Übungsaufgaben zur Linearen Algebra und Analytischen Geometrie I

Prof. Dr. Birgit Richter Wintersemester 2012/13

Blatt 4	4 Abgabetermin: I	Mittwoch	, 14. Nover	nber 2012
Aufgabe 16	Kreuzen Sie nur jeweils eine Antwort an, geben Sie keine Begründung at gibt es einen Punkt, für jeden Fehler einen Minuspunkt; insgesamt aber s			
		richtig	falsch	
	Es sei $f: G \to G'$ ein Gruppenhomomorphismus. Dann ist	Ü		
	$\ker(f) \subset G$ immer eine abelsche Untergruppe von G .			
	Die Menge $\{x \in \mathbb{Q} x > 0\}$ mit der Multiplikation in \mathbb{Q} ist eine Gruppe.			
	Ist G nicht abelsch, so auch jede Untergruppe H von G .			
	Die Gruppe Σ_3 ist abelsch.			
	Ist $f: G \to G'$ ein Gruppenhomomorphismus, so gilt für alle			
	$h \in \ker(f)$ und $g \in G$, dass $g \cdot h \cdot g^{-1} \in \ker(f)$.			
	Ist $f\colon G\to G'$ ein Gruppenhomomorphismus und ist G abelsch, dann			
	ist auch $Bild(f) \subset G'$ abelsch.			
Aufmaha 17				
Aufgabe 17	a) Es sei (G,\cdot) eine Gruppe und $H\subset G$ eine Teilmenge. Beweisen Untergruppe von G ist, wenn H nicht leer ist und es gilt, dass	Sie, dass	H genau	dann eine
	$h_1, h_2 \in H \Rightarrow h_1 \cdot h_2^{-1} \in H$.			
	b) Es sei $X=\{a,b,c\}$ eine Menge und die Mächtigkeit von X sei 3 kann es auf der Menge X geben? D.h. finden Sie Verknüpfungen auf X , erfüllen. Gibt es mehrere Möglichkeiten?		Axiome eine	
Aufgabe 18	Es sei G eine Gruppe und $g \in G$ ein fest gewähltes Element. Die Abbildu	ınσ	- '	_ 1 (111110)
ridigabe 10				
	$c_g \colon G o G,$			
	die einem $h \in G$ das Gruppenelement $g \cdot h \cdot g^{-1}$ zuordnet, heißt Konjuga a) Ist diese Abbildung immer ein Homomorphismus? Ist sie injektiv og b) Welche Abbildung ist c_g , falls G abelsch ist? c) Sind g_1 und g_2 zwei Elemente aus G . Was ist dann $c_{g_1 \cdot g_2}$?		ktiv?	1 Punkte
Aufgabe 19	Zeigen Sie, dass alle Homomorphismen $f: \mathbb{Z} \to \mathbb{Z}$ von der Form sind $f(x)$ $m \in \mathbb{Z}$. (Hinweis: Betrachten Sie $f(1)$.))=mx fi		
				2 Punkte
Aufgabe 20	Es sei R ein Ring mit Eins. Ein $r \in R$ heißt $Einheit$, falls es ein $s \in R$ gilt.	gibt, so d	$ass s \cdot r =$	$1_R = r \cdot s$
	Zeigen Sie, dass die Menge aller Einheiten in R, R^{\times} , eine Gruppe ist u aller Einheiten in den Ringen $\mathbb{Z}/n\mathbb{Z}$ für $n \in \mathbb{N}$.	nd besch	reiben Sie o	die Menge

3 Punkte