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Classical setting

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976),
Neisendorfer (1978): Algebraic models for rational nilpotent spaces
of finite type.
Quillen: cocommutative dg coalgebras, Lie algebras,...
(simply-connected case)
Sullivan: A∗PL(X ); a strictly dg commutative model for the
cochains of the space X .
Mandell (2006): Finite type nilpotent spaces are weakly equivalent
iff their singular cochains are quasi-isomorphic as E∞-algebras.
Thus, if you don’t want to restrict to rational homotopy theory,
then you need the full information of the E∞-structure on the
cochains!
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A strictly commutative model

Can we replace the E∞-algebra of cochains C ∗(X ; k) by a strictly
commutative model, if k is any commutative ring?
Yes!

Theorem [R-Sagave, 2020]:
There is a commutative I-chain algebra, AI(X ; k), such that

I The functors X 7→ hocolimIA
I(X ; k) and X 7→ C ∗(X ; k) from

simplicial sets to E∞-algebras are naturally quasi-isomorphic.

I Two nilpotent spaces X ,Y of finite type are weakly equivalent
iff AI(X ;Z) and AI(Y ;Z) are weakly equivalent as
commutative I-chain algebras.

Here, I is the (skeleton) of the category of finite sets and injective
functions.
What about the other models? So what about differential graded
cocommutative coalgebras and Lie-algebras?
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1. Basics on I-chains and their homotopy colimit

2. Symmetric sequences help!

3. A canonical E∞-operad detecting structure on the homotopy
colimit
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Let I be the category of finite sets and injections whose objects
are the sets {1, . . . , n} =: n for n ≥ 0 with 0 = ∅.

The morphism set I(n,m) consists of all injective functions from n
to m.
The category I is symmetric monoidal under concatenation of
sets: n tm := n + m. The initial object 0 is the unit of this
symmetric monoidal structure.
We call functors from I to the category of chain complexes I-chain
complexes and denote the corresponding functor category by ChI .
The Day convolution product gives ChI a symmetric monoidal
structure. Explicitly, for two I-chain complexes X∗,Y∗

(X∗ � Y∗)(n) = colimI(ptq,n)X∗(p)⊗ Y∗(q).

The unit is 11 with 11(n) := k for any n ≥ 0.

Definition: Commutative I-chain algebras are commutative
monoids in ChI .
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Free things

For every n ≥ 0 there is an evaluation functor Evn : ChI → Ch
sending an X∗ to the chain complex X∗(n).

These functors have left adjoints

F In : Ch→ ChI

with
F In (C∗)(m) =

⊕
I(n,m)

C∗ ∼= k{I(n,m)} ⊗k C∗.

As 0 is initial, F I0 (C∗) is the constant I-chain complex on C∗ and
F I0 (S0) = 11.

For any I-chain complex X∗, the free commutative I-chain algebra
on X∗ is

SI(X∗) =
⊕
n≥0

X�n∗ /Σn.
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The homotopy colimit, hocolimIX∗, of an I-chain complex X∗ is
the total complex associated to the bicomplex whose bidegree
(p, q)-part is ⊕

[fq |...|f1]∈NqI

Xp(source(f1))

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X∗ is a
commutative I-chain algebra, then hocolimIX∗ is an algebra over
the Barratt-Eccles operad.

If C∗ is a cocommutative comonoid in ChI , what can we say about
hocolimIC∗?
If L∗ is a Lie-algebra in ChI , what can we say about hocolimIL∗?
In general: not much, because hocolimI is lax monoidal, but not
lax symmetric monoidal!
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Symmetric sequences
There is an inclusion of categories i : Σ ⊂ I, where Σ is the
skeleton of finite sets (of the type n, n ≥ 0) and bijections.

Church-Ellenberg-Farb (2015): I-modules that are Kan extended
from Σ-modules are extremely important! They also help here:
If Z∗ ∈ ChΣ, then

i!(Z∗)(m) = colimi(n)↓mZ∗(n) ∼=
⊕
n≥0

k{I(n,m)} ⊗k[Σn] Z∗(n).

A typical example is F In (C∗) = i!F
Σ
n (C∗) with

FΣ
n (C∗)(m) =

{
0, m 6= n,⊕

Σn
C∗, m = n.

In this case:
Lemma: For all n ≥ 0 and all chain complexes C∗:

hocolimIF
I
n (C∗) ' C∗.
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If Z∗ ∈ ChΣ, then

i!(Z∗)(m) = colimi(n)↓mZ∗(n) ∼=
⊕
n≥0

k{I(n,m)} ⊗k[Σn] Z∗(n).

A typical example is F In (C∗) = i!F
Σ
n (C∗) with

FΣ
n (C∗)(m) =

{
0, m 6= n,⊕

Σn
C∗, m = n.

In this case:
Lemma: For all n ≥ 0 and all chain complexes C∗:

hocolimIF
I
n (C∗) ' C∗.
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Can we describe hocolimI i!Z∗ in general?

Lemma: The categories C (m) := m ↓ I form an operad in the
category of small categories.

Sketch of proof: The right-Σm action on C (m) is defined by
precomposition.
Let f : m→ n and gi : ki → ni be objects of C (m) and C (ki )
respectively.
We define the operadic composition functor

γ : C (m)× C (k1)× . . .× C (km)→ C (
m∑
i=1

ki )

on objects as

γ(f ; g1, . . . , gm) := (g̃f −1(1) t . . . t g̃f −1(n)) ◦ f (k1, . . . , km).

Here,

g̃f −1(j) =

{
id1, if f −1(j) = ∅,
g`, if f (`) = j .

The identity 1 ∈ C (1) is then defined to be id1.
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Example: Let f ∈ I(4, 6) be the map
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Corollary: The sequence (N(m ↓ I))m≥0 forms an operad in the
category of simplicial sets

and (k{N(m ↓ I)})m≥0 forms an operad
in the category of simplicial modules.
The associated chain complexes C∗({N(m ↓ I)}) form an
E∞-operad in the category of chain complexes.

Lemma: Let C∗ ∈ ChΣ. Then

hocolimI i!C∗ ∼=
⊕
m≥0

O(m)⊗Σm C∗(m).

Sketch of Proof:
Note that by definition we get hocolimI i!(C∗)p,q =⊕

[fq |...|f1]∈NIq i!(Cp)(sf1) ∼=
⊕

[fq |...|f1]∈NIq k{I(i(−), sf1)} ⊗Σ Cp.

This is isomorphic to⊕
m≥0

k{N(i(m) ↓ I)q} ⊗Σm Cp(m).
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This now yields:
Theorem:

I For all chain complexes C∗:

hocolimISI(F I1 (C∗)) ∼=
⊕
m≥0

O(m)⊗Σm C⊗m∗ .

I More generally: If (P(m))m≥0 is an operad in the category of
modules and if C∗ is a chain complex, then
hocolimI i!(P(FΣ

1 (C∗)) is the free O ⊗ P-algebra generated by
C∗.

In particular, hocolimI i!(Lie(FΣ
1 (C∗)) is a free O ⊗ Lie-algebra

generated by C∗.
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For comonoids we need the following observation:

Lemma: For every m ≥ 0 and every pair of numbers (p, q) with
p + q = m there is a Σp × Σq-equivariant map

ψp,q : O(m)→ O(p)⊗ O(q).

This yields:
Theorem: If X∗ is a cocommutative comonoid in ChΣ, then i!(X∗)
is a cocommutative monoid in I-chain complexes and
hocolimI i!(X∗) is an E∞ differential graded coalgebra.

Here, the structure maps use the diagonal on X∗ and the maps
from above. As the ψp,q’s use the Alexander-Whitney maps, this
coproduct is E∞-comonoidal.
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