Detecting and describing ramification for structured ring spectra

Birgit Richter, DMV-ÖMG Tagung, September 30 2021

Joint work with Eva Höning

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_K \to \mathcal{O}_L$ be the corresponding extension of rings of integers.

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_K \to \mathcal{O}_L$ be the corresponding extension of rings of integers. A prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ ramifies in L, if $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$ in \mathcal{O}_L and $e_i > 1$ for at least one $1 \leq i \leq s$.

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_K \to \mathcal{O}_L$ be the corresponding extension of rings of integers.

A prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ ramifies in L, if $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$ in \mathcal{O}_L and $e_i > 1$ for at least one $1 \leq i \leq s$.

The ramification is tame when the ramification indices e_i are all relatively prime to the residue characteristic of p

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_K \to \mathcal{O}_L$ be the corresponding extension of rings of integers.

A prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ ramifies in L, if $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$ in \mathcal{O}_L and $e_i > 1$ for at least one $1 \leq i \leq s$.

The ramification is tame when the ramification indices e_i are all relatively prime to the residue characteristic of p and it is wild otherwise.

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_K \to \mathcal{O}_L$ be the corresponding extension of rings of integers.

A prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ ramifies in L, if $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$ in \mathcal{O}_L and $e_i > 1$ for at least one $1 \leq i \leq s$.

The ramification is tame when the ramification indices e_i are all relatively prime to the residue characteristic of p and it is wild otherwise.

Example Consider

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_K \to \mathcal{O}_L$ be the corresponding extension of rings of integers.

A prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ ramifies in L, if $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$ in \mathcal{O}_L and $e_i > 1$ for at least one $1 \leq i \leq s$.

The ramification is tame when the ramification indices e_i are all relatively prime to the residue characteristic of p and it is wild otherwise.

Example Consider

Then $\mathbb{Z}[i] \supset (2) = (1+i)^2$

Let $K \subset L$ be an extension of number fields and let $\mathcal{O}_K \to \mathcal{O}_L$ be the corresponding extension of rings of integers.

A prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ ramifies in L, if $\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_s^{e_s}$ in \mathcal{O}_L and $e_i > 1$ for at least one $1 \leq i \leq s$.

The ramification is tame when the ramification indices e_i are all relatively prime to the residue characteristic of p and it is wild otherwise.

Example Consider

$$\mathbb{Q} \longrightarrow \mathbb{Q}(i)$$

$$\uparrow \qquad \uparrow$$

$$\mathbb{Z} \longrightarrow \mathbb{Z}[i]$$

Then $\mathbb{Z}[i] \supset (2) = (1+i)^2$ and 2 is the characteristic of the residue field \mathbb{F}_2 , so (2) is wildy ramified.

In contrast, if p is an odd prime, then

$$\mathbb{Z} \to \mathbb{Z}[\zeta_p]$$

is tamely ramified.

In contrast, if p is an odd prime, then

$$\mathbb{Z} \to \mathbb{Z}[\zeta_p]$$

is tamely ramified.

Here, using the cyclotomic polynomial one sees that the ideal (p) splits as $(1 - \zeta_p)^{p-1}$ in $\mathbb{Z}[\zeta_p]$.

If $K \subset L$ is a *G*-Galois extension, then $\mathcal{O}_K \to \mathcal{O}_L$ is unramified, if and only if $\mathcal{O}_K \to \mathcal{O}_L$ is a Galois extension of commutative rings

If $K \subset L$ is a *G*-Galois extension, then $\mathcal{O}_K \to \mathcal{O}_L$ is unramified, if and only if $\mathcal{O}_K \to \mathcal{O}_L$ is a Galois extension of commutative rings and this in turn says that $\mathcal{O}_L^G = \mathcal{O}_K$ and $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$ if *G* is the Galois group of $K \subset L$.

If $K \subset L$ is a *G*-Galois extension, then $\mathcal{O}_K \to \mathcal{O}_L$ is unramified, if and only if $\mathcal{O}_K \to \mathcal{O}_L$ is a Galois extension of commutative rings and this in turn says that $\mathcal{O}_L^G = \mathcal{O}_K$ and $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$ if *G* is the Galois group of $K \subset L$.

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_{\mathcal{G}} \mathcal{O}_L$$

via the map $x \otimes y \mapsto (xg(y))_{g \in G}$.

If $K \subset L$ is a *G*-Galois extension, then $\mathcal{O}_K \to \mathcal{O}_L$ is unramified, if and only if $\mathcal{O}_K \to \mathcal{O}_L$ is a Galois extension of commutative rings and this in turn says that $\mathcal{O}_L^G = \mathcal{O}_K$ and $\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$ if *G* is the Galois group of $K \subset L$.

The fixed point condition is always satisfied in this situation, so the condition for being unramified is

$$\mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_G \mathcal{O}_L$$

via the map $x \otimes y \mapsto (xg(y))_{g \in G}$.

If X is a compact Hausdorff space and G is a finite group of homeomorphisms of X, then $C^0(X/G; \mathbb{R}) \to C^0(X; \mathbb{R})$ is a G-Galois extension iff G acts fixed-point free on X.

 singular cohomology with coefficients in a commutative ring R: H*(-; R),

- singular cohomology with coefficients in a commutative ring R: H*(-; R),
- ▶ nice cobordims theories, like complex cobordism, $MU^*(-)$,

- singular cohomology with coefficients in a commutative ring R: H*(-; R),
- ▶ nice cobordims theories, like complex cobordism, $MU^*(-)$,
- ▶ real or complex topological *K*-theory, $KO^*(-)$, $KU^*(-)$,

- singular cohomology with coefficients in a commutative ring R: H*(-; R),
- ▶ nice cobordims theories, like complex cobordism, $MU^*(-)$,
- ▶ real or complex topological *K*-theory, $KO^*(-)$, $KU^*(-)$,
- topological modular forms, $TMF^*(-)$.

- singular cohomology with coefficients in a commutative ring R: H*(-; R),
- ▶ nice cobordims theories, like complex cobordism, $MU^*(-)$,
- ▶ real or complex topological K-theory, $KO^*(-)$, $KU^*(-)$,
- topological modular forms, $TMF^*(-)$.

All these examples and many more can be represented by *commutative ring spectra*;

- singular cohomology with coefficients in a commutative ring R: H*(-; R),
- ▶ nice cobordims theories, like complex cobordism, $MU^*(-)$,
- ▶ real or complex topological K-theory, $KO^*(-)$, $KU^*(-)$,
- topological modular forms, $TMF^*(-)$.

All these examples and many more can be represented by *commutative ring spectra*; *HR*, *MU*, *KO*, *KU*, *TMF*,...

- singular cohomology with coefficients in a commutative ring R: H*(-; R),
- ▶ nice cobordims theories, like complex cobordism, $MU^*(-)$,
- ▶ real or complex topological K-theory, $KO^*(-)$, $KU^*(-)$,
- topological modular forms, $TMF^*(-)$.

All these examples and many more can be represented by *commutative ring spectra*; *HR*, *MU*, *KO*, *KU*, *TMF*,...

A ring spectrum A has a product $A \land A \rightarrow A$ and a unit $S \rightarrow A$, such that A is a commutative and associative monoid.

- singular cohomology with coefficients in a commutative ring R: H*(-; R),
- ▶ nice cobordims theories, like complex cobordism, $MU^*(-)$,
- ▶ real or complex topological K-theory, $KO^*(-)$, $KU^*(-)$,
- topological modular forms, $TMF^*(-)$.

All these examples and many more can be represented by *commutative ring spectra*; *HR*, *MU*, *KO*, *KU*, *TMF*,...

A ring spectrum A has a product $A \land A \rightarrow A$ and a unit $S \rightarrow A$, such that A is a commutative and associative monoid.

We want to understand ramification of maps $A \rightarrow B$ in order to understand descent questions in algebraic K-theory: How close is $K(B)^{hG}$ to K(A)? [Ausoni, Rognes, Clausen-Mathew-Naumann-Noel,...] And why should we care about that?

And why should we care about that?

Example

K(ku) classifies 2-vector bundles on spaces (e.g. gerbes) [Baas-Dundas-R-Rognes] And why should we care about that?

Example

K(ku) classifies 2-vector bundles on spaces (e.g. gerbes) [Baas-Dundas-R-Rognes]

Example

 $K(S) \simeq S \lor Wh^{\text{Diff}}(*)$ where $Wh^{\text{Diff}}(*)$ is the Whitehead spectrum and this in turn is related to the stable smooth h-cobordism space. [Waldhausen, Jahren, Rognes,...]

▶ The map from A to the homotopy fixed points of B with respect to the G-action, $i: A \rightarrow B^{hG}$, is a weak equivalence.

- ▶ The map from A to the homotopy fixed points of B with respect to the G-action, $i: A \rightarrow B^{hG}$, is a weak equivalence.
- The map

$$h\colon B\wedge_{\mathcal{A}}B\to\prod_{\mathcal{G}}B$$

is a weak equivalence.

- ▶ The map from A to the homotopy fixed points of B with respect to the G-action, $i: A \rightarrow B^{hG}$, is a weak equivalence.
- The map

$$h\colon B\wedge_{\mathcal{A}}B\to\prod_{\mathcal{G}}B$$

is a weak equivalence.

Here, h is right adjoint to the composite map

$$B \wedge_A B \wedge G_+ \longrightarrow B \wedge_A B \longrightarrow B,$$

induced by the G-action and the multiplication on B.

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum HRand B = HT for some commutative rings R and T such that T carries a G-action via R-algebra maps,

Example 2 Consider the complexification map c, that sends an \mathbb{R} -vector bundle to the corresponding complexified \mathbb{C} -vector bundle.

Example 2 Consider the complexification map c, that sends an \mathbb{R} -vector bundle to the corresponding complexified \mathbb{C} -vector bundle.

This map c induces a map of commutative ring spectra from real topological K-theory, KO, to complex topological K-theory, KU:

Example 2 Consider the complexification map c, that sends an \mathbb{R} -vector bundle to the corresponding complexified \mathbb{C} -vector bundle.

This map *c* induces a map of commutative ring spectra from real topological K-theory, *KO*, to complex topological K-theory, *KU*:

 $c \colon KO \to KU.$
Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum HRand B = HT for some commutative rings R and T such that T carries a G-action via R-algebra maps, then $HR \rightarrow HT$ is a G-Galois extension of commutative ring spectra iff $R \rightarrow T$ is a G-Galois extension of commutative rings.

Example 2 Consider the complexification map c, that sends an \mathbb{R} -vector bundle to the corresponding complexified \mathbb{C} -vector bundle.

This map *c* induces a map of commutative ring spectra from real topological K-theory, *KO*, to complex topological K-theory, *KU*:

 $c \colon KO \to KU.$

Complex conjugation gives rise to a C_2 -action on KU.

Example 1 [Rognes] If A is the Eilenberg-MacLane spectrum HRand B = HT for some commutative rings R and T such that T carries a G-action via R-algebra maps, then $HR \rightarrow HT$ is a G-Galois extension of commutative ring spectra iff $R \rightarrow T$ is a G-Galois extension of commutative rings.

Example 2 Consider the complexification map c, that sends an \mathbb{R} -vector bundle to the corresponding complexified \mathbb{C} -vector bundle.

This map *c* induces a map of commutative ring spectra from real topological K-theory, *KO*, to complex topological K-theory, *KU*:

 $c \colon KO \to KU.$

Complex conjugation gives rise to a C_2 -action on KU. Rognes [2008]: This turns $KO \rightarrow KU$ into a C_2 -Galois extension.

$$\pi_*(KO) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(KU)$$

with $y \mapsto 2u^2$.

$$\pi_*(KO) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(KU)$$
with $y \mapsto 2u^2$.
So as a graded commutative $\pi_*(KO)$ -algebra $\pi_*(KU)$ is really bad.

$$\pi_*(KO) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(KU)$$
with $y \mapsto 2u^2$.
So as a graded commutative $\pi_*(KO)$ -algebra $\pi_*(KU)$ is really bad.
Other important Galois extensions:

$$\pi_*(\mathcal{KO}) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(\mathcal{KU})$$

with $y \mapsto 2u^2$.

So as a graded commutative $\pi_*(KO)$ -algebra $\pi_*(KU)$ is really bad.

Other important Galois extensions:

For p an odd prime: $KU_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2i} L$ and $L_p \to KU_p$ is a C_{p-1} -Galois extension [Rognes 2008].

$$\pi_*(\mathcal{KO}) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(\mathcal{KU})$$

with $y \mapsto 2u^2$.

So as a graded commutative $\pi_*(KO)$ -algebra $\pi_*(KU)$ is really bad.

Other important Galois extensions:

- ► For *p* an odd prime: $KU_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2i} L$ and $L_p \to KU_p$ is a C_{p-1} -Galois extension [Rognes 2008].
- ▶ $TMF_0(3)_{(2)} \rightarrow TMF_1(3)_{(2)}$ is C_2 -Galois [Mathew-Meier 2015].

$$\pi_*(\mathcal{KO}) = \mathbb{Z}[\eta, y, \omega^{\pm 1}]/(2\eta, \eta^3, \eta y, y^2 - 4\omega) \xrightarrow{\pi_*(c)} \mathbb{Z}[u^{\pm 1}] = \pi_*(\mathcal{KU})$$

with $y \mapsto 2u^2$.

So as a graded commutative $\pi_*(KO)$ -algebra $\pi_*(KU)$ is really bad.

Other important Galois extensions:

- ► For *p* an odd prime: $KU_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2i} L$ and $L_p \to KU_p$ is a C_{p-1} -Galois extension [Rognes 2008].
- ▶ $TMF_0(3)_{(2)} \rightarrow TMF_1(3)_{(2)}$ is C_2 -Galois [Mathew-Meier 2015].
- $TMF[1/n] \rightarrow TMF(n)$ is $GL_2(\mathbb{Z}/n\mathbb{Z})$ -Galois [MM-2015].

If B is a spectrum, then $f: b \rightarrow B$ is a connective cover if

 $\pi_i(f)$: $\pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0.

If B is a spectrum, then $f: b \rightarrow B$ is a *connective cover* if

 $\pi_i(f)$: $\pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0.

So, in particular, connective covers of Galois extensions are rarely Galois extensions

If B is a spectrum, then $f: b \rightarrow B$ is a *connective cover* if

 $\pi_i(f)$: $\pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0.

So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples.

If *B* is a spectrum, then $f: b \to B$ is a *connective cover* if $\pi_i(f): \pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0. So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples. If $A \to B$ is unramified, so if $B \wedge_A B \simeq \prod_G B$, then Rognes showed that $TAQ(B|A) \simeq *$.

If B is a spectrum, then $f: b \to B$ is a connective cover if $\pi_i(f): \pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0. So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples. If $A \to B$ is unramified, so if $B \wedge_A B \simeq \prod_G B$, then Rognes

showed that $TAQ(B|A) \simeq *$.

TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

$$\blacktriangleright \pi_2 TAQ(ku_{(p)}|\ell) \cong \mathbb{Z}_{(p)}.$$

If B is a spectrum, then $f: b \to B$ is a connective cover if $\pi_i(f): \pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0. So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples. If $A \to B$ is unramified, so if $B \wedge_A B \simeq \prod_G B$, then Rognes showed that $TAQ(B|A) \simeq *$. TAQ(B|A) is a gravity previous of André Quillen hamelers.

TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

▶ $\pi_2 TAQ(ku_{(p)}|\ell) \cong \mathbb{Z}_{(p)}$. Here, $\ell \to ku_{(p)}$ is the inclusion of the Adams summand into *p*-localized complex K-theory, for an odd prime *p*.

If *B* is a spectrum, then $f: b \to B$ is a *connective cover* if $\pi_i(f): \pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0. So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples. If $A \to B$ is unramified, so if $B \wedge_A B \simeq \prod_G B$, then Rognes showed that $TAQ(B|A) \simeq *$. TAQ(B|A) is a spectrum version of André-Quillen homology.

TAQ(B|A) is a spectrum version of André-Quillen homology, defined and studied by Basterra.

▶ $\pi_2 TAQ(ku_{(p)}|\ell) \cong \mathbb{Z}_{(p)}$. Here, $\ell \to ku_{(p)}$ is the inclusion of the Adams summand into *p*-localized complex K-theory, for an odd prime *p*.

 $\blacktriangleright \ \pi_2 TAQ(ku|ko) \cong \mathbb{Z}.$

If B is a spectrum, then $f: b \to B$ is a connective cover if $\pi_i(f): \pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0. So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples. If $A \to B$ is unramified, so if $B \wedge_A B \simeq \prod_G B$, then Rognes showed that $TAQ(B|A) \simeq *$. TAQ(B|A) is a spectrum version of André-Quillen homology,

defined and studied by Basterra.

- ▶ $\pi_2 TAQ(ku_{(p)}|\ell) \cong \mathbb{Z}_{(p)}$. Here, $\ell \to ku_{(p)}$ is the inclusion of the Adams summand into *p*-localized complex K-theory, for an odd prime *p*.
- $\blacktriangleright \ \pi_2 TAQ(ku|ko) \cong \mathbb{Z}.$
- $\pi_2 TAQ(tmf_1(3)_{(2)}|tmf_0(3)_{(2)}) \cong \mathbb{Z}_{(2)}.$

If B is a spectrum, then $f: b \to B$ is a connective cover if $\pi_i(f): \pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0. So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples. If $A \to B$ is unramified, so if $B \wedge_A B \simeq \prod_G B$, then Rognes showed that $TAQ(B|A) \simeq *$. TAQ(B|A) is a spectrum version of André-Quillen homology,

defined and studied by Basterra.

- ▶ $\pi_2 TAQ(ku_{(p)}|\ell) \cong \mathbb{Z}_{(p)}$. Here, $\ell \to ku_{(p)}$ is the inclusion of the Adams summand into *p*-localized complex K-theory, for an odd prime *p*.
- $\blacktriangleright \ \pi_2 TAQ(ku|ko) \cong \mathbb{Z}.$
- $\pi_2 TAQ(tmf_1(3)_{(2)}|tmf_0(3)_{(2)}) \cong \mathbb{Z}_{(2)}.$
- $\pi_4 TAQ(tmf_0(2)_{(3)}|tmf_{(3)}) \cong \mathbb{Z}_{(3)}.$

If *B* is a spectrum, then $f: b \to B$ is a *connective cover* if $\pi_i(f): \pi_i(b) \cong \pi_i(B)$ for $i \ge 0$ and $\pi_i(b) = 0$ for i < 0. So, in particular, connective covers of Galois extensions are rarely Galois extensions – these will be our main examples. If $A \to B$ is unramified, so if $B \wedge_A B \simeq \prod_G B$, then Rognes showed that $TAQ(B|A) \simeq *$. TAQ(B|A) is a spectrum version of André-Quillen homology,

defined and studied by Basterra.

- ▶ $\pi_2 TAQ(ku_{(p)}|\ell) \cong \mathbb{Z}_{(p)}$. Here, $\ell \to ku_{(p)}$ is the inclusion of the Adams summand into *p*-localized complex K-theory, for an odd prime *p*.
- $\blacktriangleright \ \pi_2 TAQ(ku|ko) \cong \mathbb{Z}.$
- $\pi_2 TAQ(tmf_1(3)_{(2)}|tmf_0(3)_{(2)}) \cong \mathbb{Z}_{(2)}.$
- $\pi_4 TAQ(tmf_0(2)_{(3)}|tmf_{(3)}) \cong \mathbb{Z}_{(3)}.$

We *do* have ramification, but we don't see yet, whether it's tame or wild.

Classically: A finite generically étale extension $A \rightarrow B$ of Dedekind domains is tame if and only if the trace $B \rightarrow A$ is surjective.

Classically: A finite generically étale extension $A \to B$ of Dedekind domains is tame if and only if the trace $B \to A$ is surjective. For $\mathcal{O}_K \subset \mathcal{O}_L$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$N_G: \mathcal{O}_L \to \mathcal{O}_K, \quad x \mapsto \sum_{g \in G} gx.$$

Classically: A finite generically étale extension $A \to B$ of Dedekind domains is tame if and only if the trace $B \to A$ is surjective. For $\mathcal{O}_K \subset \mathcal{O}_L$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$N_G \colon \mathcal{O}_L \to \mathcal{O}_K, \quad x \mapsto \sum_{g \in G} gx.$$

The norm map induces a map $H_0(G; \mathcal{O}_L) \to H^0(G; \mathcal{O}_L)$. Its deviation from being an isomorphism is measured by *Tate* cohomology, $\hat{H}^*(G; \mathcal{O}_L)$.

Classically: A finite generically étale extension $A \to B$ of Dedekind domains is tame if and only if the trace $B \to A$ is surjective. For $\mathcal{O}_K \subset \mathcal{O}_L$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$N_G \colon \mathcal{O}_L \to \mathcal{O}_K, \quad x \mapsto \sum_{g \in G} gx.$$

The norm map induces a map $H_0(G; \mathcal{O}_L) \to H^0(G; \mathcal{O}_L)$. Its deviation from being an isomorphism is measured by *Tate* cohomology, $\hat{H}^*(G; \mathcal{O}_L)$.

Homotopy theoretic version:

Classically: A finite generically étale extension $A \to B$ of Dedekind domains is tame if and only if the trace $B \to A$ is surjective. For $\mathcal{O}_K \subset \mathcal{O}_L$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$N_G \colon \mathcal{O}_L \to \mathcal{O}_K, \quad x \mapsto \sum_{g \in G} gx.$$

The norm map induces a map $H_0(G; \mathcal{O}_L) \to H^0(G; \mathcal{O}_L)$. Its deviation from being an isomorphism is measured by *Tate* cohomology, $\hat{H}^*(G; \mathcal{O}_L)$.

Homotopy theoretic version:

If B is a G-spectrum, then the Tate construction of B with respect

to G is the cofiber B^{tG} of $B_{hG} \xrightarrow{N_G} B^{hG} \longrightarrow B^{tG}$.

Classically: A finite generically étale extension $A \to B$ of Dedekind domains is tame if and only if the trace $B \to A$ is surjective. For $\mathcal{O}_K \subset \mathcal{O}_L$: This extension is tamely ramified if the norm map is surjective: If G is the Galois group of $K \subset L$, then the norm is

$$N_G\colon \mathcal{O}_L o \mathcal{O}_K, \quad x\mapsto \sum_{g\in G} gx.$$

The norm map induces a map $H_0(G; \mathcal{O}_L) \to H^0(G; \mathcal{O}_L)$. Its deviation from being an isomorphism is measured by *Tate* cohomology, $\hat{H}^*(G; \mathcal{O}_L)$.

Homotopy theoretic version:

If *B* is a *G*-spectrum, then the Tate construction of *B* with respect to *G* is the cofiber B^{tG} of $B_{hG} \xrightarrow{N_G} B^{hG} \longrightarrow B^{tG}$. Here, B_{hG} is the homotopy orbit spectrum and B^{hG} is the homotopy fixed point spectrum. Classically, this can be used as a criterion for tame ramification:

Classically, this can be used as a criterion for tame ramification: The map $\mathcal{O}_K \to \mathcal{O}_L$ is tamely ramified iff $\pi_*(H\mathcal{O}_L)^{tG} = 0$. Classically, this can be used as a criterion for tame ramification: The map $\mathcal{O}_K \to \mathcal{O}_L$ is tamely ramified iff $\pi_*(\mathcal{HO}_L)^{tG} = 0$. There is a spectral sequence

$$E_2^{s,t} = \hat{H}^{-s}(G; \pi_t B) \Rightarrow \pi_{s+t}(B^{tG}),$$

where $\hat{H}^*(G; \pi_t B)$ is the Tate cohomology of G with coefficients in the G-module $\pi_t B$.

Classically, this can be used as a criterion for tame ramification: The map $\mathcal{O}_K \to \mathcal{O}_L$ is tamely ramified iff $\pi_*(\mathcal{HO}_L)^{tG} = 0$. There is a spectral sequence

$$E_2^{s,t} = \hat{H}^{-s}(G; \pi_t B) \Rightarrow \pi_{s+t}(B^{tG}),$$

where $\hat{H}^*(G; \pi_t B)$ is the Tate cohomology of G with coefficients in the G-module $\pi_t B$.

If $B = H\mathcal{O}_L$, then the spectral sequence collapses and $\hat{H}^*(G; \mathcal{O}_L) \cong \pi_{-*}(H\mathcal{O}_L)^{tG}$.

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras.

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$h\colon B\wedge_A B \xrightarrow{\sim} F(G_+,B),$$

then $B^{tG} \simeq *$.

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$h\colon B\wedge_A B \xrightarrow{\sim} F(G_+,B),$$

then $B^{tG} \simeq *$.

In algebra, faithfulness is *not* an extra assumption but comes for free!

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant commutative A-algebra on which G acts via maps of commutative A-algebras. If B is dualizable and faithful as an A-module and if

$$h: B \wedge_A B \xrightarrow{\sim} F(G_+, B),$$

then $B^{tG} \simeq *$.

In algebra, faithfulness is *not* an extra assumption but comes for free!

Beware! If $A \to B$ is a map between connective commutative ring spectra, then often $B^{hG} \not\simeq A$, but $A \to \tau_{\geq 0} B^{hG}$ might be an equivalence (e.g. $ko \simeq \tau_{\geq 0} k u^{hC_2}$).

We propose the following definition:
Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0} B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$.

Definition Assume that $A \to B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module. If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0} B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$. Otherwise, $A \to B$ is wildly ramified.

Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0}B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$. Otherwise, $A \to B$ is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form $G_+ \wedge W$, then $X^{tG} \simeq *$,

Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0}B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$. Otherwise, $A \to B$ is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form $G_+ \wedge W$, then $X^{tG} \simeq *$, so in particular, if *B* has a normal basis, $B \simeq G_+ \wedge A$, then $B^{tG} \simeq *$.

Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0}B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$. Otherwise, $A \to B$ is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form $G_+ \wedge W$, then $X^{tG} \simeq *$, so in particular, if *B* has a normal basis, $B \simeq G_+ \wedge A$, then $B^{tG} \simeq *$.

Can we determine B^{tG} for

Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0}B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$. Otherwise, $A \to B$ is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form $G_+ \wedge W$, then $X^{tG} \simeq *$, so in particular, if *B* has a normal basis, $B \simeq G_+ \wedge A$, then $B^{tG} \simeq *$.

Can we determine B^{tG} for

•
$$B = ku$$
 and $G = C_2$?

Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0}B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$. Otherwise, $A \to B$ is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form $G_+ \wedge W$, then $X^{tG} \simeq *$, so in particular, if *B* has a normal basis, $B \simeq G_+ \wedge A$, then $B^{tG} \simeq *$.

Can we determine B^{tG} for

• B = ku and $G = C_2$? $ku^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{4i} H\mathbb{Z}/2\mathbb{Z}$ [Rognes].

Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0}B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$. Otherwise, $A \to B$ is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form $G_+ \wedge W$, then $X^{tG} \simeq *$, so in particular, if *B* has a normal basis, $B \simeq G_+ \wedge A$, then $B^{tG} \simeq *$.

Can we determine B^{tG} for

►
$$B = ku$$
 and $G = C_2$? $ku^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{4i} H\mathbb{Z}/2\mathbb{Z}$ [Rognes].

• For
$$B = tmf_1(3)_{(2)}$$
 and $G = C_2$?

Definition Assume that $A \rightarrow B$ is a map of commutative ring spectra such that G acts on B via commutative A-algebra maps and B is faithful and dualizable as an A-module.

If $A \simeq B^{hG}$ (or $A \simeq \tau_{\geq 0}B^{hG}$ if A and B are connective), then we call $A \to B$ tamely ramified if $B^{tG} \simeq *$. Otherwise, $A \to B$ is wildly ramified.

Rognes: If a spectrum with a *G*-action *X* is in the thick subcategory generated by spectra of the form $G_+ \wedge W$, then $X^{tG} \simeq *$, so in particular, if *B* has a normal basis, $B \simeq G_+ \wedge A$, then $B^{tG} \simeq *$.

Can we determine B^{tG} for

► B = ku and $G = C_2$? $ku^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{4i} H\mathbb{Z}/2\mathbb{Z}$ [Rognes].

• For
$$B = tmf_1(3)_{(2)}$$
 and $G = C_2$?

• For $B = tmf(2)_{(3)}$ and $G = GL_2(\mathbb{F}_2) \cong \Sigma_3$?

Theorem [Höning-R]

$$\blacktriangleright tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i\in\mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified.

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.
- 3. $TMF_0(3) \rightarrow TMF_1(3)$ is C₂-Galois [Mathew-Meier]

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.
- 3. $TMF_0(3) \rightarrow TMF_1(3)$ is C_2 -Galois [Mathew-Meier] $Tmf_0(3) \rightarrow Tmf_1(3)$ is also C_2 -Galois [Mathew-Meier]

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.
- 3. $TMF_0(3) \rightarrow TMF_1(3)$ is C_2 -Galois [Mathew-Meier] $Tmf_0(3) \rightarrow Tmf_1(3)$ is also C_2 -Galois [Mathew-Meier] but $tmf_1(3)_{(2)}^{tC_2} \not\simeq *$.

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.
- 3. $TMF_0(3) \rightarrow TMF_1(3)$ is C_2 -Galois [Mathew-Meier] $Tmf_0(3) \rightarrow Tmf_1(3)$ is also C_2 -Galois [Mathew-Meier] but $tmf_1(3)_{(2)}^{tC_2} \neq *$. But here, we don't know whether $tmf_1(3)_{(2)}$ is faithful as a $tmf_0(3)_{(2)}$ -module.

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.
- 3. $TMF_0(3) \rightarrow TMF_1(3)$ is C_2 -Galois [Mathew-Meier] $Tmf_0(3) \rightarrow Tmf_1(3)$ is also C_2 -Galois [Mathew-Meier] but $tmf_1(3)_{(2)}^{tC_2} \neq *$. But here, we don't know whether $tmf_1(3)_{(2)}$ is faithful as a $tmf_0(3)_{(2)}$ -module. Lennart Meier: It is *not* dualizable.

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.
- 3. $TMF_0(3) \rightarrow TMF_1(3)$ is C_2 -Galois [Mathew-Meier] $Tmf_0(3) \rightarrow Tmf_1(3)$ is also C_2 -Galois [Mathew-Meier] but $tmf_1(3)_{(2)}^{tC_2} \neq *$. But here, we don't know whether $tmf_1(3)_{(2)}$ is faithful as a $tmf_0(3)_{(2)}$ -module. Lennart Meier: It is *not* dualizable.
- 4. $TMF[1/n] \rightarrow TMF(n)$ is a $GL_2(\mathbb{Z}/n\mathbb{Z})$ -Galois extension

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \to KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \to ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.
- 3. $TMF_0(3) \rightarrow TMF_1(3)$ is C_2 -Galois [Mathew-Meier] $Tmf_0(3) \rightarrow Tmf_1(3)$ is also C_2 -Galois [Mathew-Meier] but $tmf_1(3)_{(2)}^{tC_2} \neq *$. But here, we don't know whether $tmf_1(3)_{(2)}$ is faithful as a $tmf_0(3)_{(2)}$ -module. Lennart Meier: It is *not* dualizable.
- TMF[1/n] → TMF(n) is a GL₂(ℤ/nℤ)-Galois extension and the Tate spectrum Tmf(n)^{tGL₂(ℤ/nℤ)} is contractible [Mathew-Meier, Stojanoska],

•
$$tmf_1(3)_{(2)}^{tC_2} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{8i} H\mathbb{Z}/2\mathbb{Z}$$
, and

•
$$tmf(2)_{(3)}^{t\Sigma_3} \simeq \bigvee_{i \in \mathbb{Z}} \Sigma^{12i} H\mathbb{Z}/3\mathbb{Z}.$$

- 1. So $KO \rightarrow KU$ is C_2 -Galois [Rognes], but $ko \rightarrow ku$ is wildly ramified.
- 2. $L_p \rightarrow KU_p$ is C_{p-1} -Galois [Rognes] and $\ell_p \rightarrow ku_p$ is tamely ramified. Here, $ku_p^{tC_{p-1}} \simeq *$ because p-1 is invertible in $\pi_0 ku_p$.
- 3. $TMF_0(3) \rightarrow TMF_1(3)$ is C_2 -Galois [Mathew-Meier] $Tmf_0(3) \rightarrow Tmf_1(3)$ is also C_2 -Galois [Mathew-Meier] but $tmf_1(3)_{(2)}^{tC_2} \neq *$. But here, we don't know whether $tmf_1(3)_{(2)}$ is faithful as a $tmf_0(3)_{(2)}$ -module. Lennart Meier: It is *not* dualizable.
- TMF[1/n] → TMF(n) is a GL₂(ℤ/nℤ)-Galois extension and the Tate spectrum Tmf(n)^{tGL₂(ℤ/nℤ)} is contractible [Mathew-Meier, Stojanoska], but tmf₍₃₎ → tmf(2)₍₃₎ is wildly ramified.

Meier shows that tmf(n) is faithful and is a perfect tmf[1/n]-module spectrum and hence dualizable.

Meier shows that tmf(n) is faithful and is a perfect tmf[1/n]-module spectrum and hence dualizable. Theorem [Höning-R] We have $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})} \simeq *$ if and only if the order of $GL_2(\mathbb{Z}/n\mathbb{Z})$, is a unit in $\mathbb{Z}[\frac{1}{n}]$.

For many *n* the Tate construction $tmf(n)^{tGL_2(\mathbb{Z}/n\mathbb{Z})}$ is actually trivial.

▶ If $n = 2^k 3^\ell$ with $k, \ell \ge 1$ for instance, the order of $GL_2(\mathbb{Z}/n\mathbb{Z})$ is invertible in $\mathbb{Z}[\frac{1}{n}]$.

- ▶ If $n = 2^k 3^\ell$ with $k, \ell \ge 1$ for instance, the order of $GL_2(\mathbb{Z}/n\mathbb{Z})$ is invertible in $\mathbb{Z}[\frac{1}{n}]$.
- It also holds for instance if n = 2 ⋅ 3 ⋅ ... ⋅ p_m is the product of the first m prime numbers for any m ≥ 2

- ▶ If $n = 2^k 3^\ell$ with $k, \ell \ge 1$ for instance, the order of $GL_2(\mathbb{Z}/n\mathbb{Z})$ is invertible in $\mathbb{Z}[\frac{1}{n}]$.
- It also holds for instance if n = 2 ⋅ 3 ⋅ ... ⋅ p_m is the product of the first m prime numbers for any m ≥ 2
- or for $n = 2 \cdot 3 \cdot 7 = 42$

- ▶ If $n = 2^k 3^\ell$ with $k, \ell \ge 1$ for instance, the order of $GL_2(\mathbb{Z}/n\mathbb{Z})$ is invertible in $\mathbb{Z}[\frac{1}{n}]$.
- It also holds for instance if n = 2 ⋅ 3 ⋅ ... ⋅ p_m is the product of the first m prime numbers for any m ≥ 2
- or for $n = 2 \cdot 3 \cdot 7 = 42$ but not for $n = 2 \cdot 3 \cdot 11$.