Canonical E_{∞} -operads involved in homotopy colimits of \mathcal{I} -chain complexes

Birgit Richter

21/09/2021

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type. Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type. Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case) Sullivan: $A^*_{PL}(X)$; a strictly dg commutative model for the cochains of the space X.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.

Quillen: cocommutative dg coalgebras, Lie algebras,...

(simply-connected case)

Sullivan: $A^*_{PL}(X)$; a strictly dg commutative model for the cochains of the space X.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978): Algebraic models for rational nilpotent spaces of finite type.

Quillen: cocommutative dg coalgebras, Lie algebras,...

(simply-connected case)

Sullivan: $A^*_{PL}(X)$; a strictly dg commutative model for the cochains of the space X.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras. Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞} -structure on the cochains!

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring?

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Here, ${\cal I}$ is the (skeleton) of the category of finite sets and injective functions.

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Here, ${\cal I}$ is the (skeleton) of the category of finite sets and injective functions.

What about the other models?

Can we replace the E_{∞} -algebra of cochains $C^*(X; k)$ by a strictly commutative model, if k is any commutative ring? Yes!

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → C^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Here, ${\cal I}$ is the (skeleton) of the category of finite sets and injective functions.

What about the other models? So what about differential graded cocommutative coalgebras and Lie-algebras?

1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit

- 1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit
- 2. Symmetric sequences help!

- 1. Basics on $\mathcal I\text{-chains}$ and their homotopy colimit
- 2. Symmetric sequences help!
- 3. A canonical E_{∞} -operad detecting structure on the homotopy colimit

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m. Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =:$ n for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$.

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

 $(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p} \sqcup \mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

$$(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p} \sqcup \mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$$

The unit is 1 with 1(n) := k for any $n \ge 0$.

The morphism set $\mathcal{I}(n,m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

$$(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p} \sqcup \mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$$

The unit is 1 with 1(n) := k for any $n \ge 0$.

Definition: Commutative \mathcal{I} -chain algebras are commutative monoids in $Ch^{\mathcal{I}}$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

As 0 is initial, $F_0^{\mathcal{I}}(C_*)$ is the constant \mathcal{I} -chain complex on C_* and $F_0^{\mathcal{I}}(S^0) = \mathbb{1}$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathrm{Ch} \to \mathrm{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

As 0 is initial, $F_0^{\mathcal{I}}(C_*)$ is the constant \mathcal{I} -chain complex on C_* and $F_0^{\mathcal{I}}(S^0) = \mathbb{1}$.

For any \mathcal{I} -chain complex X_* , the free commutative \mathcal{I} -chain algebra on X_* is

$$\mathsf{S}^{\mathcal{I}}(X_*) = \bigoplus_{n \geq 0} X_*^{\boxtimes n} / \Sigma_n.$$

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles operad.

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles operad.

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, what can we say about hocolim $_{\mathcal{I}}C_*$?

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles operad.

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, what can we say about hocolim $_{\mathcal{I}}C_*$? If L_* is a Lie-algebra in $Ch^{\mathcal{I}}$, what can we say about hocolim $_{\mathcal{I}}L_*$?

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles operad.

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, what can we say about hocolim $_{\mathcal{I}}C_*$? If L_* is a Lie-algebra in $Ch^{\mathcal{I}}$, what can we say about hocolim $_{\mathcal{I}}L_*$? In general: not much, because hocolim $_{\mathcal{I}}$ is lax monoidal, but not lax symmetric monoidal!

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections.

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections. Church-Ellenberg-Farb (2015): \mathcal{I} -modules that are Kan extended from Σ -modules are extremely important!

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections. Church-Ellenberg-Farb (2015): \mathcal{I} -modules that are Kan extended from Σ -modules are extremely important! They also help here:

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections. Church-Ellenberg-Farb (2015): \mathcal{I} -modules that are Kan extended from Σ -modules are extremely important! They also help here: If $Z_* \in Ch^{\Sigma}$, then

$$i_!(Z_*)(\mathsf{m}) = \operatorname{colim}_{i(\mathsf{n})\downarrow\mathsf{m}} Z_*(\mathsf{n}) \cong \bigoplus_{n\geq 0} k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_{k[\Sigma_n]} Z_*(\mathsf{n}).$$

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections. Church-Ellenberg-Farb (2015): \mathcal{I} -modules that are Kan extended from Σ -modules are extremely important! They also help here: If $Z_* \in Ch^{\Sigma}$, then

$$i_!(Z_*)(\mathsf{m}) = \operatorname{colim}_{i(\mathsf{n})\downarrow\mathsf{m}} Z_*(\mathsf{n}) \cong \bigoplus_{n\geq 0} k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_{k[\Sigma_n]} Z_*(\mathsf{n}).$$

A typical example is $F_n^{\mathcal{I}}(C_*) = i_! F_n^{\Sigma}(C_*)$ with

$$F_n^{\Sigma}(C_*)(\mathsf{m}) = \begin{cases} 0, & m \neq n, \\ \bigoplus_{\Sigma_n} C_*, & m = n. \end{cases}$$

There is an inclusion of categories $i: \Sigma \subset \mathcal{I}$, where Σ is the skeleton of finite sets (of the type n, $n \ge 0$) and bijections. Church-Ellenberg-Farb (2015): \mathcal{I} -modules that are Kan extended from Σ -modules are extremely important! They also help here: If $Z_* \in Ch^{\Sigma}$, then

$$i_!(Z_*)(\mathsf{m}) = \operatorname{colim}_{i(\mathsf{n})\downarrow\mathsf{m}} Z_*(\mathsf{n}) \cong \bigoplus_{n\geq 0} k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_{k[\Sigma_n]} Z_*(\mathsf{n}).$$

A typical example is $F_n^\mathcal{I}(C_*) = i_! F_n^\Sigma(C_*)$ with

$$F_n^{\Sigma}(C_*)(\mathsf{m}) = \begin{cases} 0, & m \neq n, \\ \bigoplus_{\Sigma_n} C_*, & m = n. \end{cases}$$

In this case:

Lemma: For all $n \ge 0$ and all chain complexes C_* :

$$\operatorname{hocolim}_{\mathcal{I}} F_n^{\mathcal{I}}(C_*) \simeq C_*.$$

Can we describe hocolim_{\mathcal{I}} $i_!Z_*$ in general?

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

We define the operadic composition functor

$$\gamma \colon C(m) \times C(k_1) \times \ldots \times C(k_m) \to C(\sum_{i=1}^m k_i)$$

on objects as

$$\gamma(f;g_1,\ldots,g_m):=(\tilde{g}_{f^{-1}(1)}\sqcup\ldots\sqcup\tilde{g}_{f^{-1}(n)})\circ f(\mathsf{k}_1,\ldots,\mathsf{k}_m).$$

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

We define the operadic composition functor

$$\gamma \colon C(m) \times C(k_1) \times \ldots \times C(k_m) \to C(\sum_{i=1}^m k_i)$$

on objects as

$$\gamma(f; g_1, \ldots, g_m) := (\widetilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \widetilde{g}_{f^{-1}(n)}) \circ f(\mathsf{k}_1, \ldots, \mathsf{k}_m).$$

Here,

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

We define the operadic composition functor

$$\gamma \colon C(m) \times C(k_1) \times \ldots \times C(k_m) \to C(\sum_{i=1}^m k_i)$$

on objects as

$$\gamma(f; g_1, \ldots, g_m) := (\widetilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \widetilde{g}_{f^{-1}(n)}) \circ f(\mathsf{k}_1, \ldots, \mathsf{k}_m).$$

Here,

$$\widetilde{g}_{f^{-1}(j)} = \begin{cases} \operatorname{id}_1, & \text{if } f^{-1}(j) = \emptyset, \\ g_\ell, & \text{if } f(\ell) = j. \end{cases}$$

Sketch of proof: The right- Σ_m action on C(m) is defined by precomposition.

Let $f: m \to n$ and $g_i: k_i \to n_i$ be objects of C(m) and $C(k_i)$ respectively.

We define the operadic composition functor

$$\gamma \colon C(m) \times C(k_1) \times \ldots \times C(k_m) \to C(\sum_{i=1}^m k_i)$$

on objects as

$$\gamma(f; g_1, \ldots, g_m) := (\widetilde{g}_{f^{-1}(1)} \sqcup \ldots \sqcup \widetilde{g}_{f^{-1}(n)}) \circ f(\mathsf{k}_1, \ldots, \mathsf{k}_m).$$

Here,

$$\widetilde{g}_{f^{-1}(j)} = egin{cases} \operatorname{id}_1, & ext{if } f^{-1}(j) = arnothing, \ g_\ell, & ext{if } f(\ell) = j. \end{cases}$$

The identity $1 \in C(1)$ is then defined to be id_1 .

Example: Let $f \in \mathcal{I}(4, 6)$ be the map

Example: Let $f \in \mathcal{I}(4, 6)$ be the map

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \ge 0}$ forms an operad in the category of simplicial sets

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \ge 0}$ forms an operad in the category of simplicial sets and $(k\{N(m \downarrow \mathcal{I})\})_{m \ge 0}$ forms an operad in the category of simplicial modules.

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \ge 0}$ forms an operad in the category of simplicial sets and $(k\{N(m \downarrow \mathcal{I})\})_{m \ge 0}$ forms an operad in the category of simplicial modules.

The associated chain complexes $C_*({N(m \downarrow I)})$ form an

 E_{∞} -operad in the category of chain complexes.

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \ge 0}$ forms an operad in the category of simplicial sets and $(k\{N(m \downarrow \mathcal{I})\})_{m \ge 0}$ forms an operad in the category of simplicial modules. The associated chain complexes $C_*(\{N(m \downarrow \mathcal{I})\})$ form an

 E_{∞} -operad in the category of chain complexes.

Lemma: Let $C_* \in Ch^{\Sigma}$.

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \ge 0}$ forms an operad in the category of simplicial sets and $(k\{N(m \downarrow \mathcal{I})\})_{m \ge 0}$ forms an operad in the category of simplicial modules. The associated chain complexes $C_*(\{N(m \downarrow \mathcal{I})\})$ form an E_{∞} -operad in the category of chain complexes.

Lemma: Let $C_* \in Ch^{\Sigma}$. Then

hocolim_{$$\mathcal{I}$$} $i_! C_* \cong \bigoplus_{m \ge 0} O(m) \otimes_{\Sigma_m} C_*(m).$

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \ge 0}$ forms an operad in the category of simplicial sets and $(k\{N(m \downarrow \mathcal{I})\})_{m \ge 0}$ forms an operad in the category of simplicial modules. The associated chain complexes $C_*(\{N(m \downarrow \mathcal{I})\})$ form an E_{∞} -operad in the category of chain complexes.

Lemma: Let $C_* \in Ch^{\Sigma}$. Then

hocolim_{$$\mathcal{I}$$} $i_! C_* \cong \bigoplus_{m \ge 0} O(m) \otimes_{\Sigma_m} C_*(m).$

Sketch of Proof:

Note that by definition we get hocolim_{*I*}*i*₁(*C*_{*})_{*p*,*q*} = $\bigoplus_{[f_q|...|f_1] \in NI_q} i_!(C_p)(sf_1) \cong \bigoplus_{[f_q|...|f_1] \in NI_q} k\{I(i(-), sf_1)\} \otimes_{\Sigma} C_p.$

Corollary: The sequence $(N(m \downarrow \mathcal{I}))_{m \ge 0}$ forms an operad in the category of simplicial sets and $(k\{N(m \downarrow \mathcal{I})\})_{m \ge 0}$ forms an operad in the category of simplicial modules. The associated chain complexes $C_*(\{N(m \downarrow \mathcal{I})\})$ form an E_{∞} -operad in the category of chain complexes.

Lemma: Let $C_* \in Ch^{\Sigma}$. Then

hocolim_{$$\mathcal{I}$$} $i_! C_* \cong \bigoplus_{m \ge 0} O(m) \otimes_{\Sigma_m} C_*(m).$

Sketch of Proof:

Note that by definition we get $\operatorname{hocolim}_{\mathcal{I}} f_{i}(C_{*})_{p,q} = \bigoplus_{[f_{q}|\ldots|f_{1}]\in N\mathcal{I}_{q}} i_{i}(C_{p})(sf_{1}) \cong \bigoplus_{[f_{q}|\ldots|f_{1}]\in N\mathcal{I}_{q}} k\{\mathcal{I}(i(-), sf_{1})\} \otimes_{\Sigma} C_{p}.$ This is isomorphic to

$$\bigoplus_{m\geq 0} k\{N(i(\mathsf{m})\downarrow \mathcal{I})_q\} \otimes_{\Sigma_m} C_p(\mathsf{m}).$$

This now yields: **Theorem**:

► For all chain complexes *C*_{*}:

$$\operatorname{hocolim}_{\mathcal{I}}\operatorname{S}^{\mathcal{I}}(F_1^{\mathcal{I}}(C_*))\cong \bigoplus_{m\geq 0}O(m)\otimes_{\Sigma_m}C_*^{\otimes m}.$$

This now yields: **Theorem**:

► For all chain complexes C_{*}:

$$\operatorname{hocolim}_{\mathcal{I}}\mathsf{S}^{\mathcal{I}}(F_1^{\mathcal{I}}(C_*))\cong \bigoplus_{m\geq 0}O(m)\otimes_{\Sigma_m}C_*^{\otimes m}.$$

More generally: If (P(m))_{m≥0} is an operad in the category of modules and if C_{*} is a chain complex, then hocolim₁i₁(P(F₁^Σ(C_{*})) is the free O ⊗ P-algebra generated by C_{*}.

This now yields: **Theorem**:

► For all chain complexes C_{*}:

$$\operatorname{hocolim}_{\mathcal{I}}\mathsf{S}^{\mathcal{I}}(F_1^{\mathcal{I}}(C_*))\cong \bigoplus_{m\geq 0}O(m)\otimes_{\Sigma_m}C_*^{\otimes m}.$$

More generally: If (P(m))_{m≥0} is an operad in the category of modules and if C_{*} is a chain complex, then hocolim₁i₁(P(F^Σ₁(C_{*})) is the free O ⊗ P-algebra generated by C_{*}.

In particular, $\operatorname{hocolim}_{I} i_!(\operatorname{Lie}(F_1^{\Sigma}(C_*)))$ is a free $O \otimes \operatorname{Lie}$ -algebra generated by C_* .

Lemma: For every $m \ge 0$ and every pair of numbers (p, q) with p + q = m there is a $\Sigma_p \times \Sigma_q$ -equivariant map

 $\psi_{p,q}\colon O(m)\to O(p)\otimes O(q).$

Lemma: For every $m \ge 0$ and every pair of numbers (p, q) with p + q = m there is a $\sum_{p} \times \sum_{q}$ -equivariant map

$$\psi_{p,q}\colon O(m)\to O(p)\otimes O(q).$$

This yields:

Theorem: If X_* is a cocommutative comonoid in Ch^{Σ} , then $i_!(X_*)$ is a cocommutative monoid in \mathcal{I} -chain complexes and hocolim $_{\mathcal{I}}i_!(X_*)$ is an E_{∞} differential graded coalgebra.

Lemma: For every $m \ge 0$ and every pair of numbers (p, q) with p + q = m there is a $\Sigma_p \times \Sigma_q$ -equivariant map

$$\psi_{p,q}\colon O(m)\to O(p)\otimes O(q).$$

This yields:

Theorem: If X_* is a cocommutative comonoid in Ch^{Σ} , then $i_!(X_*)$ is a cocommutative monoid in \mathcal{I} -chain complexes and hocolim $_{\mathcal{I}}i_!(X_*)$ is an E_{∞} differential graded coalgebra.

Here, the structure maps use the diagonal on X_* and the maps from above.

Lemma: For every $m \ge 0$ and every pair of numbers (p, q) with p + q = m there is a $\sum_{p} \times \sum_{q}$ -equivariant map

$$\psi_{p,q}\colon O(m)\to O(p)\otimes O(q).$$

This yields:

Theorem: If X_* is a cocommutative comonoid in Ch^{Σ} , then $i_!(X_*)$ is a cocommutative monoid in \mathcal{I} -chain complexes and hocolim $_{\mathcal{I}}i_!(X_*)$ is an E_{∞} differential graded coalgebra.

Here, the structure maps use the diagonal on X_* and the maps from above. As the $\psi_{p,q}$'s use the Alexander-Whitney maps, this coproduct is E_{∞} -comonoidal.