Models for spaces in \mathcal{I} -chain complexes

Birgit Richter

Purdue Topology Seminar, 27th of April 2022

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type. Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type. Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case) Sullivan: $A^*_{PL}(X)$; a strictly dg commutative model for the cochains of the space X.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.

Quillen: cocommutative dg coalgebras, Lie algebras,...

(simply-connected case)

Sullivan: $A^*_{PL}(X)$; a strictly dg commutative model for the cochains of the space X.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.

Quillen: cocommutative dg coalgebras, Lie algebras,...

(simply-connected case)

Sullivan: $A^*_{PL}(X)$; a strictly dg commutative model for the cochains of the space X.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras. Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞} -structure on the cochains!

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring?

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Here, ${\cal I}$ is the (skeleton) of the category of finite sets and injective functions.

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Here, ${\cal I}$ is the (skeleton) of the category of finite sets and injective functions.

What about the other models?

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Here, ${\cal I}$ is the (skeleton) of the category of finite sets and injective functions.

What about the other models? So what about differential graded cocommutative coalgebras and Lie-algebras?

1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit

- 1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit
- 2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):

- 1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit
- 2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):
 - Norm maps

- 1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit
- 2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):
 - Norm maps
 - Künneth formulas

- 1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit
- 2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):
 - Norm maps
 - Künneth formulas
- 3. Importing cocommutative coalgebras from symmetric sequences

- 1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit
- 2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):
 - Norm maps
 - Künneth formulas
- 3. Importing cocommutative coalgebras from symmetric sequences
- 4. Behaviour of homotopy colimits

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m. Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =:$ n for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$.

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

 $(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p} \sqcup \mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

$$(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p} \sqcup \mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$$

The unit is 1 with $1(n) := S^0$ for any $n \ge 0$.

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

$$(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p} \sqcup \mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$$

The unit is 1 with $1(n) := S^0$ for any $n \ge 0$.

Definition: Commutative \mathcal{I} -chain algebras are commutative monoids in $Ch^{\mathcal{I}}$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

As 0 is initial, $F_0^{\mathcal{I}}(C_*)$ is the constant \mathcal{I} -chain complex on C_* and $F_0^{\mathcal{I}}(S^0) = \mathbb{1}$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathrm{Ch} \to \mathrm{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

As 0 is initial, $F_0^{\mathcal{I}}(C_*)$ is the constant \mathcal{I} -chain complex on C_* and $F_0^{\mathcal{I}}(S^0) = \mathbb{1}$.

For any \mathcal{I} -chain complex X_* , the free commutative \mathcal{I} -chain algebra on X_* is

$$S^{\mathcal{I}}(X_*) = \bigoplus_{n \ge 0} X_*^{\boxtimes n} / \Sigma_n.$$
The homotopy colimit, $\text{hocolim}_{\mathcal{I}}X_*$, of an \mathcal{I} -chain complex X_* is the total complex associated to the bicomplex whose bidegree (p, q)-part is

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

The homotopy colimit, $hocolim_{\mathcal{I}}X_*$, of an \mathcal{I} -chain complex X_* is the total complex associated to the bicomplex whose bidegree (p, q)-part is

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles operad.

The homotopy colimit, $\text{hocolim}_{\mathcal{I}}X_*$, of an \mathcal{I} -chain complex X_* is the total complex associated to the bicomplex whose bidegree (p, q)-part is

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles operad.

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, what can we say about hocolim $_{\mathcal{I}}C_*$?

The homotopy colimit, $hocolim_{\mathcal{I}}X_*$, of an \mathcal{I} -chain complex X_* is the total complex associated to the bicomplex whose bidegree (p, q)-part is

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles operad.

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, what can we say about hocolim $_{\mathcal{I}}C_*$?

In general: not much, because hocolim₁ is lax monoidal, but not lax *symmetric* (co)monoidal!

$$S'_*(C_*) = \bigoplus_{n \ge 0} (C_*^{\otimes n})^{\Sigma_n}.$$

$$S'_*(C_*) = \bigoplus_{n \ge 0} (C_*^{\otimes n})^{\Sigma_n}.$$

Then one uses that rationally the norm map

$$N_n: C^{\otimes n}_*/\Sigma_n \to (C^{\otimes n}_*)^{\Sigma_n}$$

is an equivalence in order to determine the homotopy type.

$$S'_*(C_*) = \bigoplus_{n \ge 0} (C_*^{\otimes n})^{\Sigma_n}.$$

Then one uses that rationally the norm map

$$N_n: C^{\otimes n}_*/\Sigma_n \to (C^{\otimes n}_*)^{\Sigma_n}$$

is an equivalence in order to determine the homotopy type.

In the category of symmetric sequences of chain complexes, Ch^{Σ} , the norm map *is* an iso on reduced objects [Stover, Fresse].

$$S'_*(C_*) = \bigoplus_{n \ge 0} (C_*^{\otimes n})^{\Sigma_n}.$$

Then one uses that rationally the norm map

$$N_n: C^{\otimes n}_*/\Sigma_n \to (C^{\otimes n}_*)^{\Sigma_n}$$

is an equivalence in order to determine the homotopy type.

In the category of symmetric sequences of chain complexes, Ch^{Σ} , the norm map *is* an iso on reduced objects [Stover, Fresse]. **Theorem** There are reduced $X_* \in Ch^{\mathcal{I}}$ (i.e., $X_*(0) = 0$) such that

$$N_n: X_*^{\boxtimes n} / \Sigma_n \to (X_*^{\boxtimes n})^{\Sigma_n}$$

is not an isomorphism.

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels.

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \overline{F} .

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \overline{F} . All structure maps in positive degrees induce the identity on \overline{F} .

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \overline{F} . All structure maps in positive degrees induce the identity on \overline{F} . If we consider $(\overline{F} \boxtimes \overline{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \to 3$ of $\overline{F}(p) \otimes \overline{F}(q)$.

Consider the projection $\pi\colon F_0^\mathcal{I}(k) \to I^0(k)$ where $I^0(k)(\mathsf{n})$ is

non-trivial for n = 0 with value k and trivial in all other levels.

The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \overline{F} . All structure maps in positive degrees induce the identity on \overline{F} .

If we consider $(\overline{F} \boxtimes \overline{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \to 3$ of $\overline{F}(p) \otimes \overline{F}(q)$.

As the functor is reduced, it suffices to consider $2 \ge p, q \ge 1$. The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative $id \otimes 1 \otimes 1$ in this tensor product.

Consider the projection $\pi\colon F_0^\mathcal{I}(k) \to I^0(k)$ where $I^0(k)(\mathsf{n})$ is

non-trivial for n = 0 with value k and trivial in all other levels.

The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \overline{F} . All structure maps in positive degrees induce the identity on \overline{F} .

If we consider $(\overline{F} \boxtimes \overline{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \to 3$ of $\overline{F}(p) \otimes \overline{F}(q)$.

As the functor is reduced, it suffices to consider $2 \ge p, q \ge 1$. The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative $id \otimes 1 \otimes 1$ in this tensor product.

There is a zigzag of equivalences coming from the relations for forming the colimit for \boxtimes that says that $\mathrm{id} \otimes 1 \otimes 1$ represents the same element as $(\mathrm{id} \otimes 1 \otimes 1).(1,2)$.

Consider the projection $\pi\colon F_0^\mathcal{I}(k) \to I^0(k)$ where $I^0(k)(\mathsf{n})$ is

non-trivial for n = 0 with value k and trivial in all other levels.

The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \overline{F} . All structure maps in positive degrees induce the identity on \overline{F} .

If we consider $(\overline{F} \boxtimes \overline{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \to 3$ of $\overline{F}(p) \otimes \overline{F}(q)$.

As the functor is reduced, it suffices to consider $2 \ge p, q \ge 1$. The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative $id \otimes 1 \otimes 1$ in this tensor product.

There is a zigzag of equivalences coming from the relations for forming the colimit for \boxtimes that says that $\mathrm{id} \otimes 1 \otimes 1$ represents the same element as $(\mathrm{id} \otimes 1 \otimes 1).(1,2)$.

So this element is invariant under the Σ_2 -action, but it is not in the image of the norm map, unless 2 is invertible in k.

$$N_n \colon X^{\boxtimes n}_* / \Sigma_n(\mathsf{m}) \to (X^{\boxtimes n}_*)^{\Sigma_n}(\mathsf{m})$$

is an isomorphism for all *m*.

$$N_n \colon X^{\boxtimes n}_* / \Sigma_n(\mathsf{m}) \to (X^{\boxtimes n}_*)^{\Sigma_n}(\mathsf{m})$$

is an isomorphism for all *m*.

For any chain complex C_* , for every m and for every $p \ge 1$ the norm $N_n = \sum_{\sigma \in \Sigma_n} \sigma \in \mathbb{Z}[\Sigma_n]$ induces an isomorphism of chain complexes

$$N_n: (F_p^{\mathcal{I}}(C_*)^{\boxtimes n}/\Sigma_n)(\mathsf{m}) \to ((F_p^{\mathcal{I}}(C_*)^{\boxtimes n})^{\Sigma_n}(\mathsf{m}).$$

$$N_n \colon X^{\boxtimes n}_* / \Sigma_n(\mathsf{m}) \to (X^{\boxtimes n}_*)^{\Sigma_n}(\mathsf{m})$$

is an isomorphism for all *m*.

For any chain complex C_* , for every m and for every $p \ge 1$ the norm $N_n = \sum_{\sigma \in \Sigma_n} \sigma \in \mathbb{Z}[\Sigma_n]$ induces an isomorphism of chain complexes

$$N_n \colon (F_p^{\mathcal{I}}(C_*)^{\boxtimes n} / \Sigma_n)(\mathsf{m}) \to ((F_p^{\mathcal{I}}(C_*)^{\boxtimes n})^{\Sigma_n}(\mathsf{m}).$$

So $F_p^{\mathcal{I}}(C_*)$ is Tate-trivial for all $p \geq 1$.

$$N_n \colon X^{\boxtimes n}_* / \Sigma_n(\mathsf{m}) \to (X^{\boxtimes n}_*)^{\Sigma_n}(\mathsf{m})$$

is an isomorphism for all *m*.

For any chain complex C_* , for every m and for every $p \ge 1$ the norm $N_n = \sum_{\sigma \in \Sigma_n} \sigma \in \mathbb{Z}[\Sigma_n]$ induces an isomorphism of chain complexes

$$N_n: (F_p^{\mathcal{I}}(C_*)^{\boxtimes n}/\Sigma_n)(\mathsf{m}) \to ((F_p^{\mathcal{I}}(C_*)^{\boxtimes n})^{\Sigma_n}(\mathsf{m}).$$

So $F_p^{\mathcal{I}}(C_*)$ is Tate-trivial for all $p \geq 1$.

This follows from the fact that $(F_p^{\mathcal{I}}(C_*))^{\boxtimes n} \cong F_{pn}^{\mathcal{I}}(C_*^{\otimes n})$ and that the Σ_n -action is free on $\mathcal{I}(pn,m)$ as long as $p \ge 1$.

$$N_n \colon X^{\boxtimes n}_* / \Sigma_n(\mathsf{m}) \to (X^{\boxtimes n}_*)^{\Sigma_n}(\mathsf{m})$$

is an isomorphism for all *m*.

For any chain complex C_* , for every m and for every $p \ge 1$ the norm $N_n = \sum_{\sigma \in \Sigma_n} \sigma \in \mathbb{Z}[\Sigma_n]$ induces an isomorphism of chain complexes

$$N_n: (F_p^{\mathcal{I}}(C_*)^{\boxtimes n}/\Sigma_n)(\mathsf{m}) \to ((F_p^{\mathcal{I}}(C_*)^{\boxtimes n})^{\Sigma_n}(\mathsf{m}).$$

So $F_p^{\mathcal{I}}(C_*)$ is Tate-trivial for all $p \ge 1$.

This follows from the fact that $(F_p^{\mathcal{I}}(C_*))^{\boxtimes n} \cong F_{pn}^{\mathcal{I}}(C_*^{\otimes n})$ and that the Σ_n -action is free on $\mathcal{I}(pn,m)$ as long as $p \ge 1$. Note that this implies that the free commutative monoid on $F_p^{\mathcal{I}}(C_*)$ is isomorphic to the free divided power algebra and the cofree cocommutative coalgebra generated on $F_p^{\mathcal{I}}(C_*)$.

$$(H_*X_*)(n) := H_*(X_*(n)).$$

$$(H_*X_*)(n) := H_*(X_*(n)).$$

This can be considered as an $\mathcal I\text{-}\mathsf{chain}$ complex with trivial differential.

$$(H_*X_*)(n) := H_*(X_*(n)).$$

This can be considered as an \mathcal{I} -chain complex with trivial differential.

For two $X_*, Y_* \in Ch^{\mathcal{I}}$ there is a Künneth map

 $H_*X_* \boxtimes H_*Y_* \to H_*(X_* \boxtimes Y_*).$

$$(H_*X_*)(n) := H_*(X_*(n)).$$

This can be considered as an \mathcal{I} -chain complex with trivial differential.

For two $X_*, Y_* \in \mathsf{Ch}^\mathcal{I}$ there is a Künneth map

$$H_*X_* \boxtimes H_*Y_* \to H_*(X_* \boxtimes Y_*).$$

Proposition Even if we work over a field, the Künneth map is in general *not* an isomorphism.

$$(H_*X_*)(n) := H_*(X_*(n)).$$

This can be considered as an $\mathcal I\text{-chain}$ complex with trivial differential. ${\mathcal T}$

For two $X_*, Y_* \in Ch^{\mathcal{I}}$ there is a Künneth map

$$H_*X_* \boxtimes H_*Y_* \to H_*(X_* \boxtimes Y_*).$$

Proposition Even if we work over a field, the Künneth map is in general *not* an isomorphism.

Again, we provide a concrete counterexample.

$$\operatorname{Sym}^{\mathcal{I}}(C_*)(\mathsf{n}) := C_*^{\otimes n}.$$

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \rightarrow C_*$ representing c_0 .

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \to C_*$ representing c_0 . For $C_* = D^1$ we consider $H_* \text{Sym}^{\mathcal{I}}(D^1) \boxtimes H_* \text{Sym}^{\mathcal{I}}(D^1)(1)$.

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \to C_*$ representing c_0 . For $C_* = D^1$ we consider $H_* \operatorname{Sym}^{\mathcal{I}}(D^1) \boxtimes H_* \operatorname{Sym}^{\mathcal{I}}(D^1)(1)$. This is trivial, because $H_* D^1 = 0$.

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \to C_*$ representing c_0 . For $C_* = D^1$ we consider $H_* \text{Sym}^{\mathcal{I}}(D^1) \boxtimes H_* \text{Sym}^{\mathcal{I}}(D^1)(1)$. This is trivial, because $H_*D^1 = 0$.

On the other hand, the colimit for $\operatorname{Sym}^{\mathcal{I}}(D^1) \boxtimes \operatorname{Sym}^{\mathcal{I}}(D^1)(1)$ is the pushout

$$S^0 \otimes S^0 \longrightarrow S^0 \otimes D^1$$

$$\downarrow$$

$$D^1 \otimes S^0$$

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \to C_*$ representing c_0 . For $C_* = D^1$ we consider $H_* \text{Sym}^{\mathcal{I}}(D^1) \boxtimes H_* \text{Sym}^{\mathcal{I}}(D^1)(1)$. This is trivial, because $H_*D^1 = 0$.

On the other hand, the colimit for $\operatorname{Sym}^{\mathcal{I}}(D^1) \boxtimes \operatorname{Sym}^{\mathcal{I}}(D^1)(1)$ is the pushout

$$S^{0} \otimes S^{0} \longrightarrow S^{0} \otimes D^{1}$$

$$\downarrow$$

$$D^{1} \otimes S^{0}$$

This results in $D^1 \oplus_{S^0} D^1$ which has nontrivial H_1 .

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections.

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections. If $Z_* \in Ch^{\Sigma}$, then

$$i_!(Z_*)(\mathsf{m}) = \operatorname{colim}_{i(\mathsf{n})\downarrow\mathsf{m}} Z_*(\mathsf{n}) \cong \bigoplus_{n\geq 0} k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_{k[\Sigma_n]} Z_*(\mathsf{n}).$$

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections. If $Z_* \in Ch^{\Sigma}$, then

$$i_!(Z_*)(\mathsf{m}) = \operatorname{colim}_{i(\mathsf{n})\downarrow\mathsf{m}} Z_*(\mathsf{n}) \cong \bigoplus_{n\geq 0} k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_{k[\Sigma_n]} Z_*(\mathsf{n}).$$

A typical example is $F_n^\mathcal{I}(C_*) = i_! F_n^{\Sigma}(C_*)$ with

$$F_n^{\Sigma}(C_*)(\mathsf{m}) = \begin{cases} 0, & m \neq n, \\ \bigoplus_{\Sigma_n} C_*, & m = n. \end{cases}$$
There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections. If $Z_* \in Ch^{\Sigma}$, then

$$i_!(Z_*)(\mathsf{m}) = \operatorname{colim}_{i(\mathsf{n})\downarrow\mathsf{m}} Z_*(\mathsf{n}) \cong \bigoplus_{n\geq 0} k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_{k[\Sigma_n]} Z_*(\mathsf{n}).$$

A typical example is $F_n^{\mathcal{I}}(C_*) = i_! F_n^{\Sigma}(C_*)$ with

$$F_n^{\Sigma}(C_*)(\mathsf{m}) = \begin{cases} 0, & m \neq n, \\ \bigoplus_{\Sigma_n} C_*, & m = n. \end{cases}$$

In this case:

Lemma: For all $n \ge 0$ and all chain complexes C_* :

hocolim_{\mathcal{I}} $F_n^{\mathcal{I}}(C_*) \simeq C_*$.

Can we describe hocolim_{\mathcal{I}} $i_!Z_*$ in general?

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

We define the operadic composition functor

$$\gamma \colon C(m) \times C(k_1) \times \ldots \times C(k_m) \to C(\sum_{i=1}^m k_i)$$

on objects as

$$\gamma(f;g_1,\ldots,g_m):=(\tilde{g}_{f^{-1}(1)}\sqcup\ldots\sqcup\tilde{g}_{f^{-1}(n)})\circ f(\mathsf{k}_1,\ldots,\mathsf{k}_m).$$

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

We define the operadic composition functor

$$\gamma \colon C(m) \times C(k_1) \times \ldots \times C(k_m) \to C(\sum_{i=1}^m k_i)$$

on objects as

$$\gamma(f; g_1, \ldots, g_m) := (\widetilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \widetilde{g}_{f^{-1}(n)}) \circ f(\mathsf{k}_1, \ldots, \mathsf{k}_m).$$

Here,

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

We define the operadic composition functor

$$\gamma \colon C(m) \times C(k_1) \times \ldots \times C(k_m) \to C(\sum_{i=1}^m k_i)$$

on objects as

$$\gamma(f; g_1, \ldots, g_m) := (\widetilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \widetilde{g}_{f^{-1}(n)}) \circ f(\mathsf{k}_1, \ldots, \mathsf{k}_m).$$

Here,

$$\widetilde{g}_{f^{-1}(j)} = \begin{cases} \operatorname{id}_1, & \text{if } f^{-1}(j) = \emptyset, \\ g_\ell, & \text{if } f(\ell) = j. \end{cases}$$

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

We define the operadic composition functor

$$\gamma \colon C(m) \times C(k_1) \times \ldots \times C(k_m) \to C(\sum_{i=1}^m k_i)$$

on objects as

$$\gamma(f; g_1, \ldots, g_m) := (\widetilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \widetilde{g}_{f^{-1}(n)}) \circ f(\mathsf{k}_1, \ldots, \mathsf{k}_m).$$

Here,

$$\widetilde{g}_{f^{-1}(j)} = egin{cases} \operatorname{id}_1, & ext{if } f^{-1}(j) = arnothing, \ g_\ell, & ext{if } f(\ell) = j. \end{cases}$$

The identity $1 \in C(1)$ is then defined to be id_1 .

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \ge 0}$ forms an operad in the category of simplicial sets

The associated chain complexes $O(m) := C_*(k\{N(m \downarrow I)\})$ form

an E_{∞} -operad in the category of chain complexes.

The associated chain complexes $O(m) := C_*(k\{N(m \downarrow I)\})$ form an E_{∞} -operad in the category of chain complexes.

Lemma: Let $C_* \in Ch^{\Sigma}$.

The associated chain complexes $O(m) := C_*(k\{N(m \downarrow I)\})$ form an E_{∞} -operad in the category of chain complexes.

Lemma: Let $C_* \in Ch^{\Sigma}$. Then

hocolim_{$$\mathcal{I}$$} $i_! C_* \cong \bigoplus_{m \ge 0} O(m) \otimes_{\Sigma_m} C_*(m).$

The associated chain complexes $O(m) := C_*(k\{N(m \downarrow I)\})$ form an E_{∞} -operad in the category of chain complexes.

Lemma: Let $C_* \in Ch^{\Sigma}$. Then

hocolim_{$$\mathcal{I}$$} $i_! C_* \cong \bigoplus_{m \ge 0} O(m) \otimes_{\Sigma_m} C_*(m).$

Sketch of Proof:

Note that by definition we get hocolim_{*I*}*i*₁(*C*_{*})_{*p*,*q*} = $\bigoplus_{[f_q|...|f_1] \in NI_q} i_!(C_p)(sf_1) \cong \bigoplus_{[f_q|...|f_1] \in NI_q} k\{I(i(-), sf_1)\} \otimes_{\Sigma} C_p.$

The associated chain complexes $O(m) := C_*(k\{N(m \downarrow I)\})$ form an E_{∞} -operad in the category of chain complexes.

Lemma: Let $C_* \in Ch^{\Sigma}$. Then

hocolim_{$$\mathcal{I}$$} $i_! C_* \cong \bigoplus_{m \ge 0} O(m) \otimes_{\Sigma_m} C_*(m).$

Sketch of Proof:

Note that by definition we get $\operatorname{hocolim}_{\mathcal{I}} i_!(C_*)_{p,q} = \bigoplus_{[f_q|\ldots|f_1]\in N\mathcal{I}_q} i_!(C_p)(sf_1) \cong \bigoplus_{[f_q|\ldots|f_1]\in N\mathcal{I}_q} k\{\mathcal{I}(i(-), sf_1)\} \otimes_{\Sigma} C_p.$ This is isomorphic to

$$\bigoplus_{m\geq 0} k\{N(i(\mathsf{m})\downarrow \mathcal{I})_q\} \otimes_{\Sigma_m} C_p(\mathsf{m}).$$

Lemma: For every $m \ge 0$ and every pair of numbers (p, q) with p + q = m there is a $\sum_{p} \times \sum_{q}$ -equivariant map

$$\psi_{p,q}\colon O(m)\to O(p)\otimes O(q). \tag{1}$$

Lemma: For every $m \ge 0$ and every pair of numbers (p, q) with p + q = m there is a $\Sigma_p \times \Sigma_q$ -equivariant map

$$\psi_{p,q} \colon O(m) \to O(p) \otimes O(q).$$
 (1)

Theorem: If X_* is a cocommutative comonoid in Ch^{Σ} , then $i_!(X_*)$ is a cocommutative comonoid in \mathcal{I} -chain complexes and hocolim $\mathcal{I}i_!(X_*)$ is an E_{∞} differential graded coalgebra.

Lemma: For every $m \ge 0$ and every pair of numbers (p, q) with p + q = m there is a $\Sigma_p \times \Sigma_q$ -equivariant map

$$\psi_{p,q} \colon O(m) \to O(p) \otimes O(q).$$
 (1)

Theorem: If X_* is a cocommutative comonoid in Ch^{Σ} , then $i_!(X_*)$ is a cocommutative comonoid in \mathcal{I} -chain complexes and hocolim $_{\mathcal{I}}i_!(X_*)$ is an E_{∞} differential graded coalgebra.

The diagonal on X_* induces

 $\operatorname{hocolim}_{\mathcal{I}}(i_!(X_*)) \to \operatorname{hocolim}_{\mathcal{I}}(i_!(X_* \odot X_*)).$

Lemma: For every $m \ge 0$ and every pair of numbers (p, q) with p + q = m there is a $\Sigma_p \times \Sigma_q$ -equivariant map

$$\psi_{p,q} \colon O(m) \to O(p) \otimes O(q).$$
 (1)

Theorem: If X_* is a cocommutative comonoid in Ch^{Σ} , then $i_!(X_*)$ is a cocommutative comonoid in \mathcal{I} -chain complexes and hocolim_{\mathcal{I}} $i_!(X_*)$ is an E_{∞} differential graded coalgebra.

The diagonal on X_* induces

$$\operatorname{hocolim}_{\mathcal{I}}(i_!(X_*)) \to \operatorname{hocolim}_{\mathcal{I}}(i_!(X_* \odot X_*)).$$

The latter is

$$\begin{split} &\bigoplus_{m\geq 0} O(m) \otimes_{\Sigma_m} (X_* \odot X_*)(\mathsf{m}) \\ &= \bigoplus_{m\geq 0} O(m) \otimes_{\Sigma_m} (\bigoplus_{p+q=m} k[\Sigma_m] \otimes_{k[\Sigma_p \times \Sigma_q]} X_*(\mathsf{p}) \otimes X_*(\mathsf{q})) \\ &\cong \bigoplus_{m\geq 0} \bigoplus_{p+q=m} O(m) \otimes_{k[\Sigma_p \times \Sigma_q]} X_*(\mathsf{p}) \otimes X_*(\mathsf{q}). \end{split}$$

Possible models? Let X be a simplicial set and k a commutative ring.

Possible models? Let X be a simplicial set and k a commutative ring. Rough idea: Use

$$k\{X_p\} \cong k\{X_\bullet\} \otimes_\Delta k\{\Delta([p], -)\}$$

Possible models? Let X be a simplicial set and k a commutative ring. Rough idea: Use

$$k\{X_p\} \cong k\{X_{\bullet}\} \otimes_{\Delta} k\{\Delta([p], -)\}$$

and find a model of $k\{\Delta([\bullet], -)\}$ in cosimplicial cocommutative \mathcal{I} -chain coalgebras...

Possible models? Let X be a simplicial set and k a commutative ring. Rough idea: Use

$$k\{X_p\} \cong k\{X_{\bullet}\} \otimes_{\Delta} k\{\Delta([p], -)\}$$

and find a model of $k\{\Delta([\bullet], -)\}$ in cosimplicial cocommutative \mathcal{I} -chain coalgebras...

Suggestions?