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Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976),
Neisendorfer (1978): Algebraic models for rational nilpotent spaces
of finite type.

Quillen: cocommutative dg coalgebras, Lie algebras,...
(simply-connected case)

Sullivan: Af; (X); a strictly dg commutative model for the
cochains of the space X.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent
iff their singular cochains are quasi-isomorphic as E..-algebras.
Thus, if you don’t want to restrict to rational homotopy theory,
then you need the full information of the E,-structure on the
cochains!
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A strictly commutative model

Can we replace the E-algebra of cochains C*(X; k) by a strictly
commutative model, if k is any commutative ring?
Yes!

Theorem [R-Sagave, 2020]:
There is a commutative Z-chain algebra, AZ(X; k), such that
» The functors X + hocolimzAZ(X; k) and X +— C*(X; k) from
simplicial sets to E,.-algebras are naturally quasi-isomorphic.
» Two nilpotent spaces X, Y of finite type are weakly equivalent
iff AZ(X;Z) and AL(Y;Z) are weakly equivalent as
commutative Z-chain algebras.
Here, 7 is the (skeleton) of the category of finite sets and injective
functions.
What about the other models? So what about differential graded
cocommutative coalgebras and Lie-algebras?
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Plan for today:

1. Basics on Z-chains and their homotopy colimit
2. Symmetric sequences help!

3. A canonical E,-operad detecting structure on the homotopy
colimit
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Let 7 be the category of finite sets and injections whose objects
are the sets {1,...,n} =:n for n > 0 with 0 = @.

The morphism set Z(n, m) consists of all injective functions from n
to m.

The category Z is symmetric monoidal under concatenation of
sets: nLUm :=n+ m. The initial object O is the unit of this
symmetric monoidal structure.

We call functors from Z to the category of chain complexes Z-chain
complexes and denote the corresponding functor category by Ch”.
The Day convolution product gives Ch? a symmetric monoidal
structure. Explicitly, for two Z-chain complexes X, Y

(X* X Y*)(n) = COlimI(puq,n)X*(p) ® Y*(q)

The unit is 1 with 1I(n) := k for any n > 0.

Definition: Commutative Z-chain algebras are commutative
monoids in Ch”.
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Free things

For every n > 0 there is an evaluation functor Ev,,: ChT — Ch
sending an X, to the chain complex X, (n).
These functors have left adjoints

FZ.Ch— Ch*

with
FH(CI)m)= @ C.=k{Z(n,m)} & C..
Z(n,m)

As 0 is initial, FZ(C,) is the constant Z-chain complex on C, and
FF(S%) =1.
For any Z-chain complex Xj, the free commutative Z-chain algebra
on Xy is

SH(X.) = P XE" /5.

n>0
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The homotopy colimit, hocolimzX,, of an Z-chain complex X, is
the total complex associated to the bicomplex whose bidegree
(p, q)-part is

@ Xp(source(f1))

[fyl...|AJENGT

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X, is a
commutative Z-chain algebra, then hocolimz X, is an algebra over
the Barratt-Eccles operad.

If C, is a cocommutative comonoid in ChI, what can we say about
hocolimz C..?

If Ly is a Lie-algebra in ChZ, what can we say about hocolimzL,?
In general: not much, because hocolim; is lax monoidal, but not
lax symmetric monoidal!
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Symmetric sequences

There is an inclusion of categories i: ¥ C Z, where ¥ is the
skeleton of finite sets (of the type n, n > 0) and bijections.
Church-Ellenberg-Farb (2015): Z-modules that are Kan extended
from X-modules are extremely important! They also help here:
If Z, € Ch*, then

i(Z.)(m) = colim;n);mZe(n) 2 €D k{Z(n, m)} @4z, Ze(n).

n>0
A typical example is FZ(C,) = il FF(C.) with

0, m # n,

>(C,)(m) =
FE(C)(m) {@znc*, e

In this case:
Lemma: For all n > 0 and all chain complexes C,:

hocolimzFZ(C,) ~ C,.
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Can we describe hocolimziZ, in general?

Lemma: The categories C(m) := m | Z form an operad in the
category of small categories.

Sketch of proof: The right-X,, action on C(m) is defined by
precomposition.

Let f: m — n and g;: k; — n; be objects of C(m) and C(k;)
respectively.

We define the operadic composition functor

m

v: C(m) x Clky) x ... x Clkm) = CO_ ki)
i=1
on objects as

’y(f; 81, .- ,gm) = (é'ffl(l) U...u g'ffl(n)) o f(kl, RN km).
Here,
" idi, if F1(j) =@,
&) =

g, iff(l)=j.
The identity 1 € C(1) is then defined to be id;.

O
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Example: Let f € Z(4,6) be the map

6
5
4 4
3 3
2 2
l———1
and let g € 7(2,3) be 3
2——2
l————1
Then f oy g: Z(5,8) is the injection 8
7
6
5 5
4 4
3 3
2 2
1————1
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Corollary: The sequence (N(m | Z))m>0 forms an operad in the
category of simplicial sets and (k{N(m | Z)})m>0 forms an operad
in the category of simplicial modules.

The associated chain complexes C.({N(m | Z)}) form an
E..-operad in the category of chain complexes.

Lemma: Let C. € Ch>. Then

hocolimzi C. = @5 O(m) ®sx,, Cu(m).

m>0

Sketch of Proof:
Note that by definition we get hocolimzi(Cy)p,q =

)

Dir,..1a1enz, 1(Co)(sh) = DBy, ajenz, KZ(I(=), sh)} @5 Cp.

This is isomorphic to

P K{N(i(m) L T)g} @5, Co(m).

m>0
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This now yields:
Theorem:

» For all chain complexes C,:

hOCO|IstI FI @ O(m) ®s,, CE™.

m>0

» More generally: If (P(m))m>0 is an operad in the category of
modules and if C, is a chain complex, then
hocolim;ii(P(FE(Cy)) is the free O ® P-algebra generated by
C..

In particular, hocolim,ii(Lie(FZ(Cy)) is a free O ® Lie-algebra
generated by C,.
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For comonoids we need the following observation:

Lemma: For every m > 0 and every pair of numbers (p, g) with
p -+ q= mthereis a >, X ¥ 4-equivariant map

VYpq: O(m) — O(p) ® O(q).

This yields:

Theorem: If X, is a cocommutative comonoid in Ch*>, then i(Xy)
is a cocommutative monoid in Z-chain complexes and
hocolimzii(X,) is an E differential graded coalgebra.

Here, the structure maps use the diagonal on X, and the maps
from above. As the 9, 4's use the Alexander-Whitney maps, this
coproduct is E,,-comonoidal.



