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Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976),
Neisendorfer (1978): Algebraic models for rational nilpotent spaces
of finite type.

Quillen: cocommutative dg coalgebras, Lie algebras,...
(simply-connected case)

Sullivan: Af; (X); a strictly dg commutative model for the
cochains of the space X.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent
iff their singular cochains are quasi-isomorphic as E..-algebras.
Thus, if you don’t want to restrict to rational homotopy theory,
then you need the full information of the E,-structure on the
cochains!
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A strictly commutative model

Can we replace the E-algebra of cochains C*(X; k) by a strictly
commutative model, if k is any commutative ring?
Yes!

Theorem [R-Sagave, 2020]:
There is a commutative Z-chain algebra, AZ(X; k), such that
» The functors X + hocolimzAZ(X; k) and X +— C*(X; k) from
simplicial sets to E,.-algebras are naturally quasi-isomorphic.
» Two nilpotent spaces X, Y of finite type are weakly equivalent
iff AZ(X;Z) and AL(Y;Z) are weakly equivalent as
commutative Z-chain algebras.
Here, 7 is the (skeleton) of the category of finite sets and injective
functions.
What about the other models? So what about differential graded
cocommutative coalgebras and Lie-algebras?
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Plan for today:

1. Basics on Z-chains and their homotopy colimit
2. Wishful thinking for a model structure on cocommutative
coalgebras (a la Neisendorfer):
» Norm maps
» Kinneth formulas
3. Importing cocommutative coalgebras from symmetric
sequences

4. Behaviour of homotopy colimits
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Let 7 be the category of finite sets and injections whose objects
are the sets {1,...,n} =:n for n > 0 with 0 = @.

The morphism set Z(n, m) consists of all injective functions from n
to m.

The category Z is symmetric monoidal under concatenation of
sets: nLUm :=n+ m. The initial object O is the unit of this
symmetric monoidal structure.

We call functors from Z to the category of chain complexes Z-chain
complexes and denote the corresponding functor category by Ch”.
The Day convolution product gives Ch? a symmetric monoidal
structure. Explicitly, for two Z-chain complexes X, Y

(X* X Y*)(n) = COlimI(puq,n)X*(p) ® Y*(q)

The unit is 1 with I(n) := S° for any n > 0.

Definition: Commutative Z-chain algebras are commutative
monoids in Ch”.
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Free things

For every n > 0 there is an evaluation functor Ev,,: ChT — Ch
sending an X, to the chain complex X, (n).
These functors have left adjoints

FZ.Ch— Ch*

with
FH(CI)m)= @ C.=k{Z(n,m)} & C..
Z(n,m)

As 0 is initial, FZ(C,) is the constant Z-chain complex on C, and
FF(S%) =1.
For any Z-chain complex Xj, the free commutative Z-chain algebra
on Xy is

SH(X.) = P XE" /5.

n>0
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The homotopy colimit, hocolimzX,, of an Z-chain complex X, is
the total complex associated to the bicomplex whose bidegree

(p; q)-part is
@ Xp(source(f1))

[fy]...|AlENGT

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X, is a
commutative Z-chain algebra, then hocolimz X, is an algebra over
the Barratt-Eccles operad.

If C, is a cocommutative comonoid in Ch%, what can we say about
hocolimz C..?

In general: not much, because hocolim; is lax monoidal, but not
lax symmetric (co)monoidal!
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The co-free cocommutative coalgebra on a chain complex C,,
rationally, is described via X-invariants:

si(c.) = @een®.

n>0

Then one uses that rationally the norm map
Ny: CE"/E, — (CEM)*n
is an equivalence in order to determine the homotopy type.

In the category of symmetric sequences of chain complexes, Ch*,
the norm map is an iso on reduced objects [Stover, Fresse].
Theorem There are reduced X, € Ch” (i.e., X.(0) = 0) such that

Np: X2 /50 — (X27)

is not an isomorphism.
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A counterexample

Consider the projection 7: FZ(k) — 1°(k) where I°(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of 7 is a reduced version of FZ(k), say F. All structure
maps in positive degrees induce the identity on F.

If we consider (F X F)(3) then this is the colimit over the category
TUZ —3of F(p)® F(q).

As the functor is reduced, it suffices to consider 2 > p,g > 1. The
class of the identity map viewed as a map 21 — 3 gives a
representative id ® 1 ® 1 in this tensor product.

There is a zigzag of equivalences coming from the relations for
forming the colimit for X that says that id ® 1 ® 1 represents the
same element as (id ® 1 ® 1).(1,2).

So this element is invariant under the Y >-action, but it is not in
the image of the norm map, unless 2 is invertible in k.
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Definition An Z-chain complex X, is Tate trivial, if the norm map
Np: X2/ S p(m) = (XE7) >0 (m)

is an isomorphism for all m.

For any chain complex C,, for every m and for every p > 1 the
norm N, = > s 0 € Z[¥,] induces an isomorphism of chain
complexes

No: (F3 (C)27/Zn)(m) = ((F7 (C)HM)*"(m).

So FZ(C.) is Tate-trivial for all p > 1.

This follows from the fact that (FZ(C,))®" = FZ (C®") and that
the ¥ ,-action is free on Z(pn, m) as long as p > 1.

Note that this implies that the free commutative monoid on
Fg(C*) is isomorphic to the free divided power algebra and the
cofree cocommutative coalgebra generated on FPI(C*).
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For an Z-chain complex X, we can consider the graded Z-chain
module H, X, with

(HX)(n) := Hi(X.(n)).

This can be considered as an Z-chain complex with trivial
differential.
For two X, Y, € ChZ there is a Kiinneth map

H. X X H, Y. — Ho (X X Ys).

Proposition Even if we work over a field, the Kiinneth map is in
general not an isomorphism.
Again, we provide a concrete counterexample.
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Consider a chain complex C, over a field with a chosen zero cycle
co and let SymZ(C,) € Ch” be defined as

SymZ(C,)(n) := C&".

The maps in Z induce permutation of tensor factors and the
inclusions coming from S® — C, representing cp.

For C, = D' we consider H,Sym”(D') X H,SymZ(D)(1).
This is trivial, because H,D* = 0.

On the other hand, the colimit for Sym?(D') X Sym%(D')(1) is

the pushout

9% SO SO% Dt

|

D! @ SO

This results in D @go D! which has nontrivial Hj.
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There is an inclusion of categories i: ¥ C Z, where ¥ is the
skeleton of finite sets (of the type n, n > 0) and bijections.
If Z, € Ch*, then

i\(Z.)(m) = colimj(n)mZe(n) = @ K{Z(n,m)} ®k(z,] Ze(n).
n>0

A typical example is FZ(C,) = i FX(C.) with

FE(C.)(m) = 0 m#m,
() {@znck, mEn

In this case:
Lemma: For all n > 0 and all chain complexes C,:

hocolimzFZ(C,) ~ C,.
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Can we describe hocolimziZ, in general?

Lemma: The categories C(m) := m | Z form an operad in the
category of small categories.

Sketch of proof: The right-X,, action on C(m) is defined by
precomposition.

Let f: m — n and g;: k; — n; be objects of C(m) and C(k;)
respectively.

We define the operadic composition functor

m

v: C(m) x Clky) x ... x Clkm) = CO_ ki)
i=1
on objects as

’y(f; 81, .- ,gm) = (é'ffl(l) U...u g'ffl(n)) o f(kl, RN km).
Here,
" idi, if F1(j) =@,
&) =

g, iff(l)=j.
The identity 1 € C(1) is then defined to be id;.

O
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Corollary: The sequence (N(m | Z))m>0 forms an operad in the

category of simplicial sets and (k{N(m | Z)})m>0 forms an operad

in the category of simplicial modules.
The associated chain complexes O(m) := C.(k{N(m | Z)}) form
an E..-operad in the category of chain complexes.

Lemma: Let C. € Ch>. Then

hocolimzi C. = @5 O(m) ®sx,, Cu(m).

m>0

Sketch of Proof:
Note that by definition we get hocolimzi(Cy)p,q =

)

Dir,..1a1enz, 1(Co)(sh) = DBy, ajenz, KZ(I(=), sh)} @5 Cp.

This is isomorphic to

P K{N(i(m) L T)g} @5, Co(m).

m>0
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For comonoids we need the following observation:

Lemma: For every m > 0 and every pair of numbers (p, g) with
p -+ q= mthereis a >, X ¥ 4-equivariant map

VYpq: O(m) — O(p) ® O(q). (1)

Theorem: If X, is a cocommutative comonoid in Ch™, then i(Xe)
is a cocommutative comonoid in Z-chain complexes and
hocolimzi(X,) is an E, differential graded coalgebra.

The diagonal on X, induces
hocolimz(i (X)) — hocolimz(ii(X. ® X.)).
The latter is

P o(m) @x,, (X. © X.)(m)

m>0
=P o(m) ez, ( P KZml Gx,xr,) Xe(p) ® X.(q))
m>0 p+q=m

>~ @ @ O(m) ®k[)jp><zq] X*(P) & X*(q)'

m>0 p+q=m
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We can use the maps from (1) to get a coproduct.

Possible models?
Let X be a simplicial set and k a commutative ring.
Rough idea: Use

k{Xp} = k{Xe} @a k{A([p], —)}

and find a model of k{A([e], —)} in cosimplicial cocommutative
Z-chain coalgebras...
Suggestions?



