsim *$. But here, we don't know whether $t m f_{1}(3)_{(2)}$ is faithful as a $\operatorname{tmf} f_{0}(3)_{(2)}$-module. Lennart Meier: It is not dualizable.
4. $\operatorname{TMF}[1 / n] \rightarrow \operatorname{TMF}(n)$ is a $G L_{2}(\mathbb{Z} / n \mathbb{Z})$-Galois extension and the Tate spectrum $\operatorname{Tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})}$ is contractible [Mathew-Meier, Stojanoska],

Theorem [Höning-R]
$-\operatorname{tmf} f_{1}(3)_{(2)}^{t C_{2}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8 i} H \mathbb{Z} / 2 \mathbb{Z}$, and
$-\operatorname{tmf}(2)_{(3)}^{t \sum_{3}} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12 i} H \mathbb{Z} / 3 \mathbb{Z}$.

1. So $K O \rightarrow K U$ is C_{2}-Galois [Rognes], but $k o \rightarrow k u$ is wildly ramified.
2. $L_{p} \rightarrow K U_{p}$ is C_{p-1}-Galois [Rognes] and $\ell_{p} \rightarrow k u_{p}$ is tamely ramified. Here, $k u_{p}^{t C_{p-1}} \simeq *$ because $p-1$ is invertible in $\pi_{0} k u_{p}$.
3. $\mathrm{TMF}_{0}(3) \rightarrow \mathrm{TMF}_{1}(3)$ is C_{2}-Galois [Mathew-Meier] $T m f_{0}(3) \rightarrow \operatorname{Tmf}_{1}(3)$ is also C_{2}-Galois [Mathew-Meier] but $t m f_{1}(3)_{(2)}^{t C_{2}} \nsim *$. But here, we don't know whether $t m f_{1}(3)_{(2)}$ is faithful as a $\operatorname{tmf} f_{0}(3)_{(2)}$-module. Lennart Meier: It is not dualizable.
4. $\operatorname{TMF}[1 / n] \rightarrow \operatorname{TMF}(n)$ is a $G L_{2}(\mathbb{Z} / n \mathbb{Z})$-Galois extension and the Tate spectrum $\operatorname{Tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})}$ is contractible [Mathew-Meier, Stojanoska], but $\operatorname{tmf}_{(3)} \rightarrow \operatorname{tmf}(2)_{(3)}$ is wildly ramified.

Meier shows that $\operatorname{tmf}(n)$ is faithful and is a perfect $\operatorname{tmf}[1 / n]$-module spectrum and hence dualizable.

Meier shows that $\operatorname{tmf}(n)$ is faithful and is a perfect $\operatorname{tmf}[1 / n]$-module spectrum and hence dualizable. Theorem [Höning-R]
We have $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \simeq *$ if and only if the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$, is a unit in $\mathbb{Z}\left[\frac{1}{n}\right]$.

Meier shows that $\operatorname{tmf}(n)$ is faithful and is a perfect $\operatorname{tmf}[1 / n]$-module spectrum and hence dualizable.
Theorem [Höning-R]
We have $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \simeq *$ if and only if the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$, is a unit in $\mathbb{Z}\left[\frac{1}{n}\right]$. In particular, if $n \geq 2$ and $2 \nmid n$ or if $n=2^{k}$ for $k \geq 1$, then $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \not 千 *$.

Meier shows that $\operatorname{tmf}(n)$ is faithful and is a perfect $\operatorname{tmf}[1 / n]$-module spectrum and hence dualizable.
Theorem [Höning-R]
We have $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \simeq *$ if and only if the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$, is a unit in $\mathbb{Z}\left[\frac{1}{n}\right]$. In particular, if $n \geq 2$ and $2 \nmid n$ or if $n=2^{k}$ for $k \geq 1$, then $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \not 千 *$.

For many n the Tate construction $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})}$ is actually trivial.

Meier shows that $\operatorname{tmf}(n)$ is faithful and is a perfect $\operatorname{tmf}[1 / n]$-module spectrum and hence dualizable.
Theorem [Höning-R]
We have $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \simeq *$ if and only if the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$, is a unit in $\mathbb{Z}\left[\frac{1}{n}\right]$. In particular, if $n \geq 2$ and $2 \nmid n$ or if $n=2^{k}$ for $k \geq 1$, then $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \not 千 *$.

For many n the Tate construction $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})}$ is actually trivial.

- If $n=2^{k} 3^{\ell}$ with $k, \ell \geq 1$ for instance, the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$ is invertible in $\mathbb{Z}\left[\frac{1}{n}\right]$.

Meier shows that $\operatorname{tmf}(n)$ is faithful and is a perfect $\operatorname{tmf}[1 / n]$-module spectrum and hence dualizable.
Theorem [Höning-R]
We have $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \simeq *$ if and only if the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$, is a unit in $\mathbb{Z}\left[\frac{1}{n}\right]$. In particular, if $n \geq 2$ and $2 \nmid n$ or if $n=2^{k}$ for $k \geq 1$, then $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \not 千 *$.

For many n the Tate construction $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})}$ is actually trivial.

- If $n=2^{k} 3^{\ell}$ with $k, \ell \geq 1$ for instance, the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$ is invertible in $\mathbb{Z}\left[\frac{1}{n}\right]$.
- It also holds for instance if $n=2 \cdot 3 \cdot \ldots \cdot p_{m}$ is the product of the first m prime numbers for any $m \geq 2$

Meier shows that $\operatorname{tmf}(n)$ is faithful and is a perfect $\operatorname{tmf}[1 / n]$-module spectrum and hence dualizable.
Theorem [Höning-R]
We have $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \simeq *$ if and only if the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$, is a unit in $\mathbb{Z}\left[\frac{1}{n}\right]$. In particular, if $n \geq 2$ and $2 \nmid n$ or if $n=2^{k}$ for $k \geq 1$, then $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \not 千 *$.

For many n the Tate construction $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})}$ is actually trivial.

- If $n=2^{k} 3^{\ell}$ with $k, \ell \geq 1$ for instance, the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$ is invertible in $\mathbb{Z}\left[\frac{1}{n}\right]$.
- It also holds for instance if $n=2 \cdot 3 \cdot \ldots \cdot p_{m}$ is the product of the first m prime numbers for any $m \geq 2$
- or for $n=2 \cdot 3 \cdot 7=42$

Meier shows that $\operatorname{tmf}(n)$ is faithful and is a perfect $\operatorname{tmf}[1 / n]$-module spectrum and hence dualizable.
Theorem [Höning-R]
We have $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \simeq *$ if and only if the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$, is a unit in $\mathbb{Z}\left[\frac{1}{n}\right]$. In particular, if $n \geq 2$ and $2 \nmid n$ or if $n=2^{k}$ for $k \geq 1$, then $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})} \not 千 *$.

For many n the Tate construction $\operatorname{tmf}(n)^{t G L_{2}(\mathbb{Z} / n \mathbb{Z})}$ is actually trivial.

- If $n=2^{k} 3^{\ell}$ with $k, \ell \geq 1$ for instance, the order of $G L_{2}(\mathbb{Z} / n \mathbb{Z})$ is invertible in $\mathbb{Z}\left[\frac{1}{n}\right]$.
- It also holds for instance if $n=2 \cdot 3 \cdot \ldots \cdot p_{m}$ is the product of the first m prime numbers for any $m \geq 2$
- or for $n=2 \cdot 3 \cdot 7=42$ but not for $n=2 \cdot 3 \cdot 11$.

