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Classical setting

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976),
Neisendorfer (1978): Algebraic models for rational nilpotent spaces
of finite type.
Quillen: cocommutative dg coalgebras, Lie algebras,...
(simply-connected case)
Sullivan: A∗PL(X ); a strictly dg commutative model for the
cochains of the space X .
Mandell (2006): Finite type nilpotent spaces are weakly equivalent
iff their singular cochains are quasi-isomorphic as E∞-algebras.
Thus, if you don’t want to restrict to rational homotopy theory,
then you need the full information of the E∞-structure on the
cochains!
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A strictly commutative model

Can we replace the E∞-algebra of cochains C ∗(X ; k) by a strictly
commutative model, if k is any commutative ring?
Yes!

Theorem [R-Sagave, 2020]:
There is a commutative I-chain algebra, AI(X ; k), such that

I The functors X 7→ hocolimIA
I(X ; k) and X 7→ C ∗(X ; k) from

simplicial sets to E∞-algebras are naturally quasi-isomorphic.

I Two nilpotent spaces X ,Y of finite type are weakly equivalent
iff AI(X ;Z) and AI(Y ;Z) are weakly equivalent as
commutative I-chain algebras.

Here, I is the (skeleton) of the category of finite sets and injective
functions.
What about the other models? So what about differential graded
cocommutative coalgebras and Lie-algebras?
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Plan for today:

1. Basics on I-chains and their homotopy colimit

2. Wishful thinking for a model structure on cocommutative
coalgebras (à la Neisendorfer):
I Norm maps
I Künneth formulas

3. Importing cocommutative coalgebras from symmetric
sequences

4. Behaviour of homotopy colimits
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Let I be the category of finite sets and injections whose objects
are the sets {1, . . . , n} =: n for n ≥ 0 with 0 = ∅.

The morphism set I(n,m) consists of all injective functions from n
to m.
The category I is symmetric monoidal under concatenation of
sets: n tm := n + m. The initial object 0 is the unit of this
symmetric monoidal structure.
We call functors from I to the category of chain complexes I-chain
complexes and denote the corresponding functor category by ChI .
The Day convolution product gives ChI a symmetric monoidal
structure. Explicitly, for two I-chain complexes X∗,Y∗

(X∗ � Y∗)(n) = colimI(ptq,n)X∗(p)⊗ Y∗(q).

The unit is 11 with 11(n) := S0 for any n ≥ 0.

Definition: Commutative I-chain algebras are commutative
monoids in ChI .
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Free things

For every n ≥ 0 there is an evaluation functor Evn : ChI → Ch
sending an X∗ to the chain complex X∗(n).

These functors have left adjoints

F In : Ch→ ChI

with
F In (C∗)(m) =

⊕
I(n,m)

C∗ ∼= k{I(n,m)} ⊗k C∗.

As 0 is initial, F I0 (C∗) is the constant I-chain complex on C∗ and
F I0 (S0) = 11.

For any I-chain complex X∗, the free commutative I-chain algebra
on X∗ is

SI(X∗) =
⊕
n≥0

X�n∗ /Σn.
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The homotopy colimit, hocolimIX∗, of an I-chain complex X∗ is
the total complex associated to the bicomplex whose bidegree
(p, q)-part is ⊕

[fq |...|f1]∈NqI

Xp(source(f1))

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X∗ is a
commutative I-chain algebra, then hocolimIX∗ is an algebra over
the Barratt-Eccles operad.

If C∗ is a cocommutative comonoid in ChI , what can we say about
hocolimIC∗?
In general: not much, because hocolimI is lax monoidal, but not
lax symmetric (co)monoidal!
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The co-free cocommutative coalgebra on a chain complex C∗,
rationally, is described via Σ-invariants:

S ′∗(C∗) =
⊕
n≥0

(C⊗n∗ )Σn .

Then one uses that rationally the norm map

Nn : C⊗n∗ /Σn → (C⊗n∗ )Σn

is an equivalence in order to determine the homotopy type.

In the category of symmetric sequences of chain complexes, ChΣ,
the norm map is an iso on reduced objects [Stover, Fresse].
Theorem There are reduced X∗ ∈ ChI (i.e., X∗(0) = 0) such that

Nn : X�n∗ /Σn → (X�n∗ )Σn

is not an isomorphism.
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is not an isomorphism.



A counterexample

Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of π is a reduced version of F I0 (k), say F̄ . All structure
maps in positive degrees induce the identity on F̄ .
If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).
As the functor is reduced, it suffices to consider 2 ≥ p, q ≥ 1. The
class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.
There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).
So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .
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Definition An I-chain complex X∗ is Tate trivial, if the norm map

Nn : X�n∗ /Σn(m)→ (X�n∗ )Σn(m)

is an isomorphism for all m.

For any chain complex C∗, for every m and for every p ≥ 1 the
norm Nn =

∑
σ∈Σn

σ ∈ Z[Σn] induces an isomorphism of chain
complexes

Nn : (F Ip (C∗)
�n/Σn)(m)→ ((F Ip (C∗)

�n)Σn(m).

So F Ip (C∗) is Tate-trivial for all p ≥ 1.

This follows from the fact that (F Ip (C∗))�n ∼= F Ipn(C⊗n∗ ) and that
the Σn-action is free on I(pn,m) as long as p ≥ 1.
Note that this implies that the free commutative monoid on
F Ip (C∗) is isomorphic to the free divided power algebra and the

cofree cocommutative coalgebra generated on F Ip (C∗).
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For an I-chain complex X∗ we can consider the graded I-chain
module H∗X∗ with

(H∗X∗)(n) := H∗(X∗(n)).

This can be considered as an I-chain complex with trivial
differential.
For two X∗,Y∗ ∈ ChI there is a Künneth map

H∗X∗ � H∗Y∗ → H∗(X∗ � Y∗).

Proposition Even if we work over a field, the Künneth map is in
general not an isomorphism.
Again, we provide a concrete counterexample.
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Consider a chain complex C∗ over a field with a chosen zero cycle
c0 and let SymI(C∗) ∈ ChI be defined as

SymI(C∗)(n) := C⊗n∗ .

The maps in I induce permutation of tensor factors and the
inclusions coming from S0 → C∗ representing c0.
For C∗ = D1 we consider H∗SymI(D1)� H∗SymI(D1)(1).
This is trivial, because H∗D

1 = 0.

On the other hand, the colimit for SymI(D1)� SymI(D1)(1) is
the pushout

S0 ⊗ S0 //

��

S0 ⊗ D1

D1 ⊗ S0

This results in D1 ⊕S0 D1 which has nontrivial H1.
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There is an inclusion of categories i : Σ ⊂ I, where Σ is the
skeleton of finite sets (of the type n, n ≥ 0) and bijections.

If Z∗ ∈ ChΣ, then

i!(Z∗)(m) = colimi(n)↓mZ∗(n) ∼=
⊕
n≥0

k{I(n,m)} ⊗k[Σn] Z∗(n).

A typical example is F In (C∗) = i!F
Σ
n (C∗) with

FΣ
n (C∗)(m) =

{
0, m 6= n,⊕

Σn
C∗, m = n.

In this case:
Lemma: For all n ≥ 0 and all chain complexes C∗:

hocolimIF
I
n (C∗) ' C∗.
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Can we describe hocolimI i!Z∗ in general?

Lemma: The categories C (m) := m ↓ I form an operad in the
category of small categories.

Sketch of proof: The right-Σm action on C (m) is defined by
precomposition.
Let f : m→ n and gi : ki → ni be objects of C (m) and C (ki )
respectively.
We define the operadic composition functor

γ : C (m)× C (k1)× . . .× C (km)→ C (
m∑
i=1

ki )

on objects as

γ(f ; g1, . . . , gm) := (g̃f −1(1) t . . . t g̃f −1(n)) ◦ f (k1, . . . , km).

Here,

g̃f −1(j) =

{
id1, if f −1(j) = ∅,
g`, if f (`) = j .

The identity 1 ∈ C (1) is then defined to be id1.
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on objects as

γ(f ; g1, . . . , gm) := (g̃f −1(1) t . . . t g̃f −1(n)) ◦ f (k1, . . . , km).

Here,

g̃f −1(j) =
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id1, if f −1(j) = ∅,
g`, if f (`) = j .

The identity 1 ∈ C (1) is then defined to be id1.
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Corollary: The sequence (N(m ↓ I))m≥0 forms an operad in the
category of simplicial sets

and (k{N(m ↓ I)})m≥0 forms an operad
in the category of simplicial modules.
The associated chain complexes O(m) := C∗(k{N(m ↓ I)}) form
an E∞-operad in the category of chain complexes.

Lemma: Let C∗ ∈ ChΣ. Then

hocolimI i!C∗ ∼=
⊕
m≥0

O(m)⊗Σm C∗(m).

Sketch of Proof:
Note that by definition we get hocolimI i!(C∗)p,q =⊕

[fq |...|f1]∈NIq i!(Cp)(sf1) ∼=
⊕

[fq |...|f1]∈NIq k{I(i(−), sf1)} ⊗Σ Cp.

This is isomorphic to⊕
m≥0

k{N(i(m) ↓ I)q} ⊗Σm Cp(m).
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For comonoids we need the following observation:

Lemma: For every m ≥ 0 and every pair of numbers (p, q) with
p + q = m there is a Σp × Σq-equivariant map

ψp,q : O(m)→ O(p)⊗ O(q). (1)

Theorem: If X∗ is a cocommutative comonoid in ChΣ, then i!(X∗)
is a cocommutative comonoid in I-chain complexes and
hocolimI i!(X∗) is an E∞ differential graded coalgebra.

The diagonal on X∗ induces

hocolimI(i!(X∗))→ hocolimI(i!(X∗ � X∗)).

The latter is⊕
m≥0

O(m)⊗Σm (X∗ � X∗)(m)

=
⊕
m≥0

O(m)⊗Σm (
⊕

p+q=m

k[Σm]⊗k[Σp×Σq ] X∗(p)⊗ X∗(q))

∼=
⊕
m≥0

⊕
p+q=m

O(m)⊗k[Σp×Σq ] X∗(p)⊗ X∗(q).
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We can use the maps from (1) to get a coproduct.

Possible models?
Let X be a simplicial set and k a commutative ring.
Rough idea: Use

k{Xp} ∼= k{X•} ⊗∆ k{∆([p],−)}

and find a model of k{∆([•],−)} in cosimplicial cocommutative
I-chain coalgebras...
Suggestions?
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