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Theorem

The Brown-Peterson spectrum BP at a prime

p has at least a (2p2 +2p−2)-stage structure.
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What are n-stages?

– n-stages approximate E∞-structures.

Alan Robinson:

Consider the E∞-operad (Bn)n = (EΣn×Tn)n.

Here

• (EΣn)n is the topological version of the

Barratt-Eccles operad and

• Tn is Boardman’s tree operad.
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Trees

The space of n-trees, Tn, consists of abstract

trees on n + 1 leaves. These leaves are label-

led with the numbers 0, . . . , n where each label

appears exactly once. Internal edges get an as-

signed length 0 < λ 6 1.
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Examples

The tree space is set to consist of a point for

n 6 2

The only 2-tree is the tree

��

0
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There are three different types of 3-trees, na-

mely
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with a corolla-shaped tree if the length of the

only internal edge is zero.
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Filtration

Robinson defines a filtration of this E∞-operad

as follows: set B(i)
n := (EΣn)(i) × Tn where

(EΣn)(i) is the i-th skeleton of the standard

model for EΣn. Then define

∇nBm := B(n−m)
m .

n-stages

An n-stage structure for an E

1

-structure on a

spectrum E is a sequence of maps

�

m

:

which on their restricted domain of de�nition

satisfy the requirements for an operad action

on E.
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Filtration

Robinson de�nes a �ltration of this E

1

-operad

as follows: set B

(i)

n

:= (E�

n

)

(i)

� T

n

where

(E�

n

)

(i)

is the i-th skeleton of the standard

model for E�

n

. Then de�ne

r

n

B

m

:= B

(n�m)

m

:

n-stages

An n-stage structure for an E∞-structure on a

spectrum E is a sequence of maps

µm : ∇nBm nΣm E∧m −→ E

which on their restricted domain of definition

satisfy the requirements for an operad action

on E.
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2-stage structures

A 2-stage structure on a spectrum E consist

of action maps starting from ∇2Bm which is

B(2−m)
m = (EΣm)(2−m) × Tm.

Therefore the only requirement here is that we

have a map

((EΣ1)
(1) × T1) nΣ1

E ∼= E
ϕ−→ E

and that E possesses a map

((EΣ2)
(0)×T2)nΣ2

E∧2 ∼= (Σ2)nΣ2
E∧2 −→ E.

So we obtain a multiplication µ on E together

with its twisted version µ ◦ τ if τ denotes the

generator of Σ2.

Iterates of µ and µ ◦ τ act on higher smash

powers of E, but they do not have to satisfy

any relations.
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3-stage structures

A 3-stage structure on E comes with three
kinds of maps, because non-trivial values for
m are 1,2,3.

m = 2:

((EΣ2)
(1) × T2) nΣ2

E∧2 −→ E.

The 1-skeleton of EΣ2 is the 1-circle, giving
the homotopy between µ and µ ◦ τ .

µ
��

µ ◦ τ
UU

In addition to that, the value m = 3 brings in
the homotopies for associativity via the trees
we described above.

A 3-stage structure on E is a homotopy com-
mutative and associative multiplication.
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Theorem [Robinson]

Assume that E is a homotopy commutative

and associative ring spectrum which satisfies

E∗(E∧m) ∼= HomE∗(E∗E
⊗m, E∗)

for all m > 1.

If E has an (n−1)-stage structure which can be

extended to an n-stage structure then possible

obstructions to extending this further to an

(n + 1)-stage structure live in

HΓn,2−n(E∗E|E∗;E∗).

If in addition HΓn,1−n(E∗E|E∗;E∗) vanishes, then

this extension is unique.
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What is HΓ∗,∗?

Gamma cohomology – a cohomology theory

for differential graded E∞-algebras.

We will need it for graded commutative alge-

bras.

How is it defined?

Let k be a (graded) commutative ring with

unit, let A be a (graded) commutative k-algebra

and let M be a (graded) A-module.

Robinson defines Gamma homology of A over

k with coefficients in M as the homology of

the total complex of a bicomplex Ξ∗,∗ which

we will now describe.
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Let Lie(n) be the n-th term of the operad

which codifies Lie-algebras over k, i.e., Lie(n)

is the free k-module generated by all Lie mo-

nomials in variables x1, . . . , xn such that each

variable appears exactly once.

There is a canonical action of the symmetric

group on n letters, Σn, on Lie(n) by permuting

the variables xi.

Let Lie(n)

�

be the k-linear dual of Lie(n). Then

the bicomplex for Gamma homology in bide-

gree (r; s) is de�ned as

�

r;s

(Ajk;M) = Lie(s+1)

�


k[�

s+1

]


r


A


(s+1)


M:
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Let Lie(n) be the n-th term of the operad

which codi�es Lie-algebras over k, i.e., Lie(n)

is the free k-module generated by all Lie mo-

nomials in variables x

1

; : : : ; x

n

such that each

variable appears exactly once.

There is a canonical action of the symmetric

group on n letters, �

n

, on Lie(n) by permuting

the variables x

i

.

Let Lie(n)∗ be the k-linear dual of Lie(n). Then

the bicomplex for Gamma homology in bide-

gree (r, s) is defined as

Ξr,s(A|k;M) =

Lie(s + 1)∗ ⊗ k[Σs+1]
⊗r ⊗A⊗(s+1) ⊗M.
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Differentials

The horizontal differential is the differential of

the bar construction, i.e., the elements of the

symmetric group are multiplied together or an

action of Σs+1 on the dual of the Lie monomi-

als is induced or the elements in the (s +1)-st

tensor power of the algebra A are permuted.

The vertical differential is more complicated...

Important is that both differential are homoge-

neous if k, A and M carry an internal grading.
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From now on let k etc be graded (e.g. k = E∗,
A = E∗E, M = E∗ or E∗E).

Following Robinson we denote by HΓq,i(A|k;M)

the q-th cohomology of the homomorphism

complex

Homi
A(Tot(Ξ∗,∗(A|k;A)), M)

whose morphisms lower internal degree by i.
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Properties of Gamma (co)homology For

sake of simplicity assume that A is k-projective.

• In good cases (like BP) there is a universal

coefficient spectral sequence with

E∗,∗2 = Ext∗,∗A (HΓ∗(A|k;A), M)

and converging to HΓ∗(A|k;M).

• Robinson and Whitehouse proved that Gam-

ma cohomology vanishes if A is étale over

k, and that Gamma cohomology satisfies

Flat Base Change and has a Transitivity

Sequence.

• Theorem[Basterra-R]

Gamma cohomology is isomorphic to the

obstruction groups which arise in the work

of Goerss and Hopkins.
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The case of BP

BP satisfies the necessary properties to app-

ly Robinson’s obstruction theory: BP is a ho-

motopy commutative MU -ring spectrum at all

primes, so we start with a 3-stage structure.

If we want to establish an (2p2 +2p−2)-stage

structure on BP , then we have to show that

Gamma cohomology vanishes in bidegrees

(n,2− n) for all 2p2 + 2p− 3 > n > 3.
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Ingredients of the proof

• Additivity

From BP∗BP = BP∗[t1, t2, . . .] we can de-

duce

HΓs,∗(BP∗BP |BP∗;BP∗BP) ∼=⊕
i>1

HΓs,∗(BP∗[ti]|BP∗;BP∗BP).

• Flat base change

HΓs,∗(BP∗[ti]|BP∗;BP∗BP) ∼=

BP∗⊗Z(p)
HΓs,∗(Z(p)[ti]|Z(p);Z(p))⊗Z(p)

BP∗BP .
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• Calculation of HΓs for polynomial alge-

bras [R-Robinson]

Summing over all internal degrees, we can

identify Gamma homology of Z(p)[ti] as⊕
t>0

HΓs,t(Z(p)[ti]|Z(p);Z(p))
∼= (HZ(p))s

HZ.
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Kochman’s result

Kochman provides an explicit basis of the p-

torsion in HZ∗HZ. The result is:

• There is only simple p-torsion.

• An explicit basis of (HZ(p))∗HZ over Z/pZ
consists of all expressions

P (n1, . . . , nt)ζ̄
e1
1 · . . . · ζ̄es

s

where t > 0, t 6= 1, 0 < n1 < . . . < nt,

ei > 0, t + e1 + . . . + es > 0 and ei = 0 for

i < n1. Here, the degree of the P (n1, . . . , nt)

is 2(pn1 + . . . + pnt)− t− 1 and the degree

of ζ̄i is 2(pi − 1).
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Cases t = 0 and t = 2.

For t = 0 the condition ei = 0 for i < n1 is vo-

id, therefore elements like ζ̄
e1
1 . . . ζ̄es

s arise with

at least one ei being positive. These elements

have total degree

degree(ζ̄e1
1 · . . . · ζ̄es

s ) =
s∑

i=1

ei(2pi − 2).

For t = 2 the element of lowest possible degree

in this case is P (1,2) with

degree(P (1,2)) = 2p+2p2−2−1 = 2p2+2p−3.
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Obstructions for extending an n-stage to an

(n + 1)-stage structure live in HΓn,2−n.

As we know that (HZ(p))∗HZ consists only of

simple p-torsion it suffices to consider Ext0,∗-
and Ext1,∗-terms in the Universal Coefficient

spectral sequence.

We know as well, that the internal degree can

only be of the form

P

N

i=1

�

i

(2p

i

� 2); conse-

quently possible values for n have to be of the

form

P

N

i=1

�

i

(2p

i

�2)+2 with the �

i

being non-

negative integers.
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Obstruction for extending an n-stage to an

(n+1)-stage structure live in H�

n;2�n

.

As we know that consists only of simple p-

torsion it su�ces to consider Ext

0;�

- and Ext

1;�

-

terms in the Universal Coe�cient spectral se-

quence.

We know as well, that the internal degree can

only be of the form
∑N

i=1 λi(2pi − 2); conse-

quently possible values for n have to be of the

form
∑N

i=1 λi(2pi−2)+2 with the λi being non-

negative integers.
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A degree count gives that the case t = 0 does

not give any obstruction classes, but t = 2

gives a possible class:

Here the corresponding equation of degrees

that has to be satisfied is

N∑
i=1

λi(2pi− 2)+1 =

2pn + 2pm − 3 +
M∑

j=1

ej(2pj − 2).

The generator P (1,2) is of lowest possible de-

gree and turns this requirement into

n− 1 =
N∑

i=1

λi(2pi − 2) + 1 =

2p + 2p2 − 3 = 2p− 2 + 2p2 − 2 + 1.

Therefore such a homology class could occur

for n = 2p2 + 2p− 2. �
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Dyer-Lashof operations

An n-stage structure on a spectrum E gives

rise to some Dyer-Lashof operations coming

from the skeleton filtration of the Barratt-Ecc-

les operad.

Proposition

If E has an n-stage structure with n > p then

there are Dyer-Lashof operations Qi on the Fp-

homology of E for i 6 n− p.
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The indecomposable element ap−1 in the group

(HFp)2p−2(MU ) is known to be in the image

of (HFp)2p−2(BP). Consider an element x =

x2p−2 in (HFp)2p−2(BP) with image ap−1.

For such an x the highest Dyer-Lashof opera-

tion Qi which we get out of the (2p2+2p−2)-

stage structure is Q2p.

Hu, Kriz and May proved that the inclusion

from BP to MU cannot be a map of commu-

tative S-algebras, and they used this particular

Dyer-Lashof operation to show that.

The image of a

p�1

under Q2p is a

(2p+1)(p�1)

up to decomposable elements, but there is no

indecomposable element in HF2p+1p-1BP. For

p = 2 a similar argument works using a

1

.
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The indecomposable element a

p�1

in HFp2p-

2MU is known to be in the image of HFp2p-

2BP. Consider an element x = x

2p�2

in HFp2p-

2BP with image a

p�1

.

For such an x the highest Dyer-Lashof opera-

tion Q

i

which we get out of the (2p

2

+2p�2)-

stage structure is Q

2p

.

Hu, Kriz and May proved that the inclusion

from BP to MU cannot be a map of commu-

tative S-algebras, and they used this particular

Dyer-Lashof operation to show that.

The image of ap−1 under Q2p is a(2p+1)(p−1) up

to decomposable elements, but there is no in-

decomposable element in (HFp)(2p+1)(p−1)BP .

For p = 2 a similar argument works using a1.
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Theorem

The Brown-Peterson spectrum BP cannot be

the Thom spectrum associated to an 4-fold

loop map to BSF at p = 2 resp. a (2p+4)-fold

loop map to BSF at any odd prime p.

Here, BSF is the classifying space of spherical

fibrations.

Again, The proof uses a Dyer-Lashof operation

argument.
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Proof

Assume there were such a map from an n-fold
loop space X to BSF

γ : X −→ BSF

which would allow to write BP as the Thom
spectrum associated to γ, BP = Xγ.

Lewis: Then BP is an En-spectrum.

Thom isomorphism: the homology of BP is iso-
morphic to the homology of X, and the latter
maps to the homology of BSF .

[Cohen-Lada-May]

If p = 2, the homology of BSF is

H∗(BSF) ∼= H∗(BSO)⊗ C∗,

whereas at odd primes, the homology of BSF
is isomorphic to

H∗(BSF) ∼= H∗W ⊗ C′
∗.
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The map from BSO to BSF is an infinite loop
map and it is this map which includes the ten-
sor factor H∗(BSO) into H∗(BSF ). Therefore
the tensor factor H∗(BSO) is closed under the
Dyer-Lashof operations.

A similar remark applies to W which is a sum-
mand of BO at odd primes, because there is a
splitting of infinite loop spaces

BO(p) ' W ×W⊥.

Consider x = x

2p�2

in H(BP) with P

1

�

(x) = 1.

This gives a non-trivial class in of degree 2p�2

in H(BSF).

There is no such class in the C

�

- resp. C

0

�

-part.

Therefore x has to have an image in H(BSO)

resp. H(W).

In both cases, x has to hit an indecomposable

element, whose Q

2p

-image gives a generator up

to decomposable elements. The lack of inde-

composables in H(BP) yields a contradiction.
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The map from BSO to BSF is an in�nite loop

map and it is this map which includes the ten-

sor factor H(BSO) into H(BSF). Therefore the

tensor factor H(BSO) is closed under the Dyer-

Lashof operations.

A similar remark applies to W which is a sum-

mand of BO at odd primes, because there is a

splitting of in�nite loop spaces

BO

(p)

'W �W

?

:

Consider x = x2p−2 in H∗(BP) with P1
∗ (x) = 1.

This gives a non-trivial class of degree 2p −
2 in H∗(BSF). There is no such class in the
C∗- resp. C′

∗-part. Therefore x has to have an
image in H∗(BSO) resp. H∗(W ).

In both cases, x has to hit an indecomposable
element, whose Q2p-image gives a generator up
to decomposable elements. The lack of inde-
composables in H∗(BP) yields a contradiction.

�
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