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On higher topological Hochschild

homology of rings of integers

Bjørn Ian Dundas, Ayelet Lindenstrauss, and Birgit Richter

We determine higher topological Hochschild homology of rings of
integers in number fields with coefficients in suitable residue fields.
We use the iterative description of higher THH for this and Post-
nikov arguments that allow us reduce the necessary computations
to calculations in homological algebra, starting from the results
of Bökstedt and Lindenstrauss-Madsen on (ordinary) topological
Hochschild homology.

1. Introduction

Factorization homology provides a general framework for associating an in-
variant,

∫
M R, to a topological n-dimensional manifold M and an algebra R

over the Boardman-Vogt little n-cubes operad [BV73]. For a comprehensive
overview of factorization homology see [AF15]. Commutative algebras are
algebras over the little n-cubes operad for all n. In [AF15, Proposition 5.1] it
is shown that for commutative algebras R the factorization homology,

∫
M R,

reduces to R⊗ U(M) where U(M) is the underlying topological space of M
and (−)⊗ U(M) refers to the topological enrichment of the corresponding
category.

In the setting of spectra, this shows that for a commutative ring spec-
trum R the factorization homology with respect to an n-sphere, Sn, can be
expressed in classical terms as R⊗ Sn and this is what we call topological
Hochschild homology of order n of R.

We need a version with coefficients and we use simplicial sets as com-
binatorial models for topological spaces. It is shown in [EKMM97, VII.3.2]
that both enrichments (simplicial sets or topological spaces) give equivalent
outcome. Topological Hochschild homology of a ring spectrum R with coef-
ficients in a module N is obtained as a simplicial object where one uses the
standard simplicial model of the 1-sphere, S1, and glues N to the basepoint
of S1 and R to all other simplices in S1. Topological Hochschild homol-
ogy of order n of a commutative ring spectrum R with coefficients in N ,
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THH [n](R,N), is the analogue of this where we use Sn = (S1)∧n as a sim-
plicial model of the n-sphere and glue again N to the basepoint and R to
all other simplices of Sn. For a definition using the topological circle S1

see [MSV97]; for an approach preserving the epicyclic structure, see e.g.,
[BCD10] or [V18].

There are natural stabilization maps

π∗(THH
[n](R,N))→ π∗+1(THH [n+1](R,N))

whose colimit gives the topological André-Quillen homology of R with coef-
ficients in N as defined in [Ba99].

Topological Hochschild homology, THH, of rings of integers in number
fields is well-understood: Bökstedt [Bö∞] calculated THH of the integers
and in [LM00] the general case is covered. The aim of this paper is the cal-
culation of higher order topological Hochschild homology of rings of integers
in number fields with coefficients in a suitable residue field.

If N = R, then we will abbreviate THH [n](R,R) as THH [n](R). If A
is a commutative discrete or simplicial ring and M an A-module, we abuse
notation and write THH [n](A) or THH [n](A,M) for THH [n](HA) or
THH [n](HA,HM), respectively, where H is the Eilenberg-Mac Lane spec-
trum functor.

John Rognes’ redshift conjecture relates algebraic K-theory to chromatic
phenomena: The stable homotopy category has a chromatic filtration and
roughly the conjecture states that algebraic K-theory of a commutative ring
spectrum of chromatic level n is of chromatic level n+ 1, thus algebraic K-
theory causes a chromatic redshift. See [AR08, Conjecture 1.3] for a state-
ment of the conjecture.

Replacing spheres by tori gives rise to torus homology and there is work
by Brun, Carlsson, Douglas, Dundas, Rognes, Veen [BCD10, CDD11, V18]
and others on this. The hope is that, like algebraic K-theory, the homotopy
fixed points with respect to the torus action of torus homology will also
reveal red-shift phenomena. Positive results in that direction were obtained
by Rognes and Veen [V18] and there is ongoing work by Ausoni and Dundas
[AD∞] extending these results to all chromatic layers. Both approaches use
cellular decompositions of tori, and rely on concrete calculations for each
cell, showing that higher topological Hochschild homology can be important
for understanding chromatic phenomena.

Statement of results. In the following we give a brief description of
our results and explain how one can use them together with local-to-global
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techniques and Bockstein spectral sequences in order to determine higher
topological Hochschild homology of rings of integers in number fields.

We will phrase our results in terms of iterated Tor groups:

Definition 1.1. Let k be a field. Let B1
k(x) be the polynomial algebra

Pk(x) on a generator x in degree 2m. Inductively, we define the k-algebra

Bn
k (x) = Tor

Bn−1
k (x)
∗ (k, k).

By Cartan [C54], B2
k(x) is the exterior algebra Λk(σx) on a generator σx

in degree 2m+ 1; after that, we get a divided power algebra on a generator
of degree 2m+ 2, and after that, the formulas become more complicated
(but see [BLPRZ15] for an illustration of what the Bn

k (x) look like when k
is a finite field).

In the following, all tensors are over Fp unless otherwise explicitly marked.
Our first result is:

Theorem 3.1 Let n ≥ 1. Then THH
[n]
∗ (Z,Fp) ∼= Bn

Fp
(x)⊗Bn+1

Fp
(y) where

|x| = 2p and |y| = 2p− 2.

In Remark 3.6 below we explain how to adapt our argument to show that

THH
[n]
∗ (Fp) ∼= Bn

Fp
(µ)

for a generator µ of degree two. This result was first obtained by Basterra
and Mandell by other methods.

The calculation of THH
[n]
∗ (Z,Fp) along with a calculation of the Bock-

stein spectral sequence on it would give us THH
[n]
∗ (Z). We use this tech-

nique in [DLR] to determine THH
[2]
∗ (Z(p)) as a graded commutative ring (see

[DLR, Theorem 2.1]). An additive identification of THH
[2]
∗ (Z) is obtained

in [K, Theorem 1.6], using factorization homology and the identification of
HZ as a Thom spectrum with an algebra structure over the little 2-cubes
operad.

For a calculation of THH [n](A) for more general number rings A, observe

first that for any n and any commutative ring A, THH
[n]
0 (A) ∼= A, since in

the definition of THH [n](A), both d0 and d1 have to multiply all copies of
HA indexed on all the 1-simplices into the copy that sits over the basepoint,
and so by the commutativity of HA, d0 and d1 induce the same maps on
homology.

The Bökstedt spectral sequence for higher topological Hochschild homol-
ogy (Proposition 7.2 in [BLPRZ15]) with rational coefficients is a spectral
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sequence with

E2
∗,∗ = HH [n](H∗(HA;Q))⇒ H∗(THH

[n](A);Q).

Since H∗(HA;Q) consists just of A⊗Q in dimension zero and since for a
number ring A, A⊗Q is étale over Q, by Theorem 9.1(a) of [BLPRZ15], for

∗ > 0, THH
[n]
∗ (A) consists entirely of torsion.

However, since A is a number ring, and hence a Dedekind domain, any
finitely generated torsion module over it is a finite direct sum of mod-
ules A/P kii , with Pi nonzero prime ideals and ki ≥ 1. For each such prime
ideal Pi, there is a unique prime p ∈ Z for which pA ⊆ Pi, and if we con-
sider THH [n](A)∧p , its homotopy groups in positive dimensions will be all

the modules A/P kii where pA ⊆ Pi, and none of the others. The meth-
ods of Addendum 6.2 in [HM97], which show that for any number ring
A, THH(A)∧p ' THH(A∧p )∧p , also show that for general n ≥ 1,

THH [n](A)∧p ' THH [n](A∧p )∧p .

So in order to understand the Pi torsion in THH [n](A), we could see it
instead in

THH [n](A∧p ) ∼= THH [n]

 ∏
Pi prime, pA⊆Pi

A∧Pi

 ' ∏
Pi prime, pA⊆Pi

THH [n](A∧Pi
).

Then, like calculating THH
[n]
∗ (Z,Fp) was an intermediate goal in the calcu-

lation of THH
[n]
∗ (Z), calculating THH

[n]
∗ (A∧Pi

, (A∧Pi
)/Pi) is an intermediate

goal in the calculation of THH
[n]
∗ (A∧Pi

).

We calculate the groups THH
[n]
∗ (A∧Pi

, (A∧Pi
)/Pi) below, obtaining

Theorem 4.3 Let A be the ring of integers in a number field, and let P be
a nonzero prime ideal in A. Denote the residue field A/P by Fq. Then

THH
[n]
∗ (A∧P , A/P ) ∼= Bn

Fq
(xP )⊗Fq

Bn+1
Fq

(yP )

where

(i) |xP | = 2 and |yP | = 0 if A is ramified over Z at P , and

(ii) |xP | = 2p and |yP | = 2p− 2, if A is unramified over Z at P .
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This gives the homotopy groups of

THH [n](A,A/Pi) ' THH [n](A∧Pi
) ∧H(A∧Pi

) H(A/Pi).

As in the n = 1 case, multiplying HZ into the copy of H(A∧Pi
) over the

basepoint shows that THH [n](A∧Pi
) is a retract of HZ ∧ THH [n](A∧Pi

), and
so additively, it is a product of Eilenberg-Mac Lane spectra. Any shifted
copy H(A/P kii ), ki ≥ 1, that we have in THH [n](A∧Pi

) will yield two corre-
spondingly shifted copies of H(A/Pi) (one with the same shift, one with
that shift plus one) in THH [n](A∧Pi

) ∧H(A∧Pi
) H(A/Pi). Again one can then

read off the rank of the Pi-torsion from THH [n](A∧Pi
, A/Pi), and to under-

stand what the torsion actually is, one would need to look at Bockstein-type
operators associated with multiplication by a uniformizer of A∧Pi

.

2. Identifying square zero extensions

Let k be a commutative ring, and let Hk be the associated Eilenberg-
Mac Lane commutative ring spectrum. We will show that there is exactly one
homotopy type of augmented commutative Hk-algebras C with homotopy
π∗C ∼= Λk(x) where x is a generator in a given positive degree. That is, there
is a chain of stable equivalences of augmented commutative Hk-algebras
C ' Hk ∨ ΣmHk where the Hk-module ΣmHk is the m-fold suspension of
Hk and Hk ∨ ΣmHk is the square-zero extension of Hk by ΣmHk.

We learned of such a fact when k = Fp from Michael Mandell who proves
it by means of topological André-Quillen homology and uses it in a program
joint with Maria Basterra.

Proposition 2.1. Let C be a commutative augmented Hk-algebra and as-
sume that there is an isomorphism of graded commutative k-algebras π∗C ∼=
Λk(x) where |x| = m > 0. Then there is a chain of stable equivalences of
commutative augmented Hk-algebras between C and Hk ∨ ΣmHk.

Proof. For concreteness, we formulate the proof in symmetric spectra. Let
S be the sphere spectrum, and PS and PHk the free commutative algebra
functors (adjoint to the forgetful functor with values in S or Hk-modules).
We may assume that C is fibrant in the positive Hk-model structure of
Shipley [S04]. Let M be a positively Hk-cofibrant resolution of ΣmHk; for
concreteness M = Hk∧F1(Sm+1), where F1 is the adjoint to the evaluation
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on the first level. Represent x by an Hk-module morphism M → C. Now,

PHk(M) =
∨
n≥0

(M∧Hkn)Σn
∼= Hk∧PS(F1(Sm+1))

is the free commutative Hk-algebra on M . Since

(F1(Sm+1)∧n)Σn
' (F1(Sm+1)∧n)hΣn

is (mn− 1)-connected and m > 0, the induced map f : PHk(M)→ C is
2m ≥ (m+ 1)-connected.

Taking the mth Postnikov section Pm of PHk(M) in the setting of com-
mutative Hk-algebra spectra (as done in the [EKMM97] setting in [Ba99,
§8]) gives a map of commutative Hk-algebra spectra Pm → C, which is an
isomorphism on the non-zero homotopy groups in degree 0 and m. As both
spectra are semistable [S∞, 4.48], this map is a stable equivalence of sym-
metric spectra. Hence, C and Pm are of the same stable homotopy type, and
repeating the argument with a fibrant model for Hk ∨ ΣmHk we get the
promised chain of stable equivalences connecting C and Hk ∨ ΣmHk. �

3. The calculation of THH [n]
∗ (Z, Fp)

Our goal in this section is to prove

Theorem 3.1. Let n ≥ 1 and p be any prime. Then

THH
[n]
∗ (Z,Fp) ∼= Bn

Fp
(x)⊗Bn+1

Fp
(y)

where |x| = 2p and |y| = 2p− 2.

To this end we use the iterative description of THH [n]: the n-sphere Sn
can be decomposed into two hemispheres whose intersection is the equator,
Sn = Dn ∪Sn−1 Dn. This decomposition yields [V18] that

(3.1.0) THH [n](Z,Fp) ' HFp ∧LTHH [n−1](Z,Fp) HFp

where ∧L denotes the derived smash product.
Note that for any commutative ring spectrum R, THH(R) is a commu-

tative R-algebra spectrum [EKMM97, IX.2.2], so in particular, THH(Z) is
a commutative HZ-algebra spectrum. As THH(Z,Fp) = THH(Z) ∧HZ HFp,
we have a commutativeHFp-algebra structure on THH(Z,Fp) and the multi-
plication onHZ and theHZ-module structure ofHFp give rise to a canonical
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augmentation from THH(Z,Fp) to HFp. Thus THH(Z,Fp) is a commutative
augmented HFp-algebra spectrum.

Bökstedt [Bö∞] calculated THH∗(Z) and his result gives the n = 1 case
of the theorem,

THH∗(Z,Fp) ∼= Fp[x2p]⊗ Λ(z2p−1)

since B2
Fp

(y2p−2) is isomorphic to Λ(z2p−1). We use the (2p− 1)st Postnikov
section of commutative augmented HFp-algebras to map THH∗(Z,Fp) to
something which by Proposition 2.1 has to be weakly equivalent to HFp ∨
Σ2p−1HFp. Then we consider the homotopy pushout diagram in the category
of commutative augmented HFp-algebras

THH(Z,Fp) //

��

HFp ∨ Σ2p−1HFp

f

��

HFp // (HFp ∨ Σ2p−1HFp) ∧LTHH(Z,Fp) HFp.

A bar spectral sequence argument tells us that the homotopy groups of
(HFp ∨ Σ2p−1HFp) ∧LTHH(Z,Fp) HFp are isomorphic to Λ(y2p+1) and using
Proposition 2.1 again we see that the homotopy pushout is a commutative
augmented HFp-algebra which is weakly equivalent to HFp ∨ Σ2p+1HFp.

Lemma 3.2. Let

f : HFp ∨ Σ2p−1HFp → (HFp ∨ Σ2p−1HFp) ∧LTHH(Z,Fp) HFp.
∼= HFp ∨ Σ2p+1HFp

be the map in the homotopy category of augmented commutative HFp-algebras
induced by the pushout above. Then f factors through the augmentation
ε : HFp ∨ Σ2p−1HFp → HFp.

Proof. Consider the diagram

HFp ∨ Σ2p−1HFp
= //

ε

��

HFp ∨ Σ2p−1HFp

f
��

HFp // HFp ∨ Σ2p+1HFp,

which we obtain from the previous diagram because the augmentation
THH(Z,Fp)→ HFp has to factor through the Postnikov map to HFp ∨
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Σ2p−1HFp and of course, so does the Postnikov map itself. This diagram
commutes, so the maps to the bottom right factor through the pushout
HFp ∧HFp∨Σ2p−1HFp

(HFp ∨ Σ2p−1HFp) ' HFp of the top left corner, so f
factors through ε. �

Hence, THH [2](Z,Fp) can be described by the following iterated homotopy
pushout diagram.

THH(Z,Fp) //

��

HFp ∨ Σ2p−1HFp

f

��

//

ε

''

HFp

��

%%
HFp

η

ww

// Γ

yy

HFp // HFp ∨ Σ2p+1HFp // THH [2](Z,Fp)

Here, Γ denotes the homotopy pushout of the upper right subdiagram in the
category of commutative HFp-algebras, and as above we get

Γ = HFp ∧LHFp∨Σ2p−1HFp
HFp.

We have again a Tor-spectral sequence converging to the homotopy groups
of the spectrum Γ with

E2
∗,∗ = Tor

Λ(z2p−1)
∗,∗ (Fp,Fp)

and hence π∗(Γ) is isomorphic to a divided power algebra over Fp on a
generator in degree 2p, Γ(a2p). In the iterated homotopy pushout diagram
all maps involved are maps of commutative S-algebras and thus we can
identify THH [2](Z,Fp) as a commutative HFp-algebra as

THH [2](Z,Fp) ' (HFp ∨ Σ2p+1HFp) ∧LHFp∨Σ2p−1HFp
HFp

' (HFp ∨ Σ2p+1HFp) ∧HFp
Γ

∼= Γ ∨ Σ2p+1Γ.

Thus, THH [2](Z,Fp) is equivalent to the bar construction

BHFp
(HFp, HFp ∨ Σ2p−1HFp, HFp ∨ Σ2p+1HFp).

Its homotopy groups are

THH
[2]
∗ (Z,Fp) ∼= Γ(a2p)⊗ Λ(y2p+1).
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We use this to determine higher THH via iterated bar constructions. We
know that THH [n+1](HZ, HFp) is equivalent to the derived smash product

HFp ∧LTHH [n](HZ,HFp) HFp

whose homotopy groups are the ones of the bar construction

BHFp
(HFp, THH [n](HZ, HFp), HFp)

and iteratively, we can express THH [n](HZ, HFp) again in terms of such a
bar construction as long as n is greater than two. For n = 2 we know the
answer by the above argument. For larger n we can determine the homotopy
groups of THH [n+1](HZ, HFp) iteratively. AbbreviatingHFp ∨ Σ2p−1HFp to
E(z) and HFp ∨ Σ2p+1HFp to E(y) we define

B(n) := BHFp
(HFp, . . . , BHFp

(HFp, BHFp
(HFp, E(z), E(y)), HFp), . . . ,HFp)

with n− 1 pairs of outer terms of HFp. We denote by E(y) the constant
simplicial HFp-algebra spectrum on E(y).

Lemma 3.3. As n-simplicial commutative HFp-algebras

B(n) ' B(n)
HFp

(HFp, E(z), HFp) ∧HFp
B

(n−1)
HFp

(HFp, E(y), HFp)

for all n ≥ 2.

Proof. We show the claim directly for n = 2: B(2) is

BHFp
(HFp, BHFp

(HFp, E(z), E(y)), HFp).

As we know from Lemma 3.2 that the E(z)-module structure of E(y) factors
via the augmentation map through the HFp-module structure of E(y), we
get that BHFp

(HFp, E(z), E(y)) can be split as an augmented simplicial
commutative HFp-algebra as BHFp

(HFp, E(z), HFp) ∧HFp
E(y) and thus we

get a weak equivalence of bisimplicial commutative HFp-algebra spectra:

BHFp
(HFp, BHFp

(HFp, E(z), E(y)), HFp)
' BHFp

(HFp, BHFp
(HFp, E(z), HFp) ∧HFp

E(y), HFp)
' BHFp

(HFp, BHFp
(HFp, E(z), HFp), HFp) ∧HFp

BHFp
(HFp, E(y), HFp)

= B
(2)
HFp

(HFp, E(z), HFp) ∧HFp
BHFp

(HFp, E(y), HFp).
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For the second weak equivalence in the chain above, we have used that the
bar construction BR(R,X∧R Y,R) of the smash product of two commuta-
tive simplicial R-algebra spectra X and Y is equivalent as a bisimplicial
commutative R-algebra to BR(R,X,R) ∧R B(R, Y,R).

By induction we assume that n is bigger than 2 and that we know the
result for all k < n. Then

B(n) = BHFp
(HFp, B(n−1), HFp)

' BHFp
(HFp, B

(n−1)
HFp

(HFp, E(z), HFp)

∧HFp
B

(n−2)
HFp

(HFp, E(y), HFp), HFp)

' BHFp
(HFp, B

(n−1)
HFp

(HFp, E(z), HFp), HFp)

∧HFp
BHFp

(HFp, B
(n−2)
HFp

(HFp, E(y), HFp), HFp)

= B
(n)
HFp

(HFp, E(z), HFp) ∧HFp
B

(n−1)
HFp

(HFp, E(y), HFp).

�

We view THH(n)(HZ, HFp) as a simplicial commutative HFp-algebra for
all n ≥ 1 and therefore describe THH(n+1)(HZ, HFp) as the diagonal of the
bar construction BHFp

(HFp, THH [n](HZ, HFp), HFp).

Corollary 3.4. We obtain, that

THH
(n+1)
∗ (HZ, HFp)

∼= π∗diagB
(n)
HFp

(HFp, E(z), HFp)⊗Fp
π∗diagB

(n−1)
HFp

(HFp, E(y), HFp).

For sake of definiteness in the following we will work in the category of
symmetric spectra in simplicial sets, SpΣ [HSS00]. The Eilenberg-Mac Lane
spectrum gives rise to a functor

H : A → SpΣ

such that HA(n) = diag(A⊗ Z̃(Sn)) where Sn = (S1)∧n and Z̃(−) denotes
the free abelian group generated by all non-basepoint elements. This functor
is lax symmetric monoidal [S∞, 2.7,3.11]. A square-zero extension HFp ∨
ΣnHFp (for n ≥ 1) can be modelled by Fp(∆n/∂∆n):

Lemma 3.5. There is a stable equivalence of commutative symmetric ring
spectra ψ : HFp(∆n/∂∆n)→ HFp ∨ ΣnHFp.
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Proof. There are two non-degenerate simplices in ∆n/∂∆n: a zero-simplex
∗ corresponding to the unique basepoint and an n-simplex corresponding
to the identity map id[n] on the set [n] = {0, . . . , n}. We can represent
any simplex in ∆n/∂∆n as si` ◦ · · · ◦ si0(∗) or si` ◦ · · · ◦ si0(id[n]). We de-

fine the map ψ(m)` from HFp(∆n/∂∆n)(m)` = Fp(∆n/∂∆n)` ⊗ Z̃(Sm` ) to
(HFp ∨ ΣnHFp)(m)` = Fp ⊗ Z̃(Sm` ) ∨∆n/∂∆n ∧ Fp ⊗ Z̃(Sm` ) on generators
by setting

ψ(si` ◦ · · · ◦ si0(∗)⊗ x) = 1⊗ x ∈ Fp ⊗ Z̃(Sm` )

ψ(si` ◦ · · · ◦ si0(id[n])⊗ x) = [si` ◦ · · · ◦ si0(id[n]), x] ∈ ∆n/∂∆n ∧ Fp ⊗ Z̃(Sm` )

for x ∈ Sm` and by extending it in a bilinear manner. This map is well-defined
and multiplicative. Both spectra have finite stable homotopy groups and are
therefore semistable. It thus suffices to show that ψ is a stable homotopy
equivalence. The stable homotopy groups on both sides are exterior algebras
on a generator in degree n and ψ induces the map on stable homotopy
groups that sends 1 to 1 and maps the generator in degree n to a degree n
generator. �

We have a weak equivalence

BHFp
(HFp, HA,HC)→ H(BFp

(Fp, A,C))

for all simplicial Fp-algebras A and C. Let N denote the normalization
functor from simplicial Fp-vector spaces to non-negatively graded chain
complexes over Fp. This is a lax symmetric monoidal functor, so it sends
simplicial commutative Fp-algebras to commutative differential graded Fp-
algebras. Note that we obtain isomorphisms of differential graded Fp-algebras

N(Fp(∆2p−1/∂∆2p−1)) ∼= ΛFp
(z), N(Fp(∆2p+1/∂∆2p+1)) ∼= ΛFp

(y)

because for positive n, ∆n/∂∆n has only a non-degenerate zero cell and a

non-degenerate n-cell. Note that B
(n)
Fp

(Fp,Fp(∆2p−1/∂∆2p−1),Fp) is an (n+
1)-fold simplicial commutative Fp-algebra. We can calculate the homotopy
groups of its diagonal as the homology of the total complex associated to
the bicomplex

Cr,s = NrdiagnB
(n)
Fp

(Fp, NsFp(∆2p−1/∂∆2p−1),Fp)
∼= NrdiagnB

(n)
Fp

(Fp,Fp(∆2p−1/∂∆2p−1)s,Fp).
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As the differential in s-direction is trivial the spectral sequence collapses at
the E2-term with total homology isomorphic to the given by the homology of
the differential graded n-fold bar construction. These homology groups were

calculated in [BLPRZ15] and we obtain that π∗diagB
(n)
HFp

(HFp, E(z), HFp) ∼=
Bn+2

Fp
(y). Similarly, π∗diagB

(n−1)
HFp

(HFp, E(y), HFp) ∼= Bn+1
Fp

(x). This proves
Theorem 3.1.

Remark 3.6. Note that a similar argument as above shows that

(3.6.0) THH
[n]
∗ (Fp) ∼= Bn

Fp
(µ)

for all n ≥ 1 and all primes p. Here the degree of µ is two. For n = 1 this
calculation is due to Bökstedt [Bö∞]. The only difference from the argument
above is that the first step is slightly easier: in order to calculate THH [2](Fp)
we do not have to split off the Postnikov section – the bar spectral sequence

immediately yields that THH
[2]
∗ (Fp) is an exterior algebra on a class in degree

3. By Proposition 2.1 we know that we can model THH [2](Fp) as HFp ∨
Σ3HFp. From there on the argument is completely analogous to the one
above. Maria Basterra and Mike Mandell proved the isomorphism (3.6.0)
for all n and p in 1999 using an E∞ bar construction argument. Partial
results about higher THH of Fp were obtained by Rognes, Veen [V18] and
in [BLPRZ15].

4. The number ring case

The aim of this section is to prove Theorem 4.3, calculating the higher
topological Hochschild homology of number rings with coefficients in the
residue field. The calculation starts with the following observation.

Lemma 4.1. Let B be a characteristic zero complete discrete valuation
ring with residue field Fq of characteristic p > 0 and let P denote the ideal
consisting of all elements with positive valuation in B. Then

HH
Zp

1 (B,B/P ) ∼=

{
B/P, if B is ramified over Zp at P,

0, otherwise.

Proof. By Proposition 12 in Chapter 3 of [S79], B is generated over Zp by a
single element, B = Zp[x]/(f(x)) for some monic polynomial f . By a well-
known calculation which can be traced back to [T57], for any ring R and
monic polynomial f(x) over it, HHR

1 (R[x]/(f(x))) ∼= R[x]/(f(x), f ′(x)). By
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Corollary 2 of Chapter 3 of [S79], the ideal (f ′(x)) in Zp[x]/(f(x)) is equal
to the different ideal DB/Zp

, so the result for B over Zp becomes

HH
Zp

1 (B) ∼= B/DB/Zp
.

Since B is commutative, we also know that HH
Zp

0 (B) ∼= B is free over B,

hence TorBs (HH
Zp

0 (B), B/P ) = 0 for s > 0. If we tensor the Hochschild com-
plex of B over B with B/P , then we get by the universal coefficient theorem,
that

HH
Zp

1 (B,B/P ) ∼= HH
Zp

1 (B)⊗B B/P ∼= B/DB/Zp
⊗B B/P ∼= B/(DB/Zp

, P ).

If DB/Zp
⊆ P , this is just B/P , but if not, by the maximality of P in B we

get that B/(DB/Zp
, P ) ∼= 0. Theorem 1 in Chapter 3 of [S79] says that an

extension B of Zp is ramified at an ideal P of B if and only if P divides the
different ideal DB/Zp

. �

From this we establish the one-dimensional (ordinary topological Hoch-
schild homology) case of Theorem 4.3, which is closely related to Theo-
rem 4.4 in [LM00], and in fact in the unramified case is exactly Theorem 4.4
(i) there (since in the unramified case P = pA for a rational prime p). The
symbol xi in the statement indicates a generator of degree i.

Proposition 4.2. Let A be the ring of integers in a number field, and let
P be a nonzero prime ideal in A. Denote the residue field A/P by Fq.

(i) If A is ramified over Z at P , THH
[1]
∗ (A∧P ,Fq) ∼= Fq[x2]⊗Fq

ΛFq
[x1].

(ii) If A is unramified over Z at P , THH
[1]
∗ (A∧P ,Fq)∼=Fq[x2p]⊗Fq

ΛFq
[x2p−1].

Proof. We set B = A∧P , to get a ring that satisfies the conditions of
Lemma 4.1. We now use P to denote the ideal in B obtained as PB for
the ideal P of A. We use Morten Brun’s spectral sequence [Br00, p. 30] from
Theorem 3.3 in [LM00] for the map B → B/P . This gives a multiplicative
spectral sequence

E2
r,s = THHr(B/P,TorBs (B/P,B/P ))⇒ THHr+s(B,B/P ).

Since P is a principal ideal in B, generated by any uniformizer π, the reso-
lution

0 //B
·π //B //B/P //0
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shows that TorB∗ (B/P,B/P ) ∼= ΛFq
(τ1) for a 1-dimensional generator τ1,

where B/P = (A∧P )/P ∼= A/P = Fq.
Bökstedt showed in [Bö∞] that THH∗(Fp) ∼= Fp[u2], and since HH∗(Fq)

consists only of Fq in dimension zero, the spectral sequence of Theorem 2.2
in [L00]

E2
r,s = HHFp

r (Fq, THHs(Fp;Fq))⇒ THHr+s(Fq)
consists only of Fq ⊗ Fp[u2] in the zeroth row, we get that

THH∗(Fq) ∼= Fq[u2].

Thus Brun’s spectral sequence takes the form

E2
∗,0
∼= Fq[u2], E2

∗,1
∼= τ1 · Fq[u2].

From Lemma 4.1 and the fact that Hochschild and topological Hochschild
homology agree in degree 1, we know that we end up with nothing in total
degree 1 if B is unramified over Zp, and with a copy of Fq if B is ramified.
So we get

d2(u2) =

{
0, if B is ramified over Zp at P,

(unit) · τ1, otherwise.

In the ramified case we already know that d2 vanishes on 1 and τ1, since
there is nothing these elements could hit. Therefore, we get that d2 = 0. As
d2 is the last differential that could be nontrivial, E∞∗,∗

∼= E2
∗,∗
∼= ΛFq

(τ1)⊗Fq

Fq[u2], and since this is the multiplication with the fewest relations possible
that could be defined on a graded-commutative algebra with this linear
structure, extensions cannot give any other multiplicative structure and we
get

THH∗(B,B/P ) ∼= ΛFq
(τ1)⊗Fq

Fq[u2].

In the unramified case, the knowledge what d2 does on the genera-
tors shows us that d2(ua2) = (unit) · τ1 · ua−1

2 when p does not divide a, but

d2(upk2 ) = 0 and nothing hits the elements τ1 · upk−1
2 . Again d2 is the last

differential that could be nonzero so E∞∗,∗
∼= E3

∗,∗
∼= ΛFq

(τ1 · up−1
2 )⊗Fq

Fq[up2],
and since this is again a multiplication with the fewest relations possible that
could be defined on a graded-commutative algebra with this linear structure,
extensions cannot give any other multiplicative structure and we get

THH∗(B,B/P ) ∼= ΛFq
(τ1 · up−1

2 )⊗Fq
Fq[up2].

�
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Theorem 4.3. Let A be the ring of integers in a number field, and let P
be a nonzero prime ideal in A. Denote the residue field A/P by Fq.

Then

THH
[n]
∗ (A∧P ,Fq) ∼= Bn

Fq
(xP )⊗Fq

Bn+1
Fq

(yP )

where

(i) |xP | = 2 and |yP | = 0 if A is ramified over Z at P , and

(ii) |xP | = 2p and |yP | = 2p− 2, if A is unramified over Z at P .

Proof. The n = 1 case is true by Proposition 4.2, with x = x2 and y zero-
dimensional (so that B1

Fq
(y) ∼= ΛFq

(x1)) in the ramified case, and with x =

x2p and y of dimension 2p− 2 (so that B1
Fq

(y) ∼= ΛFq
(x2p−1)) in the unram-

ified case.
The rest of the proof proceeds by exact analogy to the calculation of

THH
[n]
∗ (Z,Fp). �

Note 4.4. The ramified case Theorem 4.3 (i) can actually be proven quite
algebraically by noting that for an arbitrary flat ring A and A-bimodule M ,
the linearization map THH(A,M)→ H(HHZ(A,M)) is 3-connected so that
the first Postnikov sections of THH(A,M) and H(HHZ(A,M)) agree. As a
matter of fact, when A is a Z(p)-algebra, Bökstedt’s calculation of the topolog-
ical Hochschild homology of the integers gives that Theorem 2.3 of [L00] im-
plies that this can be improved to saying that THH(A,M)→ H(HHZ(A,M))
is (2p− 1)-connected. This means that the Postnikov section involved in the
crucial step moving from THH to to the algebraic THH [2] coincides with that
of Hochschild homology. This was how we originally established the calcula-
tion in the ramified case.

Note 4.5. The unramified case, Theorem 4.3(ii), could have also been de-
duced from Theorem 3.1 by showing that

THH
[n]
∗ (A∧P , A/P ) ∼= THH

[n]
∗ (Zp,Fp)⊗ Fq (where Fq = A/P )

as an augmented Fq-algebra, where the augmentation on the right-hand side

comes from the augmentation of THH
[n]
∗ (Z,Fp) over Fp, tensored with the

identity of Fq. This is true for n = 1 by Theorem 4.4 (i) of [LM00], and then
we proceed inductively, using the decomposition from (3.1.0). This yields in
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this case a decomposition

THH [n+1](A∧P ,Fq) ' HFq ∧LTHH [n](A∧P ,Fq) HFq.

and a multiplicative spectral sequence

Tor
THH [n]

∗ (A∧P ,Fq)
∗,∗ (Fq,Fq)⇒ THH

[n+1]
∗ (A∧P ,Fq),

which can be rewritten by the inductive hypothesis as

Tor
THH [n]

∗ (Zp,Fp)⊗Fq

∗,∗ (Fp ⊗ Fq,Fp ⊗ Fq)
∼= Tor

THH [n]
∗ (Zp,Fp)

∗,∗ (Fp,Fp)⊗ Tor
Fq

∗ (Fq,Fq)
∼= Tor

THH [n]
∗ (Z,Fp)

∗,∗ (Fp,Fp)⊗ Fq,

where the first factor is the image of the E2-term of the spectral sequence

calculating THH
[n+1]
∗ (Z,Fp) and the second term is in E2

0,0 and therefore can
cause no nontrivial differentials or multiplicative extensions. This splitting
is a splitting of algebras and the augmentation is that of the first factor
tensored with the identity of the second.
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[Ba99] Maria Basterra, André-Quillen cohomology of commutative S-
algebras, J. Pure Appl. Algebra 144 (1999), no. 2, 111–143.

[BaM05] Maria Basterra and Michael A. Mandell, Homology and coho-
mology of E∞-ring spectra, Math. Z. 249 (2005), no. 4, 903–944.

[BV73] J. Michael Boardman and Rainer M. Vogt, Homotopy invari-
ant algebraic structures on topological spaces, Lecture Notes
in Mathematics, Vol. 347. Springer-Verlag, Berlin-New York
(1973), x+257pp.

[BLPRZ15] Irina Bobkova, Ayelet Lindenstrauss, Kate Poirier, Birgit
Richter, and Inna Zakharevich, On the higher topological
Hochschild homology of Fp and commutative Fp-group algebras,
in: Women in Topology: Collaborations in Homotopy Theory.
Cont. Math. 641, AMS (2015), 97–122.
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