Models for spaces in \mathcal{I}-chain complexes

Birgit Richter

Purdue Topology Seminar, 27th of April 2022

Classical setting

Classical setting

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Classical setting

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.

Classical setting

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.
Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)

Classical setting

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.
Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\mathrm{PL}}^{*}(X)$; a strictly dg commutative model for the cochains of the space X.

Classical setting

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.
Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\mathrm{PL}}^{*}(X)$; a strictly dg commutative model for the cochains of the space X.
Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞}-algebras.

Classical setting

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.
Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\mathrm{PL}}^{*}(X)$; a strictly dg commutative model for the cochains of the space X.
Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞}-algebras.
Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞}-structure on the cochains!

A strictly commutative model

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $C^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $C^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?
Yes!

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $C^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?
Yes!
Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $C^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?
Yes!
Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto C^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $C^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?
Yes!
Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto C^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.
- Two nilpotent spaces X, Y of finite type are weakly equivalent iff $A^{\mathcal{I}}(X ; \mathbb{Z})$ and $A^{\mathcal{I}}(Y ; \mathbb{Z})$ are weakly equivalent as commutative \mathcal{I}-chain algebras.

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $C^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?
Yes!
Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto C^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.
- Two nilpotent spaces X, Y of finite type are weakly equivalent iff $A^{\mathcal{I}}(X ; \mathbb{Z})$ and $A^{\mathcal{I}}(Y ; \mathbb{Z})$ are weakly equivalent as commutative \mathcal{I}-chain algebras.
Here, \mathcal{I} is the (skeleton) of the category of finite sets and injective functions.

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $C^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?
Yes!
Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto C^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.
- Two nilpotent spaces X, Y of finite type are weakly equivalent iff $A^{\mathcal{I}}(X ; \mathbb{Z})$ and $A^{\mathcal{I}}(Y ; \mathbb{Z})$ are weakly equivalent as commutative \mathcal{I}-chain algebras.
Here, \mathcal{I} is the (skeleton) of the category of finite sets and injective functions.
What about the other models?

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $C^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?
Yes!
Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto C^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.
- Two nilpotent spaces X, Y of finite type are weakly equivalent iff $A^{\mathcal{I}}(X ; \mathbb{Z})$ and $A^{\mathcal{I}}(Y ; \mathbb{Z})$ are weakly equivalent as commutative \mathcal{I}-chain algebras.
Here, \mathcal{I} is the (skeleton) of the category of finite sets and injective functions.
What about the other models? So what about differential graded cocommutative coalgebras and Lie-algebras?

Plan for today:

Plan for today:

1. Basics on \mathcal{I}-chains and their homotopy colimit

Plan for today:

1. Basics on \mathcal{I}-chains and their homotopy colimit
2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):

Plan for today:

1. Basics on \mathcal{I}-chains and their homotopy colimit
2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):

- Norm maps

Plan for today:

1. Basics on \mathcal{I}-chains and their homotopy colimit
2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):

- Norm maps
- Künneth formulas

Plan for today:

1. Basics on \mathcal{I}-chains and their homotopy colimit
2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):

- Norm maps
- Künneth formulas

3. Importing cocommutative coalgebras from symmetric sequences

Plan for today:

1. Basics on \mathcal{I}-chains and their homotopy colimit
2. Wishful thinking for a model structure on cocommutative coalgebras (à la Neisendorfer):

- Norm maps
- Künneth formulas

3. Importing cocommutative coalgebras from symmetric sequences
4. Behaviour of homotopy colimits

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$. The Day convolution product gives $\mathrm{Ch}^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I}-chain complexes X_{*}, Y_{*}

$$
\left(X_{*} \boxtimes Y_{*}\right)(\mathrm{n})=\operatorname{colim}_{\mathcal{I}(\mathrm{p} \sqcup \mathrm{q}, \mathrm{n})} X_{*}(\mathrm{p}) \otimes Y_{*}(\mathrm{q})
$$

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$. The Day convolution product gives $\mathrm{Ch}^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I}-chain complexes X_{*}, Y_{*}

$$
\left(X_{*} \boxtimes Y_{*}\right)(\mathrm{n})=\operatorname{colim}_{\mathcal{I}(\mathrm{p} \sqcup \mathrm{q}, \mathrm{n})} X_{*}(\mathrm{p}) \otimes Y_{*}(\mathrm{q})
$$

The unit is $\mathbb{1}$ with $\mathbb{1}(\mathrm{n}):=S^{0}$ for any $n \geq 0$.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$. The Day convolution product gives $\mathrm{Ch}^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I}-chain complexes X_{*}, Y_{*}

$$
\left(X_{*} \boxtimes Y_{*}\right)(\mathrm{n})=\operatorname{colim}_{\mathcal{I}(\mathrm{p} \sqcup \mathrm{q}, \mathrm{n})} X_{*}(\mathrm{p}) \otimes Y_{*}(\mathrm{q})
$$

The unit is $\mathbb{1}$ with $\mathbb{1}(n):=S^{0}$ for any $n \geq 0$.
Definition: Commutative \mathcal{I}-chain algebras are commutative monoids in $\mathrm{Ch}^{\mathcal{I}}$.

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.
These functors have left adjoints

$$
F_{n}^{\mathcal{I}}: \mathrm{Ch} \rightarrow \mathrm{Ch}^{\mathcal{I}}
$$

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.
These functors have left adjoints

$$
F_{n}^{\mathcal{I}}: \mathrm{Ch} \rightarrow \mathrm{Ch}^{\mathcal{I}}
$$

with

$$
F_{n}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{m})=\bigoplus_{\mathcal{I}(\mathrm{n}, \mathrm{~m})} C_{*} \cong k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k} C_{*} .
$$

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.
These functors have left adjoints

$$
F_{n}^{\mathcal{I}}: \mathrm{Ch} \rightarrow \mathrm{Ch}^{\mathcal{I}}
$$

with

$$
F_{n}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{m})=\bigoplus_{\mathcal{I}(\mathrm{n}, \mathrm{~m})} C_{*} \cong k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k} C_{*}
$$

As 0 is initial, $F_{0}^{\mathcal{I}}\left(C_{*}\right)$ is the constant \mathcal{I}-chain complex on C_{*} and $F_{0}^{\mathcal{I}}\left(S^{0}\right)=\mathbb{1}$.

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.
These functors have left adjoints

$$
F_{n}^{\mathcal{I}}: \mathrm{Ch} \rightarrow \mathrm{Ch}^{\mathcal{I}}
$$

with

$$
F_{n}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{m})=\bigoplus_{\mathcal{I}(\mathrm{n}, \mathrm{~m})} C_{*} \cong k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k} C_{*}
$$

As 0 is initial, $F_{0}^{\mathcal{I}}\left(C_{*}\right)$ is the constant \mathcal{I}-chain complex on C_{*} and $F_{0}^{\mathcal{I}}\left(S^{0}\right)=\mathbb{1}$.
For any \mathcal{I}-chain complex X_{*}, the free commutative \mathcal{I}-chain algebra on X_{*} is

$$
\mathrm{S}^{\mathcal{I}}\left(X_{*}\right)=\bigoplus_{n \geq 0} X_{*}^{\boxtimes n} / \Sigma_{n} .
$$

The homotopy colimit, hocolim $_{\mathcal{I}} X_{*}$, of an \mathcal{I}-chain complex X_{*} is the total complex associated to the bicomplex whose bidegree (p, q)-part is

$$
\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N_{q} \mathcal{I}} X_{p}\left(\operatorname{source}\left(f_{1}\right)\right)
$$

The homotopy colimit, hocolim $_{\mathcal{I}} X_{*}$, of an \mathcal{I}-chain complex X_{*} is the total complex associated to the bicomplex whose bidegree (p, q)-part is

$$
\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N_{q} \mathcal{I}} X_{p}\left(\operatorname{source}\left(f_{1}\right)\right)
$$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_{*} is a commutative \mathcal{I}-chain algebra, then hocolim $\mathcal{I} X_{*}$ is an algebra over the Barratt-Eccles operad.

The homotopy colimit, hocolim $_{\mathcal{I}} X_{*}$, of an \mathcal{I}-chain complex X_{*} is the total complex associated to the bicomplex whose bidegree (p, q)-part is

$$
\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N_{q} \mathcal{I}} X_{p}\left(\operatorname{source}\left(f_{1}\right)\right)
$$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_{*} is a commutative \mathcal{I}-chain algebra, then hocolim $\mathcal{I} X_{*}$ is an algebra over the Barratt-Eccles operad.

If C_{*} is a cocommutative comonoid in $\mathrm{Ch}^{\mathcal{I}}$, what can we say about hocolim \mathcal{I}_{*} ?

The homotopy colimit, hocolim $_{\mathcal{I}} X_{*}$, of an \mathcal{I}-chain complex X_{*} is the total complex associated to the bicomplex whose bidegree (p, q)-part is

$$
\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N_{q} \mathcal{I}} X_{p}\left(\operatorname{source}\left(f_{1}\right)\right)
$$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_{*} is a commutative \mathcal{I}-chain algebra, then hocolim $\mathcal{I} X_{*}$ is an algebra over the Barratt-Eccles operad.

If C_{*} is a cocommutative comonoid in $\mathrm{Ch}^{\mathcal{I}}$, what can we say about hocolim $\mathcal{I}_{\mathcal{I}} \mathcal{C}^{\text {? }}$
In general: not much, because hocolim, is lax monoidal, but not lax symmetric (co)monoidal!

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via \sum-invariants:

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via \sum-invariants:

$$
S_{*}^{\prime}\left(C_{*}\right)=\bigoplus_{n \geq 0}\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via Σ-invariants:

$$
S_{*}^{\prime}\left(C_{*}\right)=\bigoplus_{n \geq 0}\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

Then one uses that rationally the norm map

$$
N_{n}: C_{*}^{\otimes n} / \Sigma_{n} \rightarrow\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

is an equivalence in order to determine the homotopy type.

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via Σ-invariants:

$$
S_{*}^{\prime}\left(C_{*}\right)=\bigoplus_{n \geq 0}\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}} .
$$

Then one uses that rationally the norm map

$$
N_{n}: C_{*}^{\otimes n} / \Sigma_{n} \rightarrow\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

is an equivalence in order to determine the homotopy type.
In the category of symmetric sequences of chain complexes, Ch^{Σ}, the norm map is an iso on reduced objects [Stover, Fresse].

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via Σ-invariants:

$$
S_{*}^{\prime}\left(C_{*}\right)=\bigoplus_{n \geq 0}\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}} .
$$

Then one uses that rationally the norm map

$$
N_{n}: C_{*}^{\otimes n} / \Sigma_{n} \rightarrow\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

is an equivalence in order to determine the homotopy type.
In the category of symmetric sequences of chain complexes, Ch^{Σ}, the norm map is an iso on reduced objects [Stover, Fresse].
Theorem There are reduced $X_{*} \in \mathrm{Ch}^{\mathcal{I}}$ (i.e., $X_{*}(0)=0$) such that

$$
N_{n}: X_{*}^{\boxtimes n} / \Sigma_{n} \rightarrow\left(X_{*}^{\boxtimes n}\right)^{\Sigma_{n}}
$$

is not an isomorphism.

A counterexample

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.
If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \rightarrow 3$ of $\bar{F}(\mathrm{p}) \otimes \bar{F}(\mathrm{q})$.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.
If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category
$\mathcal{I} \sqcup \mathcal{I} \rightarrow 3$ of $\bar{F}(\mathrm{p}) \otimes \bar{F}(\mathrm{q})$.
As the functor is reduced, it suffices to consider $2 \geq p, q \geq 1$. The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative id $\otimes 1 \otimes 1$ in this tensor product.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.
If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category
$\mathcal{I} \sqcup \mathcal{I} \rightarrow 3$ of $\bar{F}(\mathrm{p}) \otimes \bar{F}(\mathrm{q})$.
As the functor is reduced, it suffices to consider $2 \geq p, q \geq 1$. The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative id $\otimes 1 \otimes 1$ in this tensor product.
There is a zigzag of equivalences coming from the relations for forming the colimit for \boxtimes that says that id $\otimes 1 \otimes 1$ represents the same element as $(\mathrm{id} \otimes 1 \otimes 1) .(1,2)$.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.
If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category
$\mathcal{I} \sqcup \mathcal{I} \rightarrow 3$ of $\bar{F}(\mathrm{p}) \otimes \bar{F}(\mathrm{q})$.
As the functor is reduced, it suffices to consider $2 \geq p, q \geq 1$. The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative id $\otimes 1 \otimes 1$ in this tensor product.
There is a zigzag of equivalences coming from the relations for forming the colimit for \boxtimes that says that id $\otimes 1 \otimes 1$ represents the same element as $(\mathrm{id} \otimes 1 \otimes 1) .(1,2)$.
So this element is invariant under the Σ_{2}-action, but it is not in the image of the norm map, unless 2 is invertible in k.

Definition An \mathcal{I}-chain complex X_{*} is Tate trivial, if the norm map

$$
N_{n}: X_{*}^{\boxtimes n} / \Sigma_{n}(\mathrm{~m}) \rightarrow\left(X_{*}^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})
$$

is an isomorphism for all m.

Definition An \mathcal{I}-chain complex X_{*} is Tate trivial, if the norm map

$$
N_{n}: X_{*}^{\boxtimes n} / \Sigma_{n}(\mathrm{~m}) \rightarrow\left(X_{*}^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})
$$

is an isomorphism for all m.
For any chain complex C_{*}, for every m and for every $p \geq 1$ the norm $N_{n}=\sum_{\sigma \in \Sigma_{n}} \sigma \in \mathbb{Z}\left[\Sigma_{n}\right]$ induces an isomorphism of chain complexes

$$
N_{n}:\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n} / \Sigma_{n}\right)(\mathrm{m}) \rightarrow\left(\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})\right.
$$

Definition An \mathcal{I}-chain complex X_{*} is Tate trivial, if the norm map

$$
N_{n}: X_{*}^{\boxtimes n} / \Sigma_{n}(\mathrm{~m}) \rightarrow\left(X_{*}^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})
$$

is an isomorphism for all m.
For any chain complex C_{*}, for every m and for every $p \geq 1$ the norm $N_{n}=\sum_{\sigma \in \Sigma_{n}} \sigma \in \mathbb{Z}\left[\Sigma_{n}\right]$ induces an isomorphism of chain complexes

$$
N_{n}:\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n} / \Sigma_{n}\right)(\mathrm{m}) \rightarrow\left(\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})\right.
$$

So $F_{p}^{\mathcal{I}}\left(C_{*}\right)$ is Tate-trivial for all $p \geq 1$.

Definition An \mathcal{I}-chain complex X_{*} is Tate trivial, if the norm map

$$
N_{n}: X_{*}^{\boxtimes n} / \Sigma_{n}(\mathrm{~m}) \rightarrow\left(X_{*}^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})
$$

is an isomorphism for all m.
For any chain complex C_{*}, for every m and for every $p \geq 1$ the norm $N_{n}=\sum_{\sigma \in \Sigma_{n}} \sigma \in \mathbb{Z}\left[\Sigma_{n}\right]$ induces an isomorphism of chain complexes

$$
N_{n}:\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n} / \Sigma_{n}\right)(\mathrm{m}) \rightarrow\left(\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})\right.
$$

So $F_{p}^{\mathcal{I}}\left(C_{*}\right)$ is Tate-trivial for all $p \geq 1$.
This follows from the fact that $\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)\right)^{\boxtimes n} \cong F_{p n}^{\mathcal{I}}\left(C_{*}^{\otimes n}\right)$ and that the Σ_{n}-action is free on $\mathcal{I}(\mathrm{pn}, \mathrm{m})$ as long as $p \geq 1$.

Definition An \mathcal{I}-chain complex X_{*} is Tate trivial, if the norm map

$$
N_{n}: X_{*}^{\boxtimes n} / \Sigma_{n}(\mathrm{~m}) \rightarrow\left(X_{*}^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})
$$

is an isomorphism for all m.
For any chain complex C_{*}, for every m and for every $p \geq 1$ the norm $N_{n}=\sum_{\sigma \in \Sigma_{n}} \sigma \in \mathbb{Z}\left[\Sigma_{n}\right]$ induces an isomorphism of chain complexes

$$
N_{n}:\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n} / \Sigma_{n}\right)(\mathrm{m}) \rightarrow\left(\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m})\right.
$$

So $F_{p}^{\mathcal{I}}\left(C_{*}\right)$ is Tate-trivial for all $p \geq 1$.
This follows from the fact that $\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)\right)^{\boxtimes n} \cong F_{p n}^{\mathcal{I}}\left(C_{*}^{\otimes n}\right)$ and that the Σ_{n}-action is free on $\mathcal{I}(\mathrm{pn}, \mathrm{m})$ as long as $p \geq 1$. Note that this implies that the free commutative monoid on $F_{p}^{\mathcal{I}}\left(C_{*}\right)$ is isomorphic to the free divided power algebra and the cofree cocommutative coalgebra generated on $F_{p}^{\mathcal{I}}\left(C_{*}\right)$.

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

This can be considered as an \mathcal{I}-chain complex with trivial differential.

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

This can be considered as an \mathcal{I}-chain complex with trivial differential.
For two $X_{*}, Y_{*} \in \mathrm{Ch}^{\mathcal{I}}$ there is a Künneth map

$$
H_{*} X_{*} \boxtimes H_{*} Y_{*} \rightarrow H_{*}\left(X_{*} \boxtimes Y_{*}\right)
$$

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

This can be considered as an \mathcal{I}-chain complex with trivial differential.
For two $X_{*}, Y_{*} \in \mathrm{Ch}^{\mathcal{I}}$ there is a Künneth map

$$
H_{*} X_{*} \boxtimes H_{*} Y_{*} \rightarrow H_{*}\left(X_{*} \boxtimes Y_{*}\right)
$$

Proposition Even if we work over a field, the Künneth map is in general not an isomorphism.

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

This can be considered as an \mathcal{I}-chain complex with trivial differential.
For two $X_{*}, Y_{*} \in \mathrm{Ch}^{\mathcal{I}}$ there is a Künneth map

$$
H_{*} X_{*} \boxtimes H_{*} Y_{*} \rightarrow H_{*}\left(X_{*} \boxtimes Y_{*}\right)
$$

Proposition Even if we work over a field, the Künneth map is in general not an isomorphism.
Again, we provide a concrete counterexample.

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}.

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}. For $C_{*}=D^{1}$ we consider $H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$.

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}. For $C_{*}=D^{1}$ we consider $H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$. This is trivial, because $H_{*} D^{1}=0$.

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}.
For $C_{*}=D^{1}$ we consider $H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$.
This is trivial, because $H_{*} D^{1}=0$.
On the other hand, the colimit for $\operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$ is the pushout

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}.
For $C_{*}=D^{1}$ we consider $H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$.
This is trivial, because $H_{*} D^{1}=0$.
On the other hand, the colimit for $\operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$ is the pushout

This results in $D^{1} \oplus_{S^{0}} D^{1}$ which has nontrivial H_{1}.

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type $n, n \geq 0$) and bijections.

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type $n, n \geq 0$) and bijections. If $Z_{*} \in \mathrm{Ch}^{\Sigma}$, then

$$
i_{!}\left(Z_{*}\right)(\mathrm{m})=\operatorname{colim}_{i(\mathrm{n}) \downarrow \mathrm{m}} Z_{*}(\mathrm{n}) \cong \bigoplus_{n \geq 0} k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k\left[\Sigma_{n}\right]} Z_{*}(\mathrm{n}) .
$$

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type $n, n \geq 0$) and bijections. If $Z_{*} \in \mathrm{Ch}^{\Sigma}$, then

$$
i_{!}\left(Z_{*}\right)(\mathrm{m})=\operatorname{colim}_{i(\mathrm{n}) \downarrow \mathrm{m}} Z_{*}(\mathrm{n}) \cong \bigoplus_{n \geq 0} k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k\left[\Sigma_{n}\right]} Z_{*}(\mathrm{n}) .
$$

A typical example is $F_{n}^{\mathcal{I}}\left(C_{*}\right)=i_{i} F_{n}^{\Sigma}\left(C_{*}\right)$ with

$$
F_{n}^{\Sigma}\left(C_{*}\right)(m)= \begin{cases}0, & m \neq n \\ \bigoplus_{\Sigma_{n}} C_{*}, & m=n\end{cases}
$$

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type $n, n \geq 0$) and bijections. If $Z_{*} \in \mathrm{Ch}^{\Sigma}$, then

$$
i_{!}\left(Z_{*}\right)(\mathrm{m})=\operatorname{colim}_{i(\mathrm{n}) \downarrow \mathrm{m}} Z_{*}(\mathrm{n}) \cong \bigoplus_{n \geq 0} k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k\left[\Sigma_{n}\right]} Z_{*}(\mathrm{n}) .
$$

A typical example is $F_{n}^{\mathcal{I}}\left(C_{*}\right)=i_{i} F_{n}^{\Sigma}\left(C_{*}\right)$ with

$$
F_{n}^{\Sigma}\left(C_{*}\right)(\mathrm{m})= \begin{cases}0, & m \neq n \\ \bigoplus_{\Sigma_{n}} C_{*}, & m=n\end{cases}
$$

In this case:
Lemma: For all $n \geq 0$ and all chain complexes C_{*} :

$$
\operatorname{hocolim}_{\mathcal{I}} F_{n}^{\mathcal{I}}\left(C_{*}\right) \simeq C_{*} .
$$

Can we describe hocolim $i_{\mathcal{I}} i_{*}$ in general?

Can we describe hocolim $i_{\mathcal{I}} i_{Z_{*}}$ in general?
Lemma: The categories $C(m):=\mathrm{m} \downarrow \mathcal{I}$ form an operad in the category of small categories.

Can we describe hocolim $\mathcal{I}_{\mathcal{I}} Z_{*}$ in general?
Lemma: The categories $C(m):=\mathrm{m} \downarrow \mathcal{I}$ form an operad in the category of small categories.
Sketch of proof: The right- Σ_{m} action on $C(m)$ is defined by precomposition.

Can we describe hocolim $\mathcal{I}_{\mathcal{I}} Z_{*}$ in general?
Lemma: The categories $C(m):=\mathrm{m} \downarrow \mathcal{I}$ form an operad in the category of small categories.
Sketch of proof: The right- Σ_{m} action on $C(m)$ is defined by precomposition.
Let $f: \mathrm{m} \rightarrow \mathrm{n}$ and $g_{i}: \mathrm{k}_{i} \rightarrow \mathrm{n}_{i}$ be objects of $C(m)$ and $C\left(k_{i}\right)$ respectively.

Can we describe hocolim $i_{\mathcal{I}} Z_{*}$ in general?
Lemma: The categories $C(m):=\mathrm{m} \downarrow \mathcal{I}$ form an operad in the category of small categories.
Sketch of proof: The right- Σ_{m} action on $C(m)$ is defined by precomposition.
Let $f: \mathrm{m} \rightarrow \mathrm{n}$ and $g_{i}: \mathrm{k}_{i} \rightarrow \mathrm{n}_{i}$ be objects of $C(m)$ and $C\left(k_{i}\right)$ respectively.
We define the operadic composition functor

$$
\gamma: C(m) \times C\left(k_{1}\right) \times \ldots \times C\left(k_{m}\right) \rightarrow C\left(\sum_{i=1}^{m} k_{i}\right)
$$

on objects as

$$
\gamma\left(f ; g_{1}, \ldots, g_{m}\right):=\left(\tilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \tilde{g}_{f-1}(n)\right) \circ f\left(\mathrm{k}_{1}, \ldots, \mathrm{k}_{m}\right) .
$$

Can we describe hocolim $i_{\mathcal{I}} Z_{*}$ in general?
Lemma: The categories $C(m):=\mathrm{m} \downarrow \mathcal{I}$ form an operad in the category of small categories.
Sketch of proof: The right- Σ_{m} action on $C(m)$ is defined by precomposition.
Let $f: \mathrm{m} \rightarrow \mathrm{n}$ and $g_{i}: \mathrm{k}_{i} \rightarrow \mathrm{n}_{i}$ be objects of $C(m)$ and $C\left(k_{i}\right)$ respectively.
We define the operadic composition functor

$$
\gamma: C(m) \times C\left(k_{1}\right) \times \ldots \times C\left(k_{m}\right) \rightarrow C\left(\sum_{i=1}^{m} k_{i}\right)
$$

on objects as

$$
\gamma\left(f ; g_{1}, \ldots, g_{m}\right):=\left(\tilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \tilde{g}_{f-1}(n)\right) \circ f\left(\mathrm{k}_{1}, \ldots, \mathrm{k}_{m}\right) .
$$

Here,

Can we describe hocolim $i_{\mathcal{I}} Z_{*}$ in general?
Lemma: The categories $C(m):=\mathrm{m} \downarrow \mathcal{I}$ form an operad in the category of small categories.
Sketch of proof: The right- Σ_{m} action on $C(m)$ is defined by precomposition.
Let $f: \mathrm{m} \rightarrow \mathrm{n}$ and $g_{i}: \mathrm{k}_{i} \rightarrow \mathrm{n}_{i}$ be objects of $C(m)$ and $C\left(k_{i}\right)$ respectively.
We define the operadic composition functor

$$
\gamma: C(m) \times C\left(k_{1}\right) \times \ldots \times C\left(k_{m}\right) \rightarrow C\left(\sum_{i=1}^{m} k_{i}\right)
$$

on objects as

$$
\gamma\left(f ; g_{1}, \ldots, g_{m}\right):=\left(\tilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \tilde{g}_{f-1}(n)\right) \circ f\left(\mathrm{k}_{1}, \ldots, \mathrm{k}_{m}\right) .
$$

Here,

$$
\tilde{g}_{f-1}(j)= \begin{cases}\mathrm{id}_{1}, & \text { if } f^{-1}(j)=\varnothing \\ g_{\ell}, & \text { if } f(\ell)=j\end{cases}
$$

Can we describe hocolim $i_{\mathcal{I}} Z_{*}$ in general?
Lemma: The categories $C(m):=\mathrm{m} \downarrow \mathcal{I}$ form an operad in the category of small categories.
Sketch of proof: The right- Σ_{m} action on $C(m)$ is defined by precomposition.
Let $f: \mathrm{m} \rightarrow \mathrm{n}$ and $g_{i}: \mathrm{k}_{i} \rightarrow \mathrm{n}_{i}$ be objects of $C(m)$ and $C\left(k_{i}\right)$ respectively.
We define the operadic composition functor

$$
\gamma: C(m) \times C\left(k_{1}\right) \times \ldots \times C\left(k_{m}\right) \rightarrow C\left(\sum_{i=1}^{m} k_{i}\right)
$$

on objects as

$$
\gamma\left(f ; g_{1}, \ldots, g_{m}\right):=\left(\tilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \tilde{g}_{f-1}(n)\right) \circ f\left(\mathrm{k}_{1}, \ldots, \mathrm{k}_{m}\right) .
$$

Here,

$$
\tilde{g}_{f-1}(j)= \begin{cases}\mathrm{id}_{1}, & \text { if } f^{-1}(j)=\varnothing \\ g_{\ell}, & \text { if } f(\ell)=j\end{cases}
$$

The identity $1 \in C(1)$ is then defined to be id_{1}.

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \geq 0}$ forms an operad in the category of simplicial sets

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \geq 0}$ forms an operad in the category of simplicial sets and $(k\{N(\mathrm{~m} \downarrow \mathcal{I})\})_{m \geq 0}$ forms an operad in the category of simplicial modules.

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \geq 0}$ forms an operad in the category of simplicial sets and $(k\{N(\mathrm{~m} \downarrow \mathcal{I})\})_{m \geq 0}$ forms an operad in the category of simplicial modules. The associated chain complexes $O(m):=C_{*}(k\{N(m \downarrow \mathcal{I})\})$ form an E_{∞}-operad in the category of chain complexes.

Corollary: The sequence $(N(\mathrm{~m} \downarrow \mathcal{I}))_{m \geq 0}$ forms an operad in the category of simplicial sets and $(k\{N(m \downarrow \mathcal{I})\})_{m \geq 0}$ forms an operad in the category of simplicial modules.
The associated chain complexes $O(m):=C_{*}(k\{N(m \downarrow \mathcal{I})\})$ form an E_{∞}-operad in the category of chain complexes.

Lemma: Let $C_{*} \in \mathrm{Ch}^{\Sigma}$.

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \geq 0}$ forms an operad in the category of simplicial sets and $(k\{N(m \downarrow \mathcal{I})\})_{m \geq 0}$ forms an operad in the category of simplicial modules.
The associated chain complexes $O(m):=C_{*}(k\{N(m \downarrow \mathcal{I})\})$ form an E_{∞}-operad in the category of chain complexes.

Lemma: Let $C_{*} \in \mathrm{Ch}^{\Sigma}$. Then

$$
\operatorname{hocolim}_{\mathcal{I}!i!} C_{*} \cong \bigoplus_{m \geq 0} O(m) \otimes_{\Sigma_{m}} C_{*}(m)
$$

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \geq 0}$ forms an operad in the category of simplicial sets and $(k\{N(\mathrm{~m} \downarrow \mathcal{I})\})_{m \geq 0}$ forms an operad in the category of simplicial modules.
The associated chain complexes $O(m):=C_{*}(k\{N(m \downarrow \mathcal{I})\})$ form an E_{∞}-operad in the category of chain complexes.

Lemma: Let $C_{*} \in \mathrm{Ch}^{\Sigma}$. Then

$$
\text { hocolim }_{\mathcal{I}!} C_{*} \cong \bigoplus_{m \geq 0} O(m) \otimes_{\Sigma_{m}} C_{*}(m)
$$

Sketch of Proof:

Note that by definition we get hocolim $\mathcal{I}_{\underline{I}}\left(C_{*}\right)_{p, q}=$ $\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N \mathcal{I}_{q}} i_{!}\left(C_{p}\right)\left(s f_{1}\right) \cong \bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N \mathcal{I}_{q}} k\left\{\mathcal{I}\left(i(-), s f_{1}\right)\right\} \otimes_{\Sigma} C_{p}$.

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \geq 0}$ forms an operad in the category of simplicial sets and $(k\{N(\mathrm{~m} \downarrow \mathcal{I})\})_{m \geq 0}$ forms an operad in the category of simplicial modules.
The associated chain complexes $O(m):=C_{*}(k\{N(m \downarrow \mathcal{I})\})$ form an E_{∞}-operad in the category of chain complexes.

Lemma: Let $C_{*} \in \mathrm{Ch}^{\Sigma}$. Then

$$
\text { hocolim }_{\mathcal{I}!} C_{*} \cong \bigoplus_{m \geq 0} O(m) \otimes_{\Sigma_{m}} C_{*}(m)
$$

Sketch of Proof:

Note that by definition we get hocolim $\mathcal{I}_{\mathcal{I}}\left(C_{*}\right)_{p, q}=$ $\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N \mathcal{I}_{q}} i_{!}\left(C_{p}\right)\left(s f_{1}\right) \cong \bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N \mathcal{I}_{q}} k\left\{\mathcal{I}\left(i(-), s f_{1}\right)\right\} \otimes \Sigma C_{p}$.
This is isomorphic to

$$
\bigoplus_{m \geq 0} k\left\{N(i(\mathrm{~m}) \downarrow \mathcal{I})_{q}\right\} \otimes_{\Sigma_{m}} C_{p}(\mathrm{~m})
$$

For comonoids we need the following observation:

For comonoids we need the following observation:
Lemma: For every $m \geq 0$ and every pair of numbers (p, q) with $p+q=m$ there is a $\Sigma_{p} \times \Sigma_{q}$-equivariant map

$$
\begin{equation*}
\psi_{p, q}: O(m) \rightarrow O(p) \otimes O(q) . \tag{1}
\end{equation*}
$$

For comonoids we need the following observation:
Lemma: For every $m \geq 0$ and every pair of numbers (p, q) with $p+q=m$ there is a $\Sigma_{p} \times \Sigma_{q}$-equivariant map

$$
\begin{equation*}
\psi_{p, q}: O(m) \rightarrow O(p) \otimes O(q) \tag{1}
\end{equation*}
$$

Theorem: If X_{*} is a cocommutative comonoid in Ch^{Σ}, then $i_{!}\left(X_{*}\right)$ is a cocommutative comonoid in \mathcal{I}-chain complexes and hocolim $\mathcal{I}_{\underline{i}}\left(X_{*}\right)$ is an E_{∞} differential graded coalgebra.

For comonoids we need the following observation:
Lemma: For every $m \geq 0$ and every pair of numbers (p, q) with $p+q=m$ there is a $\Sigma_{p} \times \Sigma_{q}$-equivariant map

$$
\begin{equation*}
\psi_{p, q}: O(m) \rightarrow O(p) \otimes O(q) \tag{1}
\end{equation*}
$$

Theorem: If X_{*} is a cocommutative comonoid in Ch^{Σ}, then $i_{!}\left(X_{*}\right)$ is a cocommutative comonoid in \mathcal{I}-chain complexes and hocolim $\mathcal{I}_{\underline{i}}$! $\left(X_{*}\right)$ is an E_{∞} differential graded coalgebra.
The diagonal on X_{*} induces

$$
\operatorname{hocolim}_{\mathcal{I}}\left(i_{!}\left(X_{*}\right)\right) \rightarrow \operatorname{hocolim}_{\mathcal{I}}\left(i_{!}\left(X_{*} \odot X_{*}\right)\right) .
$$

For comonoids we need the following observation:
Lemma: For every $m \geq 0$ and every pair of numbers (p, q) with $p+q=m$ there is a $\Sigma_{p} \times \Sigma_{q}$-equivariant map

$$
\begin{equation*}
\psi_{p, q}: O(m) \rightarrow O(p) \otimes O(q) \tag{1}
\end{equation*}
$$

Theorem: If X_{*} is a cocommutative comonoid in Ch^{Σ}, then $i_{!}\left(X_{*}\right)$ is a cocommutative comonoid in \mathcal{I}-chain complexes and hocolim $\mathcal{I}_{\underline{i}}\left(X_{*}\right)$ is an E_{∞} differential graded coalgebra.
The diagonal on X_{*} induces

$$
\operatorname{hocolim}_{\mathcal{I}}\left(i_{!}\left(X_{*}\right)\right) \rightarrow \operatorname{hocolim}_{\mathcal{I}}\left(i_{!}\left(X_{*} \odot X_{*}\right)\right) .
$$

The latter is

$$
\begin{aligned}
& \bigoplus \\
& m \geq 0 \\
&= \bigoplus_{m \geq 0} O(m) \otimes_{\Sigma_{m}}\left(X_{*} \odot X_{*}\right)(m) \\
& \cong \bigoplus \Sigma_{m}\left(\bigoplus_{p+q=m} k\left[\Sigma_{m}\right] \otimes_{k\left[\Sigma_{p} \times \Sigma_{q}\right]} X_{*}(\mathrm{p}) \otimes X_{*}(\mathrm{q})\right) \\
& \bigoplus O(m) \otimes_{k\left[\Sigma_{p} \times \Sigma_{q}\right]} X_{*}(\mathrm{p}) \otimes X_{*}(\mathrm{q}) .
\end{aligned}
$$

We can use the maps from (1) to get a coproduct.

We can use the maps from (1) to get a coproduct.
Possible models?
Let X be a simplicial set and k a commutative ring.

We can use the maps from (1) to get a coproduct.
Possible models?
Let X be a simplicial set and k a commutative ring. Rough idea: Use

$$
k\left\{X_{p}\right\} \cong k\left\{X_{\bullet}\right\} \otimes_{\Delta} k\{\Delta([p],-)\}
$$

We can use the maps from (1) to get a coproduct.
Possible models?
Let X be a simplicial set and k a commutative ring. Rough idea: Use

$$
k\left\{X_{p}\right\} \cong k\left\{X_{\bullet}\right\} \otimes_{\Delta} k\{\Delta([p],-)\}
$$

and find a model of $k\{\Delta([\bullet],-)\}$ in cosimplicial cocommutative \mathcal{I}-chain coalgebras...

We can use the maps from (1) to get a coproduct.
Possible models?
Let X be a simplicial set and k a commutative ring. Rough idea: Use

$$
k\left\{X_{p}\right\} \cong k\left\{X_{\bullet}\right\} \otimes_{\Delta} k\{\Delta([p],-)\}
$$

and find a model of $k\{\Delta([\bullet],-)\}$ in cosimplicial cocommutative \mathcal{I}-chain coalgebras...
Suggestions?

