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Invariants for topological spaces or other geometric objects are often expressed in terms of homological
algebra. For instance, if A is an abelian group and X is a topological space, then the nth homology groups
of X with coefficients in A can be calculated as

Hn(X;A) ∼= Hn(X)⊗A⊕ Tor(Hn−1(X), A).

In topology you learn an elementary definition of the Tor-groups above that works in the context of abelian
groups (also known as Z-modules). As Z is a principal ideal domain, Tor-groups are particularly easy and

the Tor above is actually a TorZ1 (Hn−1(X), A) and there are no higher Tor-groups.
We will see a more general version that works for modules over arbitrary rings. In these situations there

can be Tor-groups TorR∗ (M,N) for arbitrary ∗ > 0.
In algebra, you have encountered groups, rings and fields. Algebraic objects also have invariants. For

every group G one can consider the homology groups of G, H∗(G), and for an algebra A over a commutative

ring k we can determine its Hochschild homology groups, HHk∗(A). These are invariants in the sense that

• if for two groups G1 and G2 we know that H∗(G1) 6∼= H∗(G2), then these two groups are not
isomorphic, and

• if for two k-algebras A1 and A2 the groups HHk∗(A1) and HHk∗(A2) are not isomorphic, then the
algebras are also not isomorphic.

These homology groups above have descriptions in terms of Tor-functors:

• For every group G

H∗(G) ∼= TorZ[G]
∗ (Z,Z),

• and if A is projective as a k-module we also have

HHk∗(A) ∼= TorA⊗kA
op

∗ (A,A).

So there are Tor-groups in these descriptions and other concepts that I’ll explain later. This might look
frightening, but in many cases these invariants are not that hard to calculate. In this lecture course we
will develop the tools for defining such homology groups and Tor-functors. We will also study methods for
calculating them and we will apply them in several examples. In particular, spectral sequences are important
tools for calculations but they can also used for proofs. The plan is as follow:

• Chapter I: Basics
• Chapter II: Derived functors
• Chapter III: Homology of groups
• Chapter IV: Hochschild homology
• Chapter V: Spectral sequences

Some notation: We denote by A ⊂ B the fact that A is a subset of B. That does not exclude A = B. The
natural numbers are denoted by N and N0 are the natural numbers and zero.
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CHAPTER I

Basics

I.1. Rings and modules

You all know what a ring is, but still:

Definition I.1.1.
(a) A set R with two maps

+: R×R→ R and

· : R×R→ R

is a ring, if
(1) (R,+) is an abelian group,
(2) · is associative, i.e., for all x, y, z ∈ R

x · (y · z) = (x · y) · z.

(3) For all x, y, z ∈ R:

x · (y + z) =x · y + x · z,
(x+ y) · z =x · z + y · z.

(4) There is a unit element 1 = 1R ∈ R, such that

x · 1 = x = 1 · x

for all x ∈ R.
(b) A ring is commutative, if for all x, y ∈ R

x · y = y · x.

As usual, we will often write xy for x · y.

Definition I.1.2.
• A map f : R→ R′ between two rings R and R′ is a ring homomorphism, if for all x, y ∈ R

(a) f(x+ y) = f(x) + f(y),
(b) f(xy) = f(x)f(y) and
(c) f(1R) = 1R′ .

We denote the set of all ring homomorphisms from R to R′ by rings(R,R′).
• If R is a commutative ring and if η : R → A is a ring homomorphism, with η(r)x = xη(r) for all
r ∈ R and x ∈ A, then we call A an R-algebra.

Remark I.1.3.
(a) There is the zero ring R = {0}. It is exceptional with the property that 0 = 1. There is a unique

ring homomorphism from every ring R′ to 0.
(b) Let R be any ring. There is a unique ring homomorphism χ : Z → R from the ring of integers to

R, determined by χ(1) = 1R.

Examples I.1.4.
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• Let R be a commutative ring. Important R-algebras are the polynomial ring, R[x], over R and the
ring of formal power series, R[[x]] over R. Elements of the latter are power series∑

i>0

aix
i

with ai ∈ R and the word ’formal’ indicates that we don’t consider convergence issues. You add
polynomials and power series by adding the coefficients for every xi. In both cases the multiplication
is given by ∑

i>0

aix
i

 ·
∑
j>0

bjx
j

 =
∑
n>0

 ∑
i+j=n

aibj

xn.

• Let (M, ·) be a monoid and let R be a commutative ring. The monoid algebra, R[M ] is the R-algebra
whose elements are of the form

∑
m∈M amm, with am ∈ R and m ∈ M , where only finitely many

am ∈ R are non-trivial. We define∑
m∈M

amm+
∑
m∈M

bmm :=
∑
m∈M

(am + bm)m

and
(
∑
m∈M

amm) · (
∑
m∈M

bmm) =
∑
m∈M

cmm,

with c` =
∑
mn=` ambn.

Later, we will mostly study group algebra, i.e., R-algebras R[G], where G is a group. These
algebras are crucial for defining and studying group homology.

• What is R[(N0,+)]? There is an isomorphism R[N0]→ R[x] that sends i to xi.
• The group algebra R[Z] is isomorphic to the ring of Laurent polynomials, R[x±1]. You’ll work out

the details in an exercise.
• If we take R = R and G = Q8 = {±1,±i,±j,±k} the quaternion group, then R[Q8] is not

isomorphic to the skew field of the quaternions, H.
• Let Cn be a cyclic group of order n with generator t. Then in R[Cn] we have

(1− t)(1 + t+ . . .+ tn−1) = 0,

and hence R[Cn] has zero divisors.
• For a group G and a commutative ring R the group algebra R[G] is commutative if and only if G

is abelian. If G is the trivial group {e}, then R[{e}] ∼= R.
• An open conjecture by Kaplansky is, that for a torsion-free group G and a field K the group algebra
K[G] has no non-trivial zero divisors.

Definition I.1.5. Let R be a ring. The opposite ring of R, Rop, has the same underlying abelian group as
R, so (R,+) = (Rop,+), but its multiplication is reversed: for r1, r2 ∈ R we define

r1 ·op r2 := r2r1,

where the latter denotes the multiplication of r2 and r1 in R.

Please check, that this is a ring. If R is commutative, then Rop ∼= R.
Modules are generalizations of vector spaces and of abelian groups. We allow arbitrary rings as scalars.

Definition I.1.6. Let R be a ring.

(a) A left R-module (or R-module for short) is an abelian group (M,+) together with a biadditive map
µ : R×M →M such that
• µ(1R,m) = m for all m ∈M .
• µ(r1, µ(r2,m)) = µ(r1r2,m) for all r1, r2 ∈ R and m ∈M .

We abbreviate µ(r,m) to rm.
(b) For two R-modules M and N we set

HomR(M,N) := {f : M → N, f R-linear}
to be the abelian group of R-module maps.
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Examples I.1.7.
• For every ring R the trivial abelian group 0 is an R-module.
• Every K-vector space is a K-module.
• A Z-module is nothing but an abelian group.
• If R is any ring, then it is an R-module, and Rn is an R-module for all n ∈ N.
• Every left-ideal I ⊂ R of any ring is an R-module.

Remark I.1.8. One can define right R-modules by requiring that they are left Rop-modules. Explicitly that
means that

µ(r1, µ(r2,m)) = µ(r1 ·op r2,m) = µ(r2r1,m).

Writing mr for µ(r,m) in this case gives the defining property

(mr2)r1 = m(r2r1).

Examples I.1.9.
(a) Let R be an arbitrary ring and consider the set of n× n-matrices over R, Mn(R). Then Mn(R) is

a ring with the usual addition of matrices and with matrix multiplication. The map

Mn(R)×Rn → Rn, (A, v) 7→ A · v
turns the R-module Rn into an Mn(R)-module. We can also define a right Mn(R)-module structure
on Rn by using

Rn ×Mn(R)→ Rn, (v,A) 7→ vt ·A,
so we multiply the row vector vt by A.

(b) A Z[G]-module is an abelian group M together with an additive group action.

Lecture 2

I.2. Constructions for rings and modules

You already know direct sums and products from other contexts.

Definition I.2.1. Let R be a ring and let (Mi)i∈I be a family of R-modules.

(a) The product
∏
i∈IMi is the R-module whose underlying set is∏

i∈I
Mi = {(mi)i∈I ,mi ∈Mi}.

The addition and R-multiplication of the R-module structure is defined componentwise.
(b) The direct sum

⊕
i∈IMi is the subset of

∏
i∈IMi of all (mi)i∈I such that mi = 0 for almost all

i ∈ I.

There are R-module homomorphisms

ij : Mj →
⊕
i∈I

Mi ⊂
∏
i∈I

Mi

for all j ∈ I and

πj :
∏
i∈I

Mi →Mj .

Often, we will denote elements in
⊕

i∈IMi by
∑
i∈I mi. This makes sense, because only finitely many mi

are non-trivial.
The R-modules

⊕
i∈IMi and

∏
i∈IMi have the following universal properties.

Proposition I.2.2. For all R-modules (Mi)i∈I and N there are isomorphisms

(a)

HomR(
⊕
i∈I

Mi, N) ∼=
∏
i∈I

HomR(Mi, N).
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(b)

HomR(N,
∏
i∈I

Mi) ∼=
∏
i∈I

HomR(N,Mi).

Proof. In (a) the isomorphism is given by sending an f ∈ HomR(
⊕

i∈IMi, N) to the family (f ◦ ij)j∈I
and its inverse is

(gi)i∈I 7→
∑
i∈I

gi ◦ πi.

In (b) we send an f ∈ HomR(N,
∏
i∈IMi) to the family (πi ◦ f)i∈I and the inverse maps a family (gi)i∈I

to the map that sends an n ∈ N to (gi(n))i∈I . �

You’ve also seen subobjects in several contexts:

Definition I.2.3. Let M be an R-module and let N ⊂ M be a subset. Then N is a R-submodule of M , if
(N,+) is a subgroup of the abelian group (M,+) and if rn is an element in N for all n ∈ N and r ∈ R.

Remark I.2.4. In this case N is itself an R-module and the inclusion map N ↪→M is an R-module map.

Proposition I.2.5. Let N be an R-submodule of M , then the factor group M/N := (M,+)/(N,+) is an
R-module by defining

r(m+N) := rm+N.

Proof. The R-module structure is well-defined. If m+N = m′ +N , then this is equivalent to m−m′
being an element of N . Therefore r(m−m′) ∈ N and therefore rm+N = rm′ +N . �

We call M/N the quotient of M by N .
As usual, there is a canonical projection π : M →M/N with π(m) = m+N .
You’ve also seen the analogue of the following result in other contexts.

Proposition I.2.6. Let f : M1 →M2 be R-linear and let N ⊂M1 be an R-submodule. If N ⊂ ker(f), then
there is a unique R-linear map f̄ : M1/N →M2 with f̄ ◦ π = f

M1
f
//

π

��

M2

M1/N

f̄

;;

Proof. As usual we have no choice but to define

f̄(m1 +N) = f̄(π(m1)) = f(m1).

�

We can deduce the usual isomorphism from this.

Corollary I.2.7. If f : M1 →M2 is an R-linear map, then the induced map

f̄ : M1/ ker(f)→ im(f)

is an isomorphism.

Definition I.2.8. Let N be an R-module and let M be a right R-module. The tensor product M ⊗R N is
the quotient of the free abelian group F generated by the elements elements (m,n) for m ∈ M and n ∈ N
modulo the subgroup U generated by

• ((m1 +m2), n)− (m1, n)− (m2, n) for m1,m2 ∈M and n ∈ N .
• (m, (n1 + n2))− (m,n1)− (m,n2) for m ∈M and n1, n2 ∈ N .
• ((mr), n)− (m, (rn)) for r ∈ R, m ∈M and n ∈ N .

We denote (m,n) + U by m⊗ n.
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Remark I.2.9. So you build the free abelian group⊕
m∈M,n∈N

Z{(m,n)}

and then you form the factor group with respect to the subgroup generated by the elements as in Definition
I.2.8. You force the elements m⊗ n to be additive in both components and to satisfy the relation mr⊗ n =
m⊗ rn. Note that the relations imply, for instance, that 0⊗ n = 0 = m⊗ 0 because

0⊗ n = (m−m)⊗ n = m⊗ n−m⊗ n = 0.

We collect some properties of tensor products:

Proposition I.2.10. Let M,Mi be right R-modules and N,Ni be left R-modules.

(a) 0⊗R N ∼= 0 ∼= M ⊗R 0.
(b) The ring R is a unit up to isomorphism:

R⊗R N ∼= N and M ⊗R R ∼= M.

(c) We have the following distributivity laws:(⊕
i∈I

Mi

)
⊗R N ∼=

⊕
i∈I

(Mi ⊗R N),

M ⊗

(⊕
i∈I

Ni

)
∼=
⊕
i∈I

(M ⊗R Ni).

(d) Tensor products are associative up to isomorphism, so if M is a right R1-module, P is a left R2-
module and N is a left R1-module and simultaneously a right R2-module such that (r1n)r2 = r1(nr2)
for all r1 ∈ R1, n ∈ N and r2 ∈ R2, then

(M ⊗R1 N)⊗R2 P
∼= M ⊗R1 (N ⊗R2 P ).

Proof. Properties (a) and (b) follow directly from the definition of the tensor product. For the first
claim in (c) we define a module map

ψ :
⊕
i∈I

(Mi ⊗R N)→

(⊕
i∈I

Mi

)
⊗R N.

By the universal property of the direct sum, it suffices to define

ψj := ψ ◦ ij : Mj ⊗R N →

(⊕
i∈I

Mi

)
⊗R N.

On a generator mj ⊗ n we set

ψj(mj ⊗ n) := ij(mj)⊗ n.
An inverse to ψ is then given by φ :

(⊕
i∈IMi

)
⊗R N →

⊕
i∈I(Mi ⊗R N). Note that we can write elements

in the source as linear combinations of elements of the form∑
j∈I

ij(mj)

⊗ n.
As this sum is finite, we can rewrite it as ∑

j∈I
ij(mj)⊗ n

and we define φ by

φ(ij(mj)⊗ n) := ij(mj ⊗ n).

The proof of the second claim in (c) is similar.
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For (d) we have to specify an R1-module structure on N ⊗R2 P and a right R2-module structure on
M ⊗R1 N and we define these as

r1(n⊗ p) := (r1n)⊗ p, (m⊗ n)r2 := m⊗ (nr2)

for r1 ∈ R1, r2 ∈ R2, m ∈M , n ∈ N and p ∈ P . This is well-defined because of the compatibility condition
that we required in (d). On generators (m⊗ n)⊗ p the isomorphism

α : (M ⊗R1
N)⊗R2

P →M ⊗R1
(N ⊗R2

P )

is then given by α((m⊗ n)⊗ p) = m⊗ (n⊗ p). �

Lecture 3

Examples I.2.11.
• For every finite n we have Rn =

∏n
i=1R =

⊕n
i=1R and therefore

Rn ⊗R Rm =

(
n⊕
i=1

R

)
⊗R

(
m⊕
i=1

R

)
∼=

n⊕
i=1

m⊕
j=1

R⊗R R ∼= Rnm.

• Let n,m ∈ N, then
Z/nZ⊗Z Z/mZ ∼= Z/gcd(n,m)Z.

This can be seen as follows: Let d = gcd(n,m) and define

f : Z/nZ⊗Z Z/mZ→ Z/dZ
as f (̄i⊗ j̄) := ij. Then f is well-defined and an surjective. Let x be a general element of Z/nZ⊗Z
Z/mZ, so

x = a1 ⊗ b1 + . . .+ an ⊗ bn
for some natural n and ai, bi ∈ Z. As the tensor product is bilinear, we can rewrite x as

x = (a1b1 + . . .+ anbn)1̄⊗ 1̄

and therefore Z/nZ ⊗Z Z/mZ is a cyclic group generated by 1̄ ⊗ 1̄. By definition we know that
f(a(1̄⊗ 1̄)) = ā is trivial if and only if d divides a. By the lemma of Bézout we find y, z ∈ Z with
d = yn+ zm and therefore a = αn+ βm for α, β ∈ Z. Hence

a(1̄⊗ 1̄) = αn̄⊗ 1̄ + β1̄⊗ m̄ = 0.

Therefore f is an isomorphism.
• For every natural number n, the tensor product Z/nZ ⊗Z Q is trivial. A generator of Z/nZ ⊗Z Q

is of the form ī⊗ a
b with i, a, b ∈ Z and b 6= 0. But then

ī⊗ a

b
= ī⊗ an

bn
= nī⊗ a

bn
= ni⊗ a

bn
= 0.

Therefore
∏
n∈N(Z/nZ⊗Z Q) ∼= 0.

In contrast,
(∏

n∈N Z/nZ
)
⊗ZQ) is not trivial. The element x := (1̄)n∈N is not a torsion element

and x⊗ 1 6= 0 ∈
(∏

n∈N Z/nZ
)
⊗Z Q). In particular, tensor products don’t distribute over products

in general.

Proposition I.2.12 (Universal property of tensor products). Let R be a ring, M a right R-module and N a
left R-module. Let P be an abelian group. We denote by BilR(M ×N,P ) the abelian group of all biadditive
maps f : M ×N → R with the property that f(mr, n) = f(m, rn) for r ∈ R, m ∈M and n ∈ N . Then

BilR(M ×N,P ) ∼= HomZ(M ⊗R N,P ).

Proof. For a biadditive f : M × N → P with f(mr, n) = f(m, rn) for r ∈ R, m ∈ M and n ∈ N we
define

φ(f) : M ⊗R N → P, m⊗ n 7→ f(m,n)

and for g ∈ HomZ(M ⊗R N,P ) we set

ψ(g)(m,n) := g(m⊗ n).

Then φ and ψ are inverse to each other and are group homomorphisms. �
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Remark I.2.13.
(a) We can define an R-module structure on HomZ(M,P ) as (r.f)(m) := f(mr) and an Rop-module

structure on HomZ(N,P ) as (g.r)(n) := g(rn). Then Proposition I.2.12 implies

HomZ(M ⊗R N,P ) ∼= HomRop(M,HomZ(N,P )) ∼= HomR(N,HomZ(M,P )).

(b) If R is a commutative ring, then M ⊗R N carries the structure of an R-module: We can define

r(m⊗ n) := mr ⊗ n = m⊗ rn.
This is well-defined because

(r1r2)(m⊗ n) = m(r1r2)⊗ n = m(r2r1)⊗ n = (mr2)r1 ⊗ n = r1(r2(m⊗ n)).

Thus, we won’t distinguish between left and right R-module structures in this case.
For any two R-modules M and N the abelian group HomR(M,N) is then an R-module via

(rf)(m) := f(rm) and M ⊗RN can then also be defined with the same additive relations and with
rm⊗ n = m⊗ rn replacing mr ⊗ n = m⊗ rn.

In addition to the properties from Proposition I.2.10 we obtain that the tensor product of two
modules is commutative in this case:

M ⊗R N ∼= N ⊗RM.

(c) So for a commutative ring R and R-modules M,N,P we obtain the string of isomorphisms of
R-modules

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P )) ∼= HomR(N,HomR(M,P )).

Definition I.2.14. If R1 and R2 are rings, then R1 ⊗Z R2 is a ring with multiplication

(r1 ⊗ r2)(r′1 ⊗ r′2) := r1r
′
1 ⊗ r2r

′
2.

For a family of rings (Ri)i∈I the product
∏
i∈I is a ring with componentwise addition and multiplication.

Note that for an infinite indexing set I the direct sum
⊕

i∈I Ri is not a ring in general because it doesn’t
have a unit element unless only finitely many Ris are not the zero ring.

Remark I.2.15. You can check that ring homomorphisms from a ring T to
∏
i∈I Ri are the same as∏

i∈I rings(T,Ri), using the universal property of the product.
If R1 and R2 are commutative, then R1 ⊗Z R2 is their coproduct in the sense that for any other com-

mutative ring T and every pair of ring homomorphisms f : R1 → T and g : R2 → T there is a unique ring
homomorphism ξ : R1 ⊗Z R2 → T such that the diagram

Z
χR2 //

χR1

��

R2

i2

��
g

��

R1
i1 //

f 00

R1 ⊗Z R2

ξ

$$
T

commutes. Here i1(r1) = r1 ⊗ 1R2 and i2(r2) = 1R1 ⊗ r2. You have no choice but to define ξ(r1 ⊗ r2) as
f(r1)g(r2).

I.3. Properties of modules

The following definitions are crucial for homological algebra.

Definition I.3.1. Let R be a ring. A sequence

. . .
fi+2
//Mi+1

fi+1
//Mi

fi //Mi−1

fi−1
// . . .

of R-modules Mi and fi ∈ HomR(Mi,Mi−1) for i ∈ Z is

• a chain complex, if fi ◦ fi+1 = 0 for all i and
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• exact, if im(fi+1) = ker(fi) for all i.

Remark I.3.2. So exact sequences are in particular chain complexes. Often, we will consider sequences that

are not necessarily indexed over the intergers. A sequence Mn
fn // . . .

f1 //M0 is exact, if im(fi+1) = ker(fi)
for all i.

You know short exact sequences of groups, so the following should be familiar.

Definition I.3.3. A short exact sequence of R-modules is an exact sequence of the form

0 //M ′
i //M

p
//M ′′ //0

of R-modules and R-linear maps.

To spell out what that means: The map i is a monomorphism, p is an epimorphism and im(i) = ker(p).

Examples I.3.4.
• For all n ∈ N the sequence

0 //Z ·n //Z π //Z/nZ //0

is a short exact sequence.
• Let p be a prime. The sequence

0 //Z/pZ
·p
//Z/p2Z π //Z/pZ //0

is a short exact sequence. Does that also work if we allow arbitrary natural numbers instead of a
prime p?

Proposition I.3.5. Let

0 //M ′
i //M

p
//M ′′ //0

be a short exact sequence of R-modules and R-linear maps. The following are equivalent:

(a) The map i has a retraction, i.e., there is an r ∈ HomR(M,M ′) with r ◦ i = idM ′ .
(b) The map p has a section, i.e., there is an s ∈ HomR(M ′′,M) with p ◦ s = idM ′′ .
(c) There is an isomorphism φ : M →M ′ ⊕M ′′ such that

M
p

%%

φ

��

0 // M ′

i

99

iM′ $$

M ′′ // 0

M ′ ⊕M ′′
pM′′

99

commutes. Here, iM ′ is the inclusion into the first summand and pM ′′(m
′,m′′) = m′′ for m′ ∈M ′

and m′′ ∈M ′′.

Definition I.3.6. In the situation of Proposition I.3.5 the sequence is called a short split-exact sequence.

Proof. If we assume (c), then we get retractions and sections as in (a) and (b) by setting r := r̃ ◦ φ
and s := φ−1 ◦ s̃, where r̃ : M ′ ⊕M ′′ → M ′ is the projection map r̃(m′,m′′) = m′ and s̃ : M ′′ → M ′ ⊕M ′′
is the inclusion map s̃(m′′) = (0,m′′).

Let’s assume that (a) holds. Note that we can write every m ∈M as

m = m− ir(m) + ir(m).

Here, ir(m) is in the image of i and m− ir(m) is in the kernel of r because

r(m− ir(m)) = r(m)− rir(m) = r(m)− r(m) = 0.
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We claim that im(i) ∩ ker(r) = {0}. Assume that m ∈ im(i) ∩ ker(r), so there is an m′ with i(m′) = m and
r(m) = 0. But then we get

0 = r(m) = ri(m′) = m′

so that m′ = 0. But then m = i(0) = 0.
Therefore M ∼= im(i)⊕ ker(r) via the map m 7→ (ir(m),m− ir(m)).
We know that im(i) ∼= M ′ because i is a monomorphism. We claim that the kernel of r is isomorphic

to M ′′. As p is an epimorphism we find for every m′′ ∈ M ′′ an m ∈ M with m′′ = p(m). Again, we write
m = m− ir(m) + ir(m) so

m′′ = p(m) = p(m− ir(m)) + pir(m).

But p ◦ i = 0, so we obtain that the restriction of p to the kernel of r is surjective.
Assume that p(a) = 0. Then by the exactness of the sequence we get that a is in the image of i, but the

intersection im(i) ∩ ker(r) is trivial, so p|ker(r) is also injective and hence an isomorphism.
The proof that (b) implies (c) is similar. �

Lecture 4

Definition I.3.7. An R-module M is free, if there is a set I such that M is isomorphic to
⊕

i∈I R. In this
case |I| is called the rank of M .

Remark I.3.8. Beware that the rank might not be a well-defined number if R is not commutative! You
will see an example as an exercise. A ring R has invariant basis number, IBN, if for all positive integers m
and n, Rm ∼= Rn implies that n = m.

Proposition I.3.9. Let P be an R-module. The following are equivalent:

(a) For all diagrams

P

f

��

N
π // Q // 0

with exact row there is an R-linear ξ : P → N with π ◦ ξ = f :

P

f

��

ξ

��

N
π // Q // 0

(b) There is an R-module P̃ such that P ⊕ P̃ is a free R-module.
(c) Every short exact sequence

0 //M ′
i //M

π //P //0

splits.
(d) For every short exact sequence

0 //M ′
f
//M

g
//M ′′ //0

the induced sequence

0 //HomR(P,M ′)
HomR(P,f)

//HomR(P,M)
HomR(P,g)

//HomR(P,M ′′) //0

is short exact.

Definition I.3.10. An R-module P satisfying the requirements of Proposition I.3.9 is called projective.
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Proof. Let us assume that (a) holds and consider the diagram

P

0 // M ′
i // M

π // P // 0.

By assumption we find an R-linear ξ : P →M with π ◦ ξ = idP and this gives the desired splitting as in (c).

Assume that (c) holds. Note that for every R-module M there is an R-linear surjective map from a free
module to M , for instance

% :
⊕
m∈M

R→M

where % sends the 1R in component m to m ∈M . In particular for P there is a free R-module F with

F
%
//P //0

and

0 //ker(%)
i //F

%
//P //0

is a short exact sequence. As we assume (c), we know that this sequence splits, so there is an s : P → F
with % ◦ s = idP and with Proposition I.3.5 we obtain F ∼= ker(%)⊕ P and this shows (b).

We will show that (b) implies (d). First assume that P is free, so P ∼=
⊕

i∈I R. Then

HomR(P,M) ∼= HomR(
⊕
i∈I

R,M) ∼=
∏
i∈I

HomR(R,M) ∼=
∏
i∈I

M.

For R-modules, an arbitrary product of short exact sequence is short exact [12, Appendix A.5]. Therefore,
if

0 //M ′
f
//M

g
//M ′′ //0

is a short exact sequence, the induced sequence is isomorphic to

0 //
∏
i∈IM

′
∏

i∈I f
//
∏
i∈IM

∏
i∈I g
//
∏
i∈IM

′′ //0

and is again short exact.
If we now assume that (b) holds, then we can choose an R-module P̃ with P ⊕ P̃ ∼=

⊕
i∈I R. From the

argument above we know that the induced sequence

0 //HomR(P ⊕ P̃ ,M ′)
HomR(P⊕P̃ ,f)

//HomR(P ⊕ P̃ ,M)
HomR(P⊕P̃ ,g)

//HomR(P ⊕ P̃ ,M ′′) //0

is exact. But this sequence again splits as a product of sequences because HomR(P⊕P̃ ,M) ∼= HomR(P,M)×
HomR(P̃ ,M), so the above sequence is isomorphic to the sequence
(I.3.1)

0 // HomR(P,M ′)× HomR(P̃ ,M ′)
HomR(P,f)×HomR(P̃ ,f)

// HomR(P,M)× HomR(P̃ ,M)

HomR(P,g)×HomR(P̃ ,g)
// HomR(P,M ′′)× HomR(P̃ ,M ′′) // 0

If one of the sequences

0 //HomR(P,M ′)
HomR(P,f)

//HomR(P,M)
HomR(P,g)

//HomR(P,M ′′) //0

or

0 //HomR(P̃ ,M ′)
HomR(P̃ ,f)

//HomR(P̃ ,M)
HomR(P̃ ,g)

//HomR(P̃ ,M ′′) //0

weren’t exact, the sequence (I.3.1) would not be exact.

14



For (d) implies (a), consider the diagram

P

f

��

N
π // Q // 0

which results in the short exact sequence

0 //ker(π) //N
π //Q //0.

If we assume that (d) holds, then the induced sequence

0 //HomR(P, ker(π))
HomR(P,i)

//HomR(P,N)
HomR(P,π)

//HomR(P,Q) //0

is a short exact sequence, so in particular, HomR(P, π) is surjective. Thus there is a ξ ∈ HomR(P,N) with
π ◦ ξ = f which proves (a). �

Examples I.3.11.
• Every free R-module is projective; just set P̃ = 0.
• If the ring R splits as R = R1×R2, then the R-modules R1×{0} and {0}×R2 are projective, but

they are not free. A P̃ for R1 × {0} is for instance {0} ×R2.
• There are several highly non-trivial examples coming from number theory. Consider the ring Z[

√
−5]

and consider the ideal I generated by 2 and 1 +
√
−5. We claim that I is not free as an R-module

but it is projective.
Assume that I were free. As I has two generators, we know that the rank is 6 2. If the rank

were 2, then 2 and 1 +
√
−5 would be Z[

√
−5]-linearly independent, but

3 · 2 = 6 = (1 +
√
−5)(1−

√
−5).

So the rank would have to be 1 and hence I would have to be a principal ideal. So assume that
I = (a) for some a. Then we know that a divides 2 and a divides 1 +

√
−5. We consider the

multiplicative norm map

N : Z[
√
−5]→ Z, x+ y

√
−5 7→ x2 + 5y2.

Then N(a) has to divide N(2) = 4 and N(1 +
√
−5) = 6, so N(a) = 2. But 2 is not of the form

x2 + 5y2 with integral x, y. So I is not free.

We define π : (Z[
√
−5])2 → I as π(z, w) := 2z + (1 +

√
−5)w. This map π has a section

s : I → (Z[
√
−5])2,

s(2α+ (1 +
√
−5)β) = (−2α− (1 +

√
−5)β, (1−

√
−5)α+ 3β).

Please check that s is R-linear. We calculate:

π ◦ s(2α+ (1 +
√
−5)β) = π(−2α− (1 +

√
−5)β, (1−

√
−5)α+ 3β)

= 2(−2α− (1 +
√
−5)β) + (1 +

√
−5)(1−

√
−5)α+ 3β)

= −4α− 2(1 +
√
−5)β + 6α+ 3(1 +

√
−5)β

= 2α+ (1 +
√
−5)β.

Therefore I is projective.

Note that tensoring with an R-module does not have to preserve exactness:

Example I.3.12. Consider the short exact sequence

0 //Z ·2 //Z π //Z/2Z //0.

If we tensor every term in this sequence with Z/2Z, then up to isomorphism we obtain the sequence

0 //Z/2Z ·2 //Z/2Z π //Z/2Z //0.
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But ·2 is the zero map, so this sequence is not exact any more.

Proposition I.3.13. Let M be a right R-module and let

0 //N ′
α //N

β
//N ′′ //0.

be a short exact sequence of left R-modules.

(a) Then the sequence

M ⊗R N ′
M⊗Rα //M ⊗R N

M⊗Rβ //M ⊗R N ′′ //0.

is exact.
(b) If M is projective as an Rop-module, then the sequence

0 //M ⊗R N ′
M⊗Rα //M ⊗R N

M⊗Rβ //M ⊗R N ′′ //0.

is a short exact sequence.

Lecture 5

Proof. For (a) we note that M ⊗R β is surjective: a generator m⊗ n′′ can be written as m⊗ β(n) for
some n ∈ N because β is surjective.

In order to show that im(M ⊗R α) = ker(M ⊗R β) we consider the cokernel

M ⊗R N/im(M ⊗R α) = coker(M ⊗R α).

Define f : M ⊗R N ′′ →M ⊗R N/im(M ⊗R α) as

f(m⊗ n′′) := m⊗ n+ im(M ⊗R α)

for a choice of n with β(n) = n′′. This map is well-defined: Assume that ñ also satisfies β(ñ) = n′′, then
n− ñ ∈ ker(β) = im(α) and hence

m⊗ n+ im(M ⊗R α) = m⊗ ñ+ im(M ⊗R α).

Define g : coker(M ⊗R α)→M ⊗N ′′ as

g(m⊗ n+ im(M ⊗R α)) := m⊗ β(n).

Then g is an inverse for f :

(f ◦ g)(m⊗ n+ im(M ⊗R α)) = f(m⊗ β(n)) = m⊗ n+ im(M ⊗R α)

and
(g ◦ f)(m⊗ n′′) = g(m⊗ n+ im(M ⊗R α)) = m⊗ β(n).

But as n was chosen with β(n) = n′′, this proves the claim.
For (b) we now assume that P is projective as an Rop-module. We have to show that P ⊗R α is still

injective. Let P̃ be an Rop-module such that P ⊕ P̃ =
⊕

i∈I R
op =: F is free. The diagram

F ⊗R N ′
F⊗Rα // F ⊗R N

⊕
i∈I N

′
⊕

i∈I α
//
⊕

i∈I N

commutes, so F ⊗R α is injective. Assume that P ⊗R α had a non-trivial kernel. As

F ⊗R α = (P ⊕ P̃ )⊗R α ∼= (P ⊗R α)⊕ (P̃ ⊗R α),

then F ⊗R α also had one. �

Definition I.3.14. An R-module M is flat, if (−)⊗RM preserves short exact sequences.

Remark I.3.15. Dual to Proposition I.3.13 one can show that projective R-modules are flat.

The converse is not true in general:
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Example I.3.16. The Z-module Q is flat, but not projective: Let f : M ′ → M be injective and assume
that

∑n
i=1m

′
i ⊗ ai

bi
is in the kernel of f ⊗Z Q, so

(f ⊗Z Q)(

n∑
i=1

m′i ⊗
ai
bi

) =

n∑
i=1

f(m′i)⊗
ai
bi

=

n∑
i=1

f(Nim
′
i)⊗

1

A
= 0

where the 0 6= A = b1 · . . . · bn arises from extending denominators. We can rewrite this as

m⊗ 1

A
for m = f(

n∑
i=1

Nim
′
i)

and this is trivial in M ⊗Z Q if and only if m is a torsion element. But then
∑n
i=1Nim

′
i was also a torsion

element, as f is injective, and then
n∑
i=1

m′i ⊗
ai
bi

= 0 ∈M ′ ⊗Z Q.

Therefore Q is flat. It is not projective because otherwise there exists an abelian group P̃ with

Q⊕ P̃ ∼=
⊕
i∈I

Z.

The elements in Q are divisible by any natural number, and so are the elements in Q⊕{0} ⊂ Q⊕P̃ ∼=
⊕

i∈I Z.
But as no element in Z \ {0} has this divisibility property, this can’t happen.

The following result is dual to Proposition I.3.9 and therefore we will not prove it:

Proposition I.3.17. Let I be an R-module. Then the following are equivalent.

(a) For every monomorphism f : U →M and every j ∈ HomR(U, I), there is a ζ : M → I with ζ◦f = j:

I

0 // U
f
//

j

>>

M

ζ

OO

(b) Every short exact sequence

0 //I //M //M ′′ //0

splits.
(c) For every short exact sequence

0 //M ′
α //M

β
//M ′′ //0

the induced sequence

0 //HomR(M ′′, I)
HomR(α,I)

//HomR(M, I)
HomR(β,I)

//HomR(M ′′, I) //0

is a short exact sequence.

�

Definition I.3.18. An R-module I satisfying the requirements of Proposition I.3.17 is called injective.

It suffices to check on of the defining properies of injective modules on ideals:

Theorem I.3.19 (Baer). An R-module N is injective if and only if for all left ideals J ⊂ R and all solid
diagrams

N

0 // J
i //

j
??

R

ζ

OO

there is an extension ζ as above. Here, i is the inclusion map.
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Proof. If N is injective, then it has the extension property as above in particular for i : J ↪→ R.
For the converse, assume that 0 //M ′ //M is exact and let f ∈ HomR(M ′, N). Without loss of

generality we may assume that M ′ ⊂M .
We define

P := {(K, g),M ′ ⊂ K ⊂M, g ∈ HomR(K,M), g extends f}.
M ′ //

f

��

K //

g
}}

M

N

Then P is non-empty and is a poset if we define

(K1, g1) 6 (K2, g2)⇔ K1 ⊂ K2, g2|K1
= g1.

The poset P satisfies the assumptions of Zorn’s Lemma and thus we obtain that P has a maximal element
g∞ : K∞ → N . Assume that K∞ (M , so there is an m ∈M \K∞. Define

J := {r ∈ R, rm ∈ K∞}.
This is a left ideal of R and we consider the diagram

0 // J //

h
��

R

N

where h(r) = g∞(rm). By assumption there is an extension of h, ζ : R → N , i.e., ζ|J(r) = g∞(rm). But
then we can consider the R-module K∞+R{m} together with the map g̃ : K∞+R{m} → N , g̃(x+ rm) :=
g∞(x) + ζ(r). Then the pair (K∞ + R{m}, g̃) is in P and it would be larger than (K∞, g∞). That’s a
contradiction and hence K∞ = M . �

You’ll learn about injective Z-modules in an exercise.

I.4. Categories

Examples of categories are the categories of sets and functions, groups and group homomorphisms, R-
modules with R-linear maps, topological spaces with continuous maps and many more. So for a certain
collection of objects you consider those kinds of maps, that preserve the structure that you have.

Our goal for this lecture course is to use a common language for recurring settings, so that we can
transfer constructions and proofs to several contexts without having to repeat them. For us the main focus
is on categories that are relevant for homological algebra; these will be mostly so called abelian categories.
For more background see for instance [9].

Definition I.4.1. A category C consists of

(a) A class of objects, ObC.
(b) For each pair of objects C1 and C2 of C, there is a set C(C1, C2). We call the elements of C(C1, C2)

the morphisms from C1 to C2 in C.
(c) For each triple C1, C2, and C3 of objects of C, there is a composition law

C(C1, C2)× C(C2, C3)→ C(C1, C3).

We denote the composition of a pair (f, g) of morphisms by g ◦ f .
(d) For every object C of C there is a morphism idC , called the identity morphism on C.

The composition of morphisms is associative, that is, for morphisms f ∈ C(C1, C2), g ∈ C(C2, C3), and
h ∈ C(C3, C4), we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f,
and identity morphisms do not change morphisms under composition, that is, for all f ∈ C(C1, C2),

idC2
◦ f = f = f ◦ idC1

.
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For f ∈ C(C1, C2) we call C1 the source of f , s(f), and C2 the target of f , t(f).
Typical examples of categories that you are familiar with are the following.

Examples I.4.2.
• The category of sets and functions of sets, Sets. In this case the objects form a proper class.
• The category of groups and group homomorphisms, Gr.
• The category of abelian groups and group homomorphisms, Ab.
• For a ring R, the category of (left) R-modules and R-linear maps, R-mod.

Definition I.4.3. A category C is small if its objects form a set.

Example I.4.4. Let X be a partially ordered set (poset), that is, a nonempty set X together with a binary
relation 6 on X that satisfies reflexivity, transitivity and antisymmetry.

We consider such a poset as a category, and by abuse of notation, we call this category X. Its objects
are the elements of X, and the set of morphisms X(x, y) consists of exactly one element if x 6 y. Otherwise,
this set is empty.

For instance if X = {a, b, c} with a 6 b and c 6 b, the corresponding category can be visualized as

c

��

a // b

In such diagrams one omits identity morphisms.

Lecture 6

There are several constructions that build new categories from old ones.

Definition I.4.5.
• We will need the empty category. It has no object and hence no morphism.
• If we have two categories C and D, then we can build a third one by forming their product C × D.

As the notation suggests, the objects of C × D are pairs of objects (C,D), with C an object of C
and D an object of D. Morphisms are pairs of morphisms:

C × D((C1, D1), (C2, D2)) = C(C1, C2)×D(D1, D2),

and composition and identity morphisms are formed componentwise:

(f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1), id(C,D) = (idC , idD).

This is indeed a category.
• Given two categories C and D, we can also form their disjoint union, C t D. Its objects consist of

the disjoint union of the objects of C and D. One defines

(C t D)(X,Y ) :=


C(X,Y ), if X,Y are objects of C,
D(X,Y ), if X,Y are objects of D,
∅, otherwise.

• Let C be an arbitrary category. Let Cop be the category whose objects are the same as the ones of
C but where

Cop(C,C ′) = C(C ′, C).

We denote by fop the morphism in Cop(C,C ′) corresponding to f ∈ C(C ′, C).
The composition of fop ∈ Cop(C,C ′) and gop ∈ Cop(C ′, C ′′) is defined as gop ◦ fop := (f ◦ g)op.

The category Cop is called the opposite category of C or the dual category of C.

Definition I.4.6. A functor F from a category C to a category D
• assigns to every object C of C an object F (C) of D.
• For each pair of objects C,C ′ of C, there is a function of sets

F : C(C,C ′)→ D(F (C), F (C ′)), f 7→ F (f).
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• The following two axioms hold:

F (g ◦ f) = F (g) ◦ F (f) for all f ∈ C(C,C ′), g ∈ C(C ′, C ′′),
F (idC) = idF (C)

for all objects C of C.

Like for morphisms, we use the arrow notation F : C → D to indicate a functor.

Examples I.4.7.
• The identity map on objects and morphisms of a category C define the identity functor

IdC : C → C.
• Let (−)ab : Gr→ Ab be the functor that assigns to a group G the factor group of G with respect to

its commutator subgroup: G/[G,G]. The resulting group is abelian, and the functor is called the
abelianization.

• Often, we will consider functors that forget part of some structure. These are called forgetful
functors. For instance, if K is a field, then every K-vector space V has an underlying abelian group
U(V ), and this gives rise to a forgetful functor

U : K-vect→ Ab.

Here, we used that K-linear maps are morphisms of abelian groups.
• To every set X we can assign the free R-module with basis X, F (X) =

⊕
x∈X R and this defines a

functor
F : Sets→ R-mod.

• The tensor product is a functor

(−)⊗R (−) : Rop-mod×R-mod→ Ab.

Definition I.4.8.
• Let C be a category and let (Ci)i∈I be a family of objects of C. An object C of C is a coproduct of

(Ci)i∈I if there are ij ∈ C(Ci, C) for all i ∈ I and for all objects E of C the map

φ : C(C,E)→
∏
i∈I
C(Ci, E), φ(f) := (f ◦ ij)j∈I

is a bijection of sets.
So for every family (fj : Cj → E)j∈I there exists a unique f ∈ C(C,E) with f ◦ ij = fj . The

object C is often denoted by
⊔
i∈I Ci.

• Dually, an object P of C is a product of (Ci)i∈I , if there are πj : P → Cj for all j ∈ I such that the
map

ψ : C(E,P )→
∏
i∈I
C(E,Ci), ψ(g) = (πi ◦ g)i∈I

is a bijection of sets.
So for every family (gj : E → Cj)j∈I there exists a unique g ∈ C(E,P ) with πj ◦ g = gj . The

object P is often denoted by
∏
i∈I Ci.

Beware that coproducts and product do not necessarily exist in a given category C:

Examples I.4.9.
• Consider the category of fields and morphisms of fields. Then this category does not have products.
• Let (X,6) be a poset. When does a family of objects, i.e.a family of elements of (X,6) have a

coproduct or a product?
• Let R be a ring. Then for a family of R-modules (Mi)i∈I the object

⊕
i∈IMi is the coproduct and∏

i∈IMi is the product of the (Mi)i∈I .

We will consider categories of R-modules, chain complexes and similar categories. These have additional
features:

Definition I.4.10. A category C is additive if
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(a) For all objects C1, C2 of C the set C(C1, C2) is an abelian group.
(b) The composition of morphisms is a bilinear map.
(c) The category C has all finite products and coproducts.

Remark I.4.11. The above conditions also guarantee the existence of coproducts and products in the case
where the indexing set I is empty. So what are these objects?

Let us denote the coproduct over the empty set by 0 and the corresponding product ∗. The universal
properties then say that for all objects C of C there is exactly one morphism in C(0, C) and in C(C, ∗).

In general, such objects are call initial (0) respectively terminal (∗) objects. In our case, our morphism
sets are abelian groups, so we obtain that

C(0, C) = {0} = C(C, ∗).
Hence we also have C(0, 0) = {0} and this implies that C(C, 0) = {0} as well because for any f ∈ C(C, 0) we
have id0 ◦ f = f , but as id0 is the generator of the trivial group, thus bilinearity yields

f = id0 ◦ f = (id0 + id0) ◦ f = f + f

and thus f = 0. Therefore 0 = ∗.
Beware that this is a special feature of additive categories. For the category of topological spaces, for

instance, the initial object is the empty space and any space with one point is terminal, so here these objects
are not isomorphic.

If the initial object has the same universal property as the terminal object, then these are called a zero
object. All these objects are unique up to isomorphism.

Definition I.4.12. Let C be an additive category and f ∈ C(A,B).

• An i ∈ C(K,A) is a kernel of f , if f ◦ i = 0 and for every h ∈ C(X,A) with f ◦ h = 0 there is a
unique g : X → K with i ◦ g = h.

• Dually, p ∈ C(B,C) is a cokernel of f , if p ◦ f = 0 and for every r ∈ C(B,D) with r ◦ f = 0 there is
a unique t : C → D with t ◦ p = r.

X

g

��

h

  

0

  

K
i // A

f
//

0

--

B

r

  

p
// C

t

��

D

Example I.4.13. For the category C = Ab and a homomorphism f : A→ B we can set K := {a ∈ A, f(a) =
0} and define i as the inclusion map. Then i is the kernel of f . For C := B/im(f) and the canonical projection
map p : B → C, we get p as the usual definition of the cokernel.

Let’s actually show that: Assume that we have an r : B → D with r ◦ f = 0. Then im(f) ⊂ ker(r) and
hence there is a unique r̄ : B/im(f)→ D with r̄ ◦ p = r, so this r̄ correponds to the t in the definition.

In a general additive category, kernels and cokernel don’t have to exist for every f . In the cases we are
interested in, they do:

Definition I.4.14. An additive category C is abelian if every morphism has a kernel and a cokernel and if
in addition

• If i is a monomorphism, then i = ker(coker(i)).
• If p is an epimorphism, then p = coker(ker(p)).

Here, i is a monomorphism, if i ◦ f1 = i ◦ f2 implies f1 = f2 for all f1, f2 whose targets are the source of
i, and dually p is an epimorphism, if f1 ◦ p = f2 ◦ p imples f1 = f2 for all f1, f2 whose sources are the target
of p. In an additive category it suffices to check for i ◦ f = 0 and for f ◦ p = 0.

Example I.4.15. The category R-mod is abelian for every ring R, and therefore also the category of right
R-modules.
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Definition I.4.16. Let C be an arbitrary category and let f ∈ C(C1, C2). If f can be factored as f = i ◦ p
where p is an epimorphism and i is a monomorphism, then i is called the image of f , im(f), and p is called
the coimage of f .

If they exist, then ker(f), coker(f), im(f) and the coimage of f are unique up to isomorphism. So we
can define exact sequence in any abelian category: A sequence of morphisms

0 // A
f
// B

g
// C // 0

is called a short exact sequence, if f is a monomorphism, g is an epimorphism and if im(f) = ker(g).

Definition I.4.17.
(a) Let C and D be additive categories. A functor F : C → D is additive if for any two objects C1, C2

of C, the map F : C(C1, C2)→ D(F (C1), F (C2)) is a group homomorphism.
(b) If C and D are abelian categories and F is an additive functor, then F is called

• right exact, if

F (C ′)
F (f)

//F (C)
F (g)
//F (C ′′) //0

is exact, for every short exact sequence

0 //C ′
f
//C

g
//C ′′ //0

in C.
• left exact, if

0 //F (C ′)
F (f)

//F (C)
F (g)
//F (C ′′)

is exact, for every short exact sequence

0 //C ′
f
//C

g
//C ′′ //0

in C.
• exact, if

0 //F (C ′)
F (f)

//F (C)
F (g)
//F (C ′′) //0

is exact for every short exact sequence

0 //C ′
f
//C

g
//C ′′ //0

in C.

Lecture 7

Examples I.4.18.
• Let M be an R-module, then the functor

(−)⊗RM : Rop-mod→ Ab

is right-exact. It is exact if and only if M is flat.
• The functor HomR(M,−) : R-mod→ Ab is left exact and it is exact if and only if M is projective.
• The functor HomR(−, N) : (R-mod)op → Ab is left-exact and exact if and only if N is injective: If

0 //M ′
f
//M

g
//M ′′ //0

is an exact sequence, then

0 //M ′′
gop
//M

fop

//M ′ //0

is exact in (R-mod)op. This is the starting point for our functor, so left-exactness says that

0 //HomR(M ′′, N)
HomR(g,N)

//HomR(M,N)
HomR(f,N)

//HomR(M ′, N)

is exact.
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The last map is an epimorphism, if and only if N is injective. That follows directly from the
definition of injectivity.

• The functors t : C ×C → C, (C1, C2) 7→ C1 tC2 and
∏

: C ×C → C, (C1, C2) 7→ C1

∏
C2 = C1×C2

are exact for C abelian. We give the argument for the coproduct.
Assume that

0 //C ′i
fi //Ci

gi //C ′′i
//0

is short exact.
So, f1 and f2 are monomorphisms, g1, g2 are epimorphisms, and fi is the kernel of gi. Note

that the maps f1 t f2 are determined by the universal property of the coproduct:
Consider the maps

C ′1
f1 //C1

i1 //C1 t C2 C2
i2oo C ′2.

f2oo

They induce the map f1 t f2.
This yields that the sequence

0 //C ′1 t C ′2
f1tf2 //C1 t C2

g1tg2 //C ′′1 t C ′′2 //0

is exact, because the properties of its maps are inherited from the ones of their summands.

Remark I.4.19. In a general abelian category arbitrary products and coproducts don’t have to be exact,
but they are exact in the category of R-modules.

I.5. Projective and injective resolutions

We can define projective and injective objects in any category:

Definition I.5.1.
• An object P in a category C is called projective if for every epimorphism f : M → Q in C and every
p : P → Q, there is a ξ ∈ C(P,M) with f ◦ ξ = p:

P
ξ

~~

p

��

M
f
// Q

• Dually, an object I in a category C is called injective if for every monomorphism f : U → M in C
and every j : U → I, there is a ζ ∈ C(M, I) with ζ ◦ f = j:

I

U
f
//

j

>>

M

ζ

OO

In order to do homological algebra, we need certain types of resolutions. For these, we need the following
notions:

Definition I.5.2. An abelian category C
(a) has enough projectives, if for every object M of C there is an epimorphism π : P → M with P

projective.
(b) has enough injectives, if for every object M of C there is a monomorphism i : M → I with I injective.

Examples I.5.3.
• The category Abf of finite abelian groups is an abelian category, but it has neither enough projectives

nor enough injectives. The abelian group Z is not an object of Abf and finite abelian groups are
not divisible.

• Let C be the category of abelian torsion groups, so the objects are all abelian groups A such that
for all a ∈ A there is an n ∈ N with na = 0. This category does not have enough projective objects,
but enough injectives: Every object can be embedded into some

∏
I Q/Z.

23



• Let C be the category of finitely generated abelian groups, Abfg. Then this category has enough
projectives but not enough injectives: Let A be an object in Abfg and assume that {s1, . . . , sn} is
a finite set of generators for A. Then there is an epimorphism

π :

n⊕
i=1

Z→ A.

Here π sends 1 in the ith component to si.
As non-trivial divisible groups are not finitely generated, we don’t have interesting injective

objects in this category.

Proposition I.5.4. Let R be a ring. The category of R-modules, R-mod, has enough projectives and
injectives.

Note that the following proof implicitly uses the characteristic map χR : Z→ R.

Proof. Without loss of generality assume that R 6= 0.
For the first claim we consider an arbitrary R-module M and the epimorphism

π :
⊕
m∈M

R→M

that sends 1R in component m ∈M to m ∈M .
It is more involved to show the second claim: For an arbitrary R-module M we define

I(M) := Ab(M,Q/Z).

This abelian group carries the structure of an Rop-module. For any homomorphisms f : M → Q/Z we set

(f.r)(m) := f(rm).

If M is free, so M =
⊕

i∈I R, then

I(M) = I(
⊕
i∈I

R) = Ab(
⊕
i∈I

R,Q/Z) ∼=
∏
i∈I

Ab(R,Q/Z).

Let N be any right R-module, then

Rop-mod(N,Ab(R,Q/Z)) ∼= Ab(N ⊗R R,Q/Z) ∼= Ab(N,Q/Z).

As N 7→ Ab(N,Q/Z) is an exact functor, so is

N 7→ Rop-mod(N,Ab(R,Q/Z))

and therefore Ab(R,Q/Z) is injective. Products of injective modules are injective and therefore I(
⊕

i∈I R)
is injective.

We now define

IM :=
∏

f∈I(M)

I(R) =
∏

f∈I(M)

Ab(R,Q/Z).

As a product of injectives IM is injective.
We define

i : M → IM , m 7→ (r 7→ f(rm)).

By construction i is R-linear, because for any r̃ ∈ R we obtain

i(r̃m) = (r 7→ f(rr̃m))

= (r 7→ g(rm))

with g(m) = f(r̃m) = (f r̃)(m).
We claim that i is injective: Assume that m 6= 0 and consider g : Z→M , g(1) = m = 1R.m. Then

ḡ : Z/ ker(g)→M

is injective and we consider Z/ ker(g) as an abelian subgroup of M consisting of the Z-multiples of m.
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In the case where ker(g) = 0 we get

Ab(Z/ ker(g),Q/Z) = Ab(Z,Q/Z) ∼= Q/Z.

So any choice of an non-trivial a ∈ Q/Z gives a non-trivial component of i(m).
If ker(g) 6= 0, then Z/ ker(g) ∼= Z/nZ for some 1 6= n ∈ N. We can embed Z/nZ into Q/Z by sending

1 + nZ to the class of 1
n . As Q/Z is injective, we can extend the map h : Z/nZ ↪→ Q/Z over M to a map

ζ : M → Q/Z. Then ζ is not the zero map and ζ(m) = h(1) 6= 0. Then ζ ∈ I(M) is a non-trivial component
of i(m). �

Definition I.5.5. Let C be an abelian category and let M be an object of C.
(a) A projective resolution of M is an exact sequence

. . . //Pi
fi //Pi−1

fi−1
// . . .

f1 //P0
ε //M //0,

such that all Pis are projective, fi ∈ C(Pi, Pi−1), ε ∈ C(P0,M).
(b) Dually, an injective resolution of M is an exact sequence

0 //M
η
//I0 g0 //I1 g1 //I2 g2 // . . .

such that all Ijs are injective, gj ∈ C(Ij , Ij+1), η ∈ C(M, I0).

Examples I.5.6. Let C be the category Ab. For every 2 6 n ∈ N

0 //Z ·n //Z π //Z/nZ //0

is a projective resolution of Z/nZ and

0 //Z //Q π //Q/Z //0

is an injective resolution of Z.

Lecture 8

Lemma I.5.7. If an abelian category C has enough projectives, then every object M of C has a projective
resolution. Dually, if C has enough injectives, then every M has an injective resolution.

Proof. We prove the claim for projective resolutions. The other proof is dual.
We start by choosing an epimorphism ε : P0 →M where P0 is projective. This is possible because C has

enough projectives. Consider the short exact sequence

0 //ker(ε)
i1 //P0

ε //M //0.

In general, ker(ε) is not projective but we can choose an epimorphism q1 : P1 → ker(ε) and we define
f1 : P1 → P0 as f1 := i1 ◦ q1.

P1
f1 //

q1
""

P0
ε // M // 0.

ker(ε)

i1

<<

By an iteration of this construction you get a projective resolution of M . �

Example I.5.8. Let C be the category of Z/4Z-modules and let M be Z/2Z. Then following the construction
in the proof above one gets a projective resolution of Z/2Z of infinite length

. . .
·2 //Z/4Z ·2 //Z/4Z ·2 //Z/4Z ε //Z/2Z.

Can there be a projective resolution of finite length in this case?
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Definition I.5.9. Let C be an abelian category. The category of chain complexes in C, Ch(C), has as
objects sequences of objects (Cn)n∈Z of C together with morphisms dn ∈ C(Cn, Cn−1) for n ∈ Z, such that
dn−1 ◦ dn = 0. We abbreviate such an object with (C∗, d) or just with C∗.

A morphism between two chain complexes C∗ and D∗ is called a chain map f : C∗ → D∗. It consists of
a sequence of momorphisms fn ∈ C(Cn, Dn) such that dDn ◦ fn = fn−1 ◦ dCn for all n, i.e., the diagram

Cn
dCn //

fn

��

Cn−1

fn−1

��

Dn

dDn // Dn−1

commutes for all n.

Definition I.5.10.
• The dn are differentials or boundary operators.
• The n-cycles of C∗ are

Zn(C∗) := ker(dn).

• The n-boundaries are

Bn(C∗) := im(dn+1).

• The nth homology of C∗ is defined via the short exact sequence

0 //Bn(C∗) //Zn(C∗) //Hn(C∗) //0.

Remark I.5.11. Note that chain maps f∗ map cycles to cycles and boundaries to boundaries. We therefore
obtain an induced map

Hn(f∗) : Hn(C∗)→ Hn(D∗).

In fact, Hn : Ch(C)→ C is a functor.

Examples I.5.12. We consider the category C = Ab.

• Consider

Cn =

{
Z, n = 0, 1

0 otherwise

and let d1 be the multiplication with N ∈ N, then

Hn(C) =

{
Z/NZ n = 0

0 otherwise.

• Take Cn = Z for all n ∈ Z and

dn =

{
idZ, n odd

0, n even.

What is the homology of this chain complex?
• Consider Cn = Z for all n ∈ Z again, but let all boundary maps be trivial. Then Hn(C∗) = Cn for

all n.

There is a chain map from the chain complex mentioned in the first example above to the chain complex
D∗ that is concentrated in degree zero and has D0 = Z/NZ.

(I.5.1) . . . // 0 //

��

Z ·n //

��

Z //

π

��

0 //

��

. . .

. . . // 0 // 0 // Z/NZ // 0 // . . .

Note, that H0(f) is an isomorphism and hence all Hi(f) are isomorphisms.

26



Definition I.5.13. A chain map f∗ : (C∗, d)→ (D∗, d
′) is a quasi-isomorphism if f∗ induces an isomorphism

on homology.

Definition I.5.14. A chain homotopy H between two chain maps f, g : C∗ → D∗ is a sequence of homo-
morphisms (Hn)n∈Z with Hn : Cn → Dn+1 such that for all n

dDn+1 ◦Hn +Hn−1 ◦ dCn = fn − gn.

. . .
dCn+2

// Cn+1

Hn+1

ww

dCn+1
//

fn+1

��

gn+1

		

Cn
Hn

ww

dCn //

fn

��

gn

		

Cn−1

Hn−1

ww

dCn−1
//

fn−1

��

gn−1

		

. . .

. . .
dDn+2

// Dn+1

dDn+1
// Dn

dDn // Dn−1

dDn−1
// . . .

If such an H exists, then f and g are (chain) homotopic: f ' g.

Remark I.5.15. Being chain homotopic is an equivalence relation.

Definition I.5.16. Let f : C∗ → D∗ be a chain map. We call f a chain homotopy equivalence, if there is a
chain map g : D∗ → C∗ such that g ◦ f ' idC∗ and f ◦ g ' idD∗ . The chain complexes C∗ and D∗ are then
chain homotopy equivalent.

Note, that such chain complexes have isomorphic homology. However, chain complexes with isomorphic
homology do not have to be chain homotopy equivalent. The chain map in (I.5.1) is an example of this
phenomenon.

Proposition I.5.17. If f∗, g∗ are chain homotopic, then they induces the same map on homology. Every
chain homotopy equivalence is a quasi-isomorphism.

Proof. Let (Hn)n∈Z be a chain homotopy from f∗ to g∗, so Hn : Cn → Dn+1 and dn+1◦Hn+Hn−1◦dn =
fn − gn. We define

hn := dn+1 ◦Hn +Hn−1 ◦ dn.
Then hn restricted to ker(dn) gives dn+1 ◦Hn. Thus on the level of homology groups hn induces the zero
map and therefore Hn(f∗) = Hn(g∗) for all n.

If f∗ is a chain homotopy equivalence with homotopy inverse g∗, then Hn(f∗) ◦Hn(g∗) = Hn(idD∗) and
Hn(g∗) ◦Hn(f∗) = Hn(idC∗) by the first part of the proof. �

Dual to chain complexes are cochain complexes.

Definition I.5.18. Let C be an abelian category. The category of cochain complexes in C has as objects
sequences of objects (Cn)n∈Z of C together with morphisms dn ∈ C(Cn, Cn+1) for n ∈ Z, such that dn+1◦dn =
0.

A morphism between two cochain complexes C∗ and D∗ is called a cochain map f : C∗ → D∗. It consists
of a sequence of momorphisms fn ∈ C(Cn, Dn) such that dn ◦ fn = fn+1 ◦ dn for all n.

You can shift back and forth between the two notions. If C∗ is a chain complex, then Ci := C−i is a
cochain complex and vice versa.
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CHAPTER II

Derived functors

Lecture 9

II.1. Definition of left and right derived functors

Homological algebra works because of the following crucial result:

Lemma II.1.1 (Fundamental Lemma of Homological Algebra). Let C be an abelian category and f ∈
C(M,N). Assume that

. . . //Pi
di //Pi−1

di−1
// . . .

d1 //P0
εM //M

is a chain complex such that the objects Pi are projective for all i and let

. . . //Ni
d′i //Ni−1

d′i−1
// . . .

d′1 //N0
εN //N //0

be an exact sequence.

(a) Then there is a chain map f∗, extending f , i.e., the diagram

. . . // Pi
di //

fi

��

Pi−1

di−1
//

fi−1

��

. . .
d1 // P0

εM //

f0

��

M

f

��

. . . // Ni
d′i // Ni−1

d′i−1
// . . .

d′1 // N0
εN // N

commutes.
(b) Any two such extensions f∗, g∗ of f are chain homotopic.

Remark II.1.2. There is, of course, a dual statement that ensures the existence of cochain maps from an
exact cochain complex to a cochain complex of injectives.

Proof. Consider the diagram

P0
εM //

f◦εM

&&

M

f

��

N0
εN // N.

As P0 is projective, we can lift the map f ◦ εM to an f0 : P0 → N0 such that εN ◦ f0 = f ◦ εM :

P0

f0

��

εM //

f◦εM

&&

M

f

��

N0
εN // N.

For the next step we consider the kernels

0 // M ′
ker(εM )

// P0

f0

��

εM //

f◦εM

&&

M

f

��

0 // N ′
ker(εN )

// N0
εN // N.
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As

εN ◦ f0 ◦ ker(εM ) = f ◦ εM ◦ ker(εM ) = 0,

the universal property of the kernel ensures that there is a morphism h : M ′ → N ′ with f0 ◦ ker(εM ) =
ker(εN ) ◦ h. As εM ◦ d1 = 0, the property of the kernel ensures that there is a g1 ∈ C(P1,M

′) that makes
the following diagram commutative:

P1

d1

��

g1

xx
M ′

ker(εM )
// P0

εM // M.

Similarly, as εN ◦ d′1 = 0, there is an h1 ∈ C(N1, N
′). with ker(εN ) ◦ h1 = d′1.

Consider the diagram

P1
p1 // M ′

h

��

N1
h1 // N ′.

As the image of d′1 is the kernel of εN , the map h1 is an epimorphism and therefore there is an f1 ∈ C(P1, N1)
with

h1 ◦ f1 = h ◦ g1.

As the diagram

P1
d1 //

g1
''

f1

��

P0

f0

��

M ′
ker(εM )

77

h

��

N1

d′1 //

h1
''

N0

N ′
ker(εN )

77

commutes, we can read off that

d′1 ◦ f1 = ker(εN ) ◦ h1 ◦ f1

= ker(εN ) ◦ h ◦ g1

= f0 ◦ ker(εM ) ◦ g1

= f0 ◦ d1.

This construction can be repeated for all n and this proves (a).
For (b) it suffices to show that every extension f∗ of the zero map 0 ∈ C(M,N) is chain homotopic to

the trivial chain map, i.e., we want (Hn)n>0 with

fn = d′n+1 ◦Hn +Hn−1 ◦ dn.

Consider

P0

f0

��

εM // M

0

��

N1

d′1 // N0
εN // N.
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As εN ◦ f0 = 0 and as the bottom row is exact the image of f0 has target ker(εN ) = im(d′1) and we can
lift f0 to N1, so there is an H0 : P0 → N1 with

d′1 ◦H0 = f0.

We know that

d′1(f1 −H0 ◦ d1) = f0 ◦ d1 − d′1 ◦H0 ◦ d1 = 0.

But as the complex N∗ → N is exact, there is an H1 ∈ C(P1, N2) with

d′2 ◦H1 = f1 −H0 ◦ d1

and this yields the desired

f1 = d′2 ◦H1 +H0 ◦ d1.

Again, an iteration proves the claim. �

Definition II.1.3. Let C and D be abelian categories and let F : C → D be additive.

(a) If F is right-exact and if C has enough projectives, then the left-derived functors, LnF , n > 0, of
F are defined as

(LnF )(M) := Hn(F (P∗)),

where P∗ is any projective resolution of M .
(b) Dually, if F is left-exact and if C has enough injectives, then the right-derived functors, RnF , n > 0,

of F are defined as

(RnF )(M) := Hn(F (I∗)),

where I∗ is any injective resolution of M .

Remark II.1.4.
• As F is additive, F (P∗) is a chain complex, but not exact in general. Similarly, F (I∗) is a cochain

complex and not exact in general.
• Lemma II.1.1 implies that (LnF )(M) and (RnF )(M) are well-defined up to isomorphism: Assume

that εM : P∗ →M and ε′M : P ′∗ →M are two projective resolutions of M , then there are chain maps
f∗ : P∗ → P ′∗ and g∗ : P ′∗ → P∗ compatibel with εM and ε′M . The composites f∗ ◦ g∗ and g∗ ◦ f∗
both extend the identity map of M and therefore

g∗ ◦ f∗ ' idP∗ and f∗ ◦ g∗ ' idP ′∗ .

As F is additive, this yields that F (g∗) ◦ F (f∗) ' idF (P∗) and F (f∗) ◦ F (g∗) ' idF (P ′∗)
. Therefore

HnF (P∗) ∼= HnF (P ′∗) for all n.

• LnF and RnF are actually functors. For an f ∈ C(M,N) and injective resolutions I∗ of M and J∗

of N we obtain a map of cochain complexes f∗

M
ηM //

f

��

I0 //

f0

��

I1 //

f1

��

. . .

N
ηN // J0 // J1 // . . .

by Lemma II.1.1. As F is an additive functor the induced map F (f∗) is again a map of cochain
complexes in D and we obtain induced maps

HnF (f∗) : (RnF )(M) = HnF (I∗)→ HnF (J∗) = (RnF )(N).

In degree zero, we do not loose any information:

Proposition II.1.5. In the situation of Definition II.1.3: L0F ∼= F if F is right-exact and R0F ∼= F if F
is left-exact.
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Proof. Let

0 // M
ηM // I0 d0 // I1 d1 // . . .

be an injective resolution of M . As F is left-exact, the sequence

0 // F (M)
F (ηM )

// F (I0)
F (d0)

// F (im(d0))

is exact. Therefore

F (ηM ) = ker(d0) ∼= H0(F (I∗))

which we identify with s(F (ηM )) = F (M).
In the dual case, the right-exactness of F gives that H0F (P∗) = F (P0)/im(F (d1)) ∼= F (M). �

Lecture 10

Two very important examples of derived functors are Tor- and Ext-functors.

Definition II.1.6. Let R be a ring.

(a) Let M be a right R-module and

FM : R-mod→ Ab, N 7→M ⊗R N.

Then TorR∗ (M,N) is defined as

TorRn (M,N) := (LnFM )(N).

(b) Let Ñ be an R-module and let GÑ be the functor

GÑ : R-mod→ Ab, N 7→ HomR(Ñ ,N).

Then Ext∗R(Ñ ,N) is defined as

ExtnR(Ñ ,N) := (RnGÑ )(N).

Example II.1.7. You will determine TorZ∗(A,B) for all finitely generated abelian groups and also the groups
Ext∗Z(Z/nZ,Z/mZ) for all natural numbers n and m in an exercise.

Example II.1.8. Let Cn be the cyclic group with n elements and we write Cn = 〈t〉 = {1, t, . . . , tn−1}. We
can view Z as a module over the group ring Z[Cn] by defining ti.x = x for all i. Then a projective resolution
of Z as a Z[Cn]-module is

. . .
N // Z[Cn]

1−t
// Z[Cn]

N // Z[Cn]
1−t
// Z[Cn]

ε // Z.

Here, ε(ti) = 1 for all i and N =
∑n−1
i=0 t

i. So in this case we actually find a free resolution. In order to

calculate TorZ[Cn]
∗ (Z,Z) we have to determine the homology groups of the complex

. . .
id⊗(1−t)

// Z⊗Z[Cn] Z[Cn]
id⊗N

// Z⊗Z[Cn] Z[Cn]
id⊗(1−t)

// Z⊗Z[Cn] Z[Cn].

As Z⊗Z[Cn] Z[Cn] ∼= Z, the above complex is isomorphic to the complex

. . .
·n // Z 0 // Z ·n // Z 0 // Z.

and hence the homology groups are

TorZ[Cn]
∗ (Z,Z) ∼=


Z, ∗ = 0,

Z/nZ, ∗ odd

0, otherwise.

Thus in this example we have infinitely many non-trivial Tor-groups.
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II.2. The long exact sequence for derived functors

Remark II.2.1. Working in the general context of abelian categories is cumbersome, because we cannot in
general assume that objects have elements. But now we want to do several proofs that use the method of
diagram chase, where you prove things by playing pin-ball with elements.

There is the famous Freyd-Mitchell theorem, saying that if C is a small abelian category, then there exists
a ring R and a (full, faithful and) exact functor F : C → R-mod. In this case we can think of the objects of
C as modules and these have element. However, note the smallness assumption.

From now on we will assume that our abelian categories are of this type. As we will mostly consider
categories of modules anyway, this assumption is not too absurd.

Definition II.2.2. If A∗, B∗, C∗ are chain complexes in an abelian category C and f∗ : A∗ → B∗, g : B∗ → C∗
are chain maps, then we call the sequence

A∗
f∗ //B∗

g∗ //C∗

exact, if the image of fn is the kernel of gn for all n ∈ Z.

Thus such an exact sequence of chain complexes is a commuting double ladder

...

d

��

...

d

��

...

d

��

An+1

fn+1
//

d

��

Bn+1

gn+1
//

d

��

Cn+1

d

��

An
fn //

d

��

Bn
gn //

d

��

Cn

d

��

An−1

fn−1
//

d��

Bn−1

gn−1
//

d��

Cn+1

d��

...
...

...

in which every row is exact.

Example II.2.3. Let p be a prime, then

0

��

0

��

0

��

Z id //

p

��

Z 0 //

p2

��

0

��

Z
p

//

π

��

Z π //

π

��

Z/pZ

id

��

Z/pZ
p
//

��

Z/p2Z π //

��

Z/pZ

��

0 0 0

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here, π denotes varying
canonical projection maps.
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Construction II.2.4. Assume that 0 //A∗
f
//B∗

g
//C∗ //0 is a short exact sequence of chain

complexes.
We define δ ∈ C(Hn(C∗), Hn−1(A∗)):
For a c ∈ Cn with dn(c) = 0, we choose a b ∈ Bn with gnb = c. This is possible because gn is surjective.

We know that dgnb = dc = 0 = gn−1db thus db is in the kernel of gn−1, hence it is in the image of fn−1.
Thus there is an a ∈ An−1 with fn−1a = db. We have that fn−2da = dfn−1a = ddb = 0 and as fn−2 is
injective, this shows that a is a cycle.

We define δ[c] := [a].

Bn 3 b �
gn // c ∈ Cn

An−1 3 a � fn−1
// db ∈ Bn−1

The map δ is called the connecting homomorphism.

Lemma II.2.5. The morphism δ is well-defined.

Proof. Assume that there are b and b′ with gnb = gnb
′ = c. Then gn(b− b′) = 0 and thus there is an

ã ∈ An with fnã = b− b′. Define a′ as a− dã. Then

fn−1a
′ = fn−1a− fn−1dã = db− db+ db′ = db′

because fn−1dã = db − db′. As fn−1 is injective, we get that a′ is uniquely determined with this property.
As a is homologous to a′ we get that [a] = [a′] = δ[c], thus the latter is independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary term to c, i.e.,
take c′ = c+ dc̃ for some c̃ ∈ Cn+1. Choose preimages of c, c̃ under gn and gn+1, i.e., b and b̃ with gnb = c

and gn+1b̃ = c̃. Then the element b′ = b+ db̃ has boundary db′ = db and thus both choices will result in the
same a.

Therefore δ : Hn(C∗)→ Hn−1(A∗) is well-defined. �

Proposition II.2.6. The morphism δ is natural, i.e., if

0 // A∗
f
//

α

��

B∗
g
//

β

��

C∗ //

γ

��

0

0 // A′∗
f ′
// B′∗

g′
// C ′∗ // 0

is a commutative diagram of chain maps in which the rows are exact then Hn−1(α) ◦ δ = δ ◦Hn(γ),

Hn(C∗)
δ //

Hn(γ)

��

Hn−1(A∗)

Hn−1(α)

��

Hn(C ′∗)
δ // Hn−1(A′∗)

Proof. Let c ∈ Zn(C∗), then δ[c] = [a] for a b ∈ Bn with gnb = c and an a ∈ An−1 with fn−1a = db.
Therefore, Hn−1(α)(δ[c]) = [αn−1(a)].

On the other hand, we have

f ′n−1(αn−1a) = βn−1(fn−1a) = βn−1(db) = dβnb

and
g′n(βnb) = γngnb = γnc

and we can conclude that by the construction of δ

δ[γn(c)] = [αn−1(a)]

and this shows δ ◦Hn(γ) = Hn−1(α) ◦ δ. �

With this auxiliary result at hand we can now prove the main result in this section:
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Proposition II.2.7. For any short exact sequence

0 //A∗
f
//B∗

g
//C∗ //0

of chain complexes we obtain a long exact sequence of homology groups

. . .
δ //Hn(A∗)

Hn(f)
//Hn(B∗)

Hn(g)
//Hn(C∗)

δ //Hn−1(A∗)
Hn−1(f)

// . . .

Lecture 11

Proof. a) Exactness at the spot Hn(B∗):
We have Hn(g) ◦Hn(f)[a] = [gn(fn(a))] = 0 because the composition of gn and fn is zero. This proves

that the image of Hn(f) is contained in the kernel of Hn(g).
For the converse, let [b] ∈ Hn(B∗) with [gnb] = 0. Then there is a c ∈ Cn+1 with dc = gnb. As gn+1 is

surjective, we find a b′ ∈ Bn+1 with gn+1b
′ = c. Hence

gn(b− db′) = gnb− dgn+1b
′ = dc− dc = 0.

Exactness gives an a ∈ An with fna = b − db′ and da = 0 and therefore fna is homologous to b and
Hn(f)[a] = [b] thus the kernel of Hn(g) is contained in the image of Hn(f).

b) Exactness at the spot Hn(C∗):
Let b ∈ Hn(B∗), then δ[gnb] = 0 because b is a cycle, so 0 is the only preimage under fn−1 of db = 0.

Therefore the image of Hn(g) is contained in the kernel of δ.
Now assume that δ[c] = 0, thus in the construction of δ, the a is a boundary, a = da′. Then for a

preimage of c under gn, b, we have by the definition of a

d(b− fna′) = db− dfna′ = db− fn−1a = 0.

Thus b − fna′ is a cycle and gn(b − fna′) = gnb − gnfna′ = gnb − 0 = gnb = c, so we found a preimage for
[c] and the kernel of δ is contained in the image of Hn(g).

c) Exactness at Hn−1(A∗):
Let c be a cycle in Zn(C∗). Again, we choose a preimage b of c under gn and an a with fn−1(a) = db.

Then Hn−1(f)δ[c] = [fn−1(a)] = [db] = 0. Thus the image of δ is contained in the kernel of Hn−1(f).
If a ∈ Zn−1(A∗) with Hn−1(f)[a] = 0. Then fn−1a = db for some b ∈ Bn. Take c = gnb. Then by

definition δ[c] = [a]. �

With the help of the results above, we can deduce a long exact sequence for derived functors:

Theorem II.2.8. Let C,D be abelian categories, assume that C has enough projectives and injectives and

let F be an additive functor. Let 0 //M ′
f
//M

g
//M ′′ //0 be a short exact sequence in C.

(a) If F is right-exact, then the sequence

. . .
(L1F )(g)

//(L1F )(M ′′)
δ //(L0F )(M ′)

(L0F )(f)
//(L0F )(M)

(L0F )(g)
//(L0F )(M ′′) //0

is exact.
(b) If F is left-exact, then the sequence

0 //(R0F )(M ′)
(R0F )(f)

//(R0F )(M)
(R0F )(g)

//(R0F )(M ′′)
δ //(R1F )(M ′)

(R1F )(f)
// . . .

is exact.

Proof. We prove the claim in (a); the one for (b) is dual.

Let P ′∗
εM′ //M ′ be a projective resolution of M ′ and let P ′′∗

εM′′ //M ′′ be one for M ′′. We set P0 :=
P ′0 ⊕ P ′′0 . Consider the diagram

0 // P ′0 //

εM′

��

P0
// P ′′0 //

εM′′

��

0

0 // M ′
f
// M

g
// M ′′ // 0.
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As P ′′0 is projective, we obtain a ξ ∈ C(P ′′0 ,M) with g ◦ ξ = εM ′′ . We define

εM : P0 = P ′0 ⊕ P ′′0 →M

by setting εM |P ′0 = f ◦ εM ′ and εM |P ′′0 = ξ. We view the resulting diagram

0

��

0

��

0

��

0 // P ′0 //

εM′

��

P0

εM

��

// P ′′0 //

εM′′

��

0

0 // M ′

��

f
// M

��

g
// M ′′

��

// 0

0 0 0

As a short exact sequence of chain complexes and thus we obtain a long exact sequence on homology groups

0 //ker(εM ′) //ker(εM ) //ker(εM ′′) //coker(εM ′) = 0.

In the next step we set again P1 := P ′1 ⊕ P ′′1 and we define d1 : P1 → ker(εM ) by setting d1|P ′1 = d′1 and by
using the projectivity of P ′′1 to obtain a morphism in C(P ′′1 , ker(εM )) that yields d1|P ′′1 . An iteration of this
argument for Pn = P ′n ⊕ P ′′n for all n gives a projective resolution of M such that

0 //P ′∗ //P∗ //P ′′∗ //0

is a short exact sequence of chain complexes. Note that by the very construction of Pn as P ′n⊕P ′′n we obtain
a splitting in every degree

0 //P ′n //Pn = P ′n ⊕ P ′′n //P ′′n //

sn
aa

0.

Applying F therefore gives a short exact sequence of chain complexes in D whose corresponding long exact
sequence of homology groups gives the desired long exact sequence for the left derived functors of F . �

Remark II.2.9.
• The long exact sequences in Theorem II.2.8 are natural with respect to morphisms of short exact

sequences.

• For Tor we get for every short exact sequence 0 //N ′
f
//N

g
//N ′′ //0 that

TorRn (M,N ′′)

// TorRn−1(M,N ′) // TorRn−1(M,N) // TorRn−1(M,N ′′)

// . . .

// TorR1 (M,N ′) // TorR1 (M,N) // TorR1 (M,N ′′)

// M ⊗R N ′ // M ⊗R N // M ⊗R N ′′ → 0

is a long exact sequence of abelian groups for every right R-module M .
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• Dually for Ext we obtain the long exact sequence

0 // HomR(Ñ ,N ′) // HomR(Ñ ,N) // HomR(Ñ ,N ′′)

// Ext1R(Ñ ,N ′) // . . .

Proposition II.2.10. For all R-modules N we have TorRn (M,N) = 0 for all n > 1 if and only if M is flat.

Proof. We know that M is flat if and only if M ⊗R (−) is an exact functor, so

0 //M ⊗R N ′ //M ⊗R N //M ⊗R N ′′ //0

is an exact sequence for all short exact sequences

0 //N ′ //N //N ′′ //0.

Assume that P∗ → N is a projective resolution. Then we claim that Hn(M⊗RP∗) ∼= 0 for all n > 1, because

Hn(M ⊗R P∗) =
ker(id⊗ dn : M ⊗R Pn →M ⊗R Pn−1)

im(id⊗ dn+1M ⊗R Pn+1 →M ⊗R Pn)

∼= M ⊗R
ker(dn : Pn → Pn−1)

im(dn+1Pn+1 → Pn)
as M is flat

= M ⊗R Hn(P∗)

=

{
M ⊗R N, for n = 0,

0, otherwise.

�

In particular, TorR∗ (M,N) = 0 for n > 1 if M is a projective right R-module.

II.3. Balancing Tor and Ext

Our next goal is to show that we can also calculate Tor and Ext groups by resolving the left variable, so

ExtnR(M,N) = Rn(N 7→ HomR(M,N)) ∼= Rn(M 7→ HomR(M,N))

and

TorRn (M,N) = Ln(M 7→M ⊗R N) ∼= Ln(N 7→M ⊗R N).

Note for the first claim that a projective object in (R-mod)op is an injective object in R-mod.

Definition II.3.1. Let C be an abelian category. A double complex in C is a Z×Z-graded family of objects
(Cij)i,j∈Z of C together with dh ∈ C(Cij , Ci−1,j), d

v ∈ C(Cij , Ci,j−1) for i, j ∈ Z such that

dh ◦ dh = 0 = dv ◦ dv

dh ◦ dv = −dv ◦ dh.

Morphisms of double complexes are families fij ∈ C(Cij , Dij) that commute with dh and dv.
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...

dv

��

...

dv

��

...

dv

��

. . . C00

dv

��

dh
oo C1,0

dv

��

dh
oo C2,0

dv

��

dh
oo . . .

dh
oo

C0,−1

dv��

dh
oo C1,−1

dv��

dh
oo C2,−1

dv��

dh
oo . . .

dh
oo

...
...

...

Lecture 12

In the following we denote the coproduct by ⊕.

Lemma II.3.2. If (C∗,∗, d
h, dv) is a double complex in an abelian category C that possesses all products and

coproducts, then the following Z-graded objects of C are chain complexes:

•
Tot(C∗,∗)n := Tot⊕(C∗,∗)n :=

⊕
p+q=n

Cp,q

and
•

Tot
∏

(C∗,∗)n :=
∏

p+q=n

Cp,q.

In both cases the differential d is given by taking dh + dv in every component.

�

This is actually a differential because of the defining properties of dh and dv from Definition II.3.1:

d2 = (dh + dv) ◦ (dh + dv) = dh ◦ dh + dh ◦ dv + dv ◦ dh + dv ◦ dv = 0.

The following two special cases are crucial for the properties of Tor and Ext:

Definition II.3.3. Let (C∗, d
C) be a complex of right R-modules and let (D∗, d

D) be a complex of left
R-modules. Then (C∗ ⊗R D∗, d⊗) is the chain complex Tot(E∗,∗) with Ep,q = Cp ⊗R Dq and for x ∈ Cp,
y ∈ Dq we have

dh(x⊗ y) = dC(x)⊗ y, and dv(x⊗ y) = (−1)px⊗ dD(y).

...

��

...

��

...

��

. . . C0 ⊗R D2

��

dC⊗id
oo C1 ⊗R D2

��

dC⊗id
oo C2 ⊗R D2

��

dC⊗id
oo . . .

dC⊗id
oo

. . . C0 ⊗R D1

��

dC⊗id
oo C1 ⊗R D1

��

dC⊗id
oo C2 ⊗R D1

dC⊗id
oo

��

. . .
dC⊗id
oo

. . . C0 ⊗R D0

��

dC⊗id
oo C1 ⊗R D0

��

dC⊗id
oo C2 ⊗R D0

dC⊗id
oo

��

. . .
dC⊗id
oo

...
...

...
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Thus, (C∗ ⊗D∗)n =
⊕

p+q=n Cp ⊗Dq and d⊗(x⊗ y) = dC(x)⊗ y + (−1)px⊗ dD(y) for x ∈ Cp and y ∈ Dq.

Definition II.3.4. If (C∗, d
C) is a chain complex and (I∗, δI) is a cochain complex, then C(C∗, I∗) is the

double cochain complex with

C(C∗, I∗)p,q := C(Cp, Iq)
and for f ∈ C(C∗, I∗)p,q we define

dh(f) := f ◦ dc, dv(f) = (−1)p+q+1δI ◦ f.

We consider the total cochain complex Tot
∏
C(C∗, I∗).

We will mostly consider the latter construction in the category of R-modules. In this case one denotes

Tot
∏
C(C∗, I∗) often by Hom(C∗, I

∗), so

Hom(C∗, I
∗)n :=

∏
p+q=n

HomR(Cp, I
q).

One often also considers the chain complex of homomorphisms between two chain complexes. This is doable
with our convention earlier: if (D∗, d

D) is a chain complex, then D−∗ is a cochain complex. For this case we
obtain

Hom(C∗, D∗)n := Hom(C∗, D∗)
n =

∏
p+q=n

HomR(Cp, D
q) =

∏
p+q=n

HomR(Cp, D−q) =
∏
p

HomR(Cp, Dp−n).

If you want a chain complex, you need to consider Hom(C∗, D∗)n =
∏
p HomR(Cp, Dp+n).

Lemma II.3.5. Let C∗,∗ be a double complex in an abelian category with products and coproducts and assume
that for all q ∈ Z the complex C∗,q is exact. If ther is an N ∈ Z with Cp,q = 0 for all p < N , then both chain

complexes Tot⊕(C∗,∗) and Tot
∏

(C∗,∗) are also exact.

Proof. We give the proof for Tot⊕, but it should be clear how to adapt the proof in the other case.
Without loss of generality we can assume N = 0 and it suffices to show that H0(Tot(C∗,∗)) ∼= 0.

Otherwise we can use the suspension functor that you know from the exercises.
By definition

Tot(C∗,∗)0 =
⊕
p∈Z

Cp,−p

and by our assumption this is equal to
⊕

p∈N0
Cp,−p. If x ∈ Tot(C∗,∗)0 then we can write it as x =

(x0, . . . , xm0
) with xi ∈ Ci,−i. Assume that d(x) = 0. We have to show that x is a boundary. The condition

d(x) = 0 is equivalent to

dh(x0) = 0, dh(xi) + dv(xi−1) = 0, 0 6 i 6 m0, and dv(xm0
) = 0.

�

?�

?�

?
. . .

?�

?

x0

x1

x2

xm0

•

•

•

•

•
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As the rows are exact, we find an y0 with dhy0 = x0 and iteratively there exist yis with dhyi = xi−dvyi−1

because

dh(xi − dv(yi−1)) = dhxi − dhdv(yi−1)

= dhxi + dvdh(yi−1)

and by iteration this is equal to

dhxi + dv(xi−1 + dv(yi−2)) = dhxi + dvxi−1 = 0.

Therefore y := (y0, . . . , ym0
) satisfies dy = x. �

Construction II.3.6. Let M be a right R-module and N be a left R-module. Assume that P∗ is a projective
resolution of M and Q∗ be a projective resolution of N . We set

T̃or
R

n (M,N) := HnTot(P∗ ⊗R Q∗).

Theorem II.3.7. For all n > 0:

T̃or
R

n (M,N) ∼= TorRn (M,N).

Proof. Let P∗ be a projective resolution with εM : P0 →M . Define the chain complex X∗ with

Xn =


Pn, n > 0,

M, n = −1,

0, otherwise.

Then X∗ is an exact sequence. For a projective resolution Q∗ of N each Qj is projective and hence X∗⊗RQj
is also exact for all j > 0. By Lemma II.3.5 we obtain that Tot(X∗ ⊗Q∗) is exact. The sequence

0 //Σ−1M //X∗ //P∗ //0

is a short exact sequence of chain complexes and it induces a short exact sequence of chain complexes

0 //Tot(Σ−1M ⊗R Q∗) //Tot(X∗ ⊗R Q∗) //Tot(P∗ ⊗R Q∗) //0

and a long exact sequence on the level of homology groups. As HnTot(X∗ ⊗R Q∗) ∼= 0 for all n, this implies
that the connecting homomorphism is an isomorphism

T̃or
R

n (M,N) = Hn(Tot(P∗ ⊗R Q∗)) ∼= Hn−1(Σ−1M ⊗R Q∗)

but

(Σ−1M ⊗R Q∗))n−1 = M ⊗Qn
and hence

Hn−1(Σ−1M ⊗R Q∗) ∼= TorRn (M,N).

�

Remark II.3.8.
• A similar argument shows that TorRn (M,N) = Hn(P∗ ⊗RN), where P∗ is a projective resolution of
M , thus it doesn’t matter whether you resolve M or N projectively.

• Using Hom instead of ⊗ yields the analogous result for Ext: If P∗ is a projective resolution of M
and I∗ is an injective resolution of N , then

ExtnR(M,N) ∼= Hn(HomR(M, I∗)) ∼= Hn(HomR(P∗, N)) ∼= Hn(HomR(P∗, I
∗)).

So for Ext you can resolve M projectively or N injectively or both.

40



II.4. Ext and extensions

If we take R = Z then TorZ1 (M,Z/mZ) detects the m-torsion in M because

TorZ1 (M,Z/mZ) = H1( . . . //0 //M ∼= M ⊗Z Z
M⊗R(m·)

//M ⊗Z Z ∼= M //0)

and this is the kernel of ·m : M →M , so the Tor is related to torsion.
For Ext the origin of the name comes from the following concept.

Definition II.4.1. Let M and N be R-modules.

(a) An extension of M by N is an exact sequence of R-modules

0 //N
i //X

π //M //0.

(b) Two extensions of M by N 0 //N
i //X

π //M //0 and 0 //N
i′ //X ′

π′ //M //0
are equivalent, if there is an isomorphism φ : X → X ′ such that the diagram

X

π

!!

φ

��

0 // N

i

>>

i′   

M // 0

X ′
π′

==

commutes.
(c) An extension is split if it is equivalent to

0 //N
i1 //N ⊕M π2 //M //0.

Lecture 13

Examples II.4.2. Let p be a prime. The sequence

0 // Z/pZ i1 // Z/pZ× Z/pZ π2 // Z/pZ // 0

is a split extension of Z/pZ by Z/pZ but

0 // Z/pZ // Z/p2Z // Z/pZ // 0

is not split.

Lemma II.4.3. If Ext1R(M,N) ∼= 0, then every extension of M by N is split.

Proof. Let

(II.4.1) 0 //N
i //X

π //M //0.

be an arbitrary extension of M by N and assume that Ext1R(M,N) ∼= 0. As (II.4.1) is a short exact sequence
of modules, it induces a long exact sequence when we apply Ext∗R(M,−) by Theorem II.2.8, so in particular

HomR(M,X)→ HomR(M,M)→ Ext1R(M,N)

is exact. As Ext1R(M,N) ∼= 0, the map HomR(M,X)→ HomR(M,M) is surjective and we find a lift of idM ,
s : M → X. But then

0 //N
i //X

π //M //

s

��
0

is a split exact sequence. �

We want to strengthen the above result to an ’if and only if’. To this end we introduce another useful
concept from category theory.
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Definition II.4.4. Let C be a category.

(a) Let f ∈ C(A,C) and g ∈ C(B,C). An object P of C together with morphisms %A ∈ C(P,A) and
%B ∈ C(P,B) with f ◦%A = g◦%B is a pullback of f and g, if for every object W of C with morphisms
αA ∈ C(W,A) and αB ıC(W,B) with f ◦αA = g ◦αB there is a unique ξ ∈ C(W,P ) with %A ◦ ξ = αA
and %B ◦ ξ = αB .

W αB

��

αA

$$

∃!ξ

  

P
%B //

%A

��

B

g

��

A
f
// C

(b) Dually, for f ∈ C(A,B) and g ∈ C(A,C) an object P together with morphisms iB ∈ C(B,P ) and
iC ∈ C(C,P ) satisfying iB ◦ f = iC ◦ g is a pushout of f and g if for all objects D of C with
morphisms jB ∈ C(B,D) and jC ∈ C(C,P ) satisfying jB ◦ f = jC ◦ g there is a unique ζ : P → D
with ζ ◦ iB = jB and ζ ◦ iC = jC .

A
f
//

g

��

B

iB
�� jB

��

C
iC //

jC //

P
∃!ζ

  

D

Remark II.4.5. If they exist, then pullbacks and pushouts are unique up to isomorphisms. They are objects
that are ’as close to the defining diagram as possible’.

These two concepts are ubiquitous in mathematics:

Examples II.4.6.
• If C is the category of sets, Sets, and f : X → Z and g : Y → Z are functions, then the pullback of
f and g is the set

P = X ×Z Y := {(x, y) ∈ X × Y, f(x) = g(y)}

together with the projection maps

%X = πX : X ×Z Y → X, %Y = πY : X ×Z Y → Y.

P = X ×Z Y
πY //

πX

��

Y

g

��

X
f

// Z.

This pullback always exists, but it can be empty. Take for instance two inclusions X ↪→ Z and
Y ↪→ Z with disjoint image.

• In the same category the pushout of f : X → Y and g : X → Z is given by

X

f

��

g
// Z

iZ
��

Y
iY // Y t Z/(f(x) ∼ g(x)).

• In the category of R-modules, R-mod, the pullback of two R-linear maps f : A→ C and g : B → C
is again A×C B as in the category of sets.
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• For two f ∈ R-mod(A,B), g ∈ R-mod(A,C) the pushout is the R-module P := B ⊕ C/U where U
is the submodule generated by (f(a),−g(a)) for a ∈ A.

With these constructions at hand we can now state the main theorem of this section:

Theorem II.4.7. Let M and N be two R-modules. There is a bijection between the set of equivalence classes
of extension of M by N and Ext1R(M,N).

In the following proof we omit certain justifications that maps are actually well-defined. Otherwise, the
proof is complete.

Sketch of proof. We denote by E(M,N) the set of equivalence classes of extensions of M by N .
Let P∗ be a projective resolution of M with εM : P0 →M and let

0 //N
i //X

π //M //0

be an extension of M by N . By the fundamental lemma (Lemma II.1.1) there are maps α0 : P0 → X and
α1 : P1 → N making the diagram

P2
d2 //

��

P1

α1

��

d1 // P0
εM //

α0

��

M

0 // N
i // X

π // M

commutative. The equation α1 ◦ d2 = 0 should be read as

HomR(d2, N)(α1) = 0

hence α1 ∈ HomR(P1, N) is a 1-cocycle in the cochain complex whose cohomology is Ext∗R(M,N).

We define ψ : E(M,N)→ Ext1R(M,N) by setting

ψ[0 //N
i //X

π //M //0] := [α1].

You check that ψ is well-defined, i.e., it is independent of the choice of P∗, of the choice of α∗ and of
the representative of the equivalence class of the extensions.

For the inverse of ψ we observe that for a class [α1] ∈ Ext1R(M,N) the representative α1 is a cocycle, so
α1 ◦ d2 = 0. Therefore α1 factors through

α1 : P1/im(d2)→ N.

Let X be the pushout of

P1/im(d2)
d̄1 //

ᾱ1

��

P0

j

��

N
i // X.

We define φ : Ext1R(M,N)→ E(M,N) as

φ[α1] := [0 //N
i //X

π //M //0]

where π : X →M is the R-linear map that exists thanks to the universal property of the pushout:

P1/im(d2)
d̄1 //

ᾱ1

��

P0

j

�� εM

��

N
i //

0 ..

X

π

!!

M.
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We show that 0 //N
i //X

π //M //0 is an extension. You know that X = N ⊕ P0/U , so if
i(n) = [(n, 0)] = [(0, 0)], then this is exactly the case if n = ᾱ1(y) and d̄1(y) = 0, so some y ∈ P1/im(d2).
But d̄1 is a monomorphism, so y = 0 and hence n = 0. Therefore i is a monomorphism.

It is clear from the construction of the extension that im(i) ⊂ ker(π). Denote by ϕ the isomorphism
ϕ : ker(εM ) ∼= P1/im(d2).

Assume that π[(n, p)] = 0. Hence εM (p) = 0, so

p ∈ ker(εM ) ∼= P1/im(d2).

Then
i(n− ᾱ1(ϕ(p)) = [(n− ᾱ1(p), 0)] = [(n, p)],

hence, [(n, p)] ∈ im(i).
Last but not least we claim that π is an epimorphism, but as εM is an epimorphism, we find for every

m ∈M a p ∈ P0 with εM (p) = m. But then

π[(0, p)] = εM (p) = m.

You show that φ is well-defined. It is then not hard to see that φ is actually the inverse of ψ.
�
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CHAPTER III

Homology of groups

Lecture 14

III.1. Definition of group homology

Let G be a group and let M be a Z[G]-module. Then, often, M is called a G-module.

Examples III.1.1.
• Let M be an arbitrary abelian group. Then we can consider the trivial G-action on M , i.e., g.m = m

for all g ∈ G and all m ∈ M . We can rewrite this and say that the Z[G]-module structure on M
factors through the Z-module structure on M via the augmentation map

ε : Z[G]→ Z, ε(g) = 1 for all g ∈ G.

• The ring Z[G] is of course a Z[G]-module.
• If X is a G-set, then the free abelian group with basis X,

⊕
x∈X Z, is a G-module.

Definition III.1.2. Let M be a G-module.

(a) Let U be the sub Z[G]-module of M generated by elements of the form m − gm for m ∈ M and
g ∈ G. Then

MG := M/U

are the G-coinvariants of M .
(b) The G-invariants of M are

MG := {m ∈M, gm = m for all g ∈ G}.

Remark III.1.3. One can characterize MG as the largest submodule of M on which G acts trivially and
MG is the largest quotient on which G acts trivially.

The following result gives us descriptions of invariants and coinvariants in terms of Hom and tensor
functors.

Lemma III.1.4. Let M be a G-module and denote by Z the trivial Z[G]-module. Then

(a) MG ∼= HomZ[G](Z,M) and
(b) MG

∼= Z⊗Z[G] M .

Proof. In (a) an m ∈ MG corresponds to fm : Z → M with fm(1) = m. As m ∈ MG we get that
fm(g.1) = fm(1) = m and this is equal to g.m = g.fm(1) so fm is Z[G]-linear.

For (b) we consider the map

ϕ : MG → Z⊗Z[G] M, [m] 7→ 1⊗m.

Then ϕ is well-defined, because

1⊗ (m− gm) = 1⊗m− 1⊗ gm = 1⊗m− 1.g ⊗m = 1⊗m− 1⊗m = 0.

We also define ψ : Z⊗Z[G] M →MG as ψ(x⊗m) = [xm]. Then ψ = ϕ−1. �

Remark III.1.5. We therefore know that the functor

M 7→MG ∼= HomZ[G](Z,M)
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is additive and left-exact and that the functor

M 7→MG
∼= Z⊗Z[G] M

is additive and right-exact, so we can feed them into the machinery of derived functors.

Definition III.1.6. Let G be a group and let M be a G-module.

(a) We define the ith homology of the group G with coefficients in M for i > 0 as

Hi(G;M) := Tor
Z[G]
i (Z,M) = Li(M 7→MG).

(b) The ith cohomology of the group G with coefficients in M for i > 0 is

Hi(G;M) := ExtiZ[G](Z,M) = Ri(M 7→MG).

(c) If M = Z, then we abbreviate Hi(G;Z) by Hi(G) and Hi(G;Z) by Hi(G).

Example III.1.7. We can calculate the homology and cohomology of every finite cyclic group:
Let Cn = 〈t〉 be a cyclic group of order n for 2 6 n <∞. You have established that the sequence

. . .
N // Z[Cn]

1−t
// Z[Cn]

N // Z[Cn]
1−t
// Z[Cn]

is a projective resolution of Z as a Z[Cn]-module and we have already calculated the homology groups of Cn
with coefficients in Z earlier as

Hi(Cn) = Tor
Z[Cn]
i (Z,Z) =


Z = ZCn

, i = 0,

Z/nZ, i odd,

0, otherwise.

Similarly, we obtain
ExtiZ[Cn](Z,Z) = Hi(Cn)

using this resolution. Note that HomZ[Cn](Z[Cn],Z) ∼= Z, so we obtain that Hi(Cn) is the ith cohomology
of the cochain complex

(Z 0 //Z n //Z 0 // . . .)

and this is

Hi(Cn) =


Z, i = 0,

Z/nZ, i even, i > 0,

0, otherwise.

For coefficients in an arbitrary G-module M we consider the elements 1− t and N :=
∑n−1
i=0 t

i in Z[Cn].
By definition

Hi(Cn;M) = Hi( . . .
(1−t)⊗M

// Z[Cn]⊗Z[Cn] M
N⊗M

// Z[Cn]⊗Z[Cn] M
(1−t)⊗M

// Z[Cn]⊗Z[Cn] M)

and this is isomorphic to

Hi( . . .
(1−t)

// M
N // M

(1−t)
// M).

Thus we obtain

Hi(Cn;M) ∼=


MCn = M/im(1− t), i = 0,

ker(1− t)/im(N), i odd,

ker(N)/im(1− t), i even, i > 0.

As
(1− t)N = 0 = N(1− t),

we obtain an induced map N̄ : MCn
= M/im(1− t)→MCn = ker(1− t). We can rewrite the above result as

Hi(Cn;M) ∼=


MCn

= M/im(1− t), i = 0,

coker(N̄), i odd,

ker(N̄), i even, i > 0.
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For cohomology we obtain with the dual calculation

Hi(Cn;M) ∼=


MCn = ker(1− t), i = 0,

ker(N̄), i odd

coker(N̄), i even, i > 0.

Remark III.1.8. For a fixed group and an f ∈ HomZ[G](M,N) there are induced morphisms

Hi(G; f) : Hi(G;M)→ Hi(G;N) and Hi(G; f) : Hi(G;M)→ Hi(G;N).

Definition III.1.9. We consider the category of pairs (G,M) where G is a group and M is a Z[G]-module.
A morphism (α, f) : (G,M)→ (G′, N) consists of a group homomorphism α ∈ Gr(G,G′) and f ∈ Ab(M,N)
such that

f(gm) = α(g)f(m)

for all g ∈ G and m ∈M .

Lemma III.1.10. A morphism (α, f) as above induces a morphism

Hi(α, f) : Hi(G;M)→ Hi(G
′;N).

Proof. Let P∗ be a projective resolution of M as a Z[G]-module and let Q∗ be a projective resolution
of N as a Z[G′]-module. We can view every Qi as a Z[G]-module by defining

g.q := α(g).q

for g ∈ G and q ∈ Qi. We call the abelian group Qi with this G-module structure α∗(Qi) and therefore we
obtain a chain complex α∗(Q∗). Note that α∗(Qi) is not necessarily projective as a Z[G]-module, but as we
didn’t change the underlying abelian group, we still get

H∗(α
∗(Q∗)) ∼=

{
0, ∗ > 0,

N, ∗ = 0.
.

By the fundamental lemma we obtain a chain map f∗ : P∗ → α∗(Q∗) extending f :

. . .
d2 // P1

d1 //

f1

��

P0
εM //

f1

��

M

f

��

. . .
d2 // α∗(Q1)

d1 // α∗(Q0)
εN // N.

Note that there is a morphism Z⊗Z[G]α
∗(Qi)→ Z⊗Z[G′]Qi, so in total we obtain a morphism from Z⊗Z[G]P∗

to Z⊗Z[G′] Q∗. �

Example III.1.11. If G′ = {e} is the trivial group, then N is just an abelian group and any α : G → {e}
is constant. The condition on f in this case is

f(gm) = α(g)f(m) = ef(m) = f(m),

so f is constant on G-orbits. The induced map on homology H∗(G;M) → H∗({e};N) has as target
H∗({e};N) which is N for ∗ = 0 and which is trivial for ∗ > 0. So the induced map has to be trivial
in positive degrees and is the map MG → N induced by f in degree zero.

Example III.1.12. In the other extreme case when G = {e} any α : {e} → G′ sends e to eG′ . Here, M is
just an abelian group and f is just a homomorphism of abelian groups f : M → N . Now, the source has
trivial homology groups except in degree zero and there we obtain the map M → NG′ which is the composite

M
f
//N //NG′ . Here, the second map is the canonical projection N → NG′ .

Of course, if the groups involved are non-trivial, then maps as in Lemma III.1.10 can be highly non-
trivial. We will see examples later in Section III.3.

Lecture 15
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III.2. Bar resolution and homology groups in low degrees

By the very definition of group (co)homology we have that H0(G;M) = MG and H0(G;M) = MG. Our
aim is to get explicit descriptions of H1, H1 and H2.

Definition III.2.1. Let R be a ring, let M be a right R-module and N be a left R-module. The two-sided
bar construction of M and N over R is the chain complex B∗(M,R,N) whose degree p part is

Bp(M,R,N) := M ⊗R⊗p ⊗N.

Here, the unadorned tensor products are over Z. We define a boundary operator by defining face maps

di : Bp(M,R,N)→ Bp−1(M,R,N),

di(m⊗ r1 ⊗ . . .⊗ rp ⊗ n) :=


mr1 ⊗ r2 ⊗ . . .⊗ rp ⊗ n), i = 0,

m⊗ r1 ⊗ . . .⊗ riri+1 ⊗ . . .⊗ rp ⊗ n, 0 < i < p,

m⊗ r1 ⊗ . . .⊗ rp−1 ⊗ rpn, i = p.

We let d : Bp(M,R,N)→ Bp−1(M,R,N) be

d =

p∑
i=0

(−1)idi.

Remark III.2.2. The above definition ensures that d2 = 0, because di ◦ dj = dj−1 ◦ di for i < j.

Traditionally elements in Bp(M,R,N) are denoted by m[r1 | . . . | rp]n or [m | r1 | . . . | rp | n] and the
bars | give the construction its name.

For M = R, B∗(R,R,N) is a chain complex of R-modules by setting

r.(r0 ⊗ r1 ⊗ . . .⊗ rp ⊗ n) := (rr0)⊗ r1 ⊗ . . .⊗ rp ⊗ n.

Lemma III.2.3. For all R-modules N , the complex B∗(R,R,N) is a resolution of N . If R and N are free
as abelian groups, then εN : B(R,R,N)→ N is a free resolution of N as an R-module.

Proof. For the second claim note that the tensor product of free abelian groups is free abelian and

R⊗Z
⊕
i∈I

Z ∼=
⊕
i∈I

R.

For the first claim we construct a chain homotopy and set

Hp : Bp(R,R,N)→ Bp+1(R,R,N), Hp(r0 ⊗ r1 ⊗ . . .⊗ rp ⊗ n) := 1⊗ r0 ⊗ r1 ⊗ . . .⊗ rp ⊗ n.

Then we get dHp +Hp−1d = id. �

We apply the above result in the case where R = Z[G] and N = Z and abbreviate B∗(Z[G],Z[G],Z) by
B∗(G). Here, the notation [g0 | g1 | . . . | gp] for g0 ⊗ g1 ⊗ . . .⊗ gp ⊗ 1 is common.

We obtain the following description of H1(G).

Proposition III.2.4. For every group G

H1(G) ∼= G/[G,G].

Proof. In low degrees the bar construction B∗(G) looks as follows

. . . B2(G) ∼= Z[G]⊗3 //d //B1(G) ∼= Z[G]⊗2 d //B0(G) = Z[G].

Note that Z[G]⊗m ∼= Z[Gm].
For a [g0 | g1] ∈ B1(G) the boundary is

d[g0 | g1] = g0g1 − g0

and for a [g0 | g1 | g2] ∈ B2(G) we obtain

d[g0 | g1 | g2] = [g0g1 | g2]− [g0 | g1g2] + [g0 | g1].
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Applying Z⊗Z[G] (−) yields the chain complex

. . .Z[G×G] ////Z[G] //Z
and the boundary maps are

(g1, g2) 7→ g2 − g1g2 + g1, g1 7→ 0

and therefore
H1(G) ∼= Z[G]/(g2 − g1g2 + g1, g1, g2 ∈ G) =: Z[G]/U.

We define ϕ : G→ H1(G) as ϕ(g) = g+U . As H1(G) is an abelian group, ϕ factors through the abelianization

ϕ̄ : G/[G,G]→ H1(G)

G

##

ϕ
// H1(G)

G/[G,G]

ϕ̄

99

Then ϕ̄ is an isomorphism with inverse ψ : H1(G)→ G/[G,G], ψ(g + U) := g + [G,G]. �

Proposition III.2.5. For every group G and every trivial G-module M

H1(G;M) ∼= Gr(G,M).

Note that as M is abelian, Gr(G,M) is Hom(G/[G,G],M).

Proof. We know that H1(G;M) is the first homology group of the cochain complex HomZ[G](B∗(G),M)
and this is the first cohomology group of

HomZ[G](Z[G],M) //HomZ[G](Z[G×G],M) //HomZ[G](Z[G3],M) // . . .

We can identify this cochain complex with

M //HomZ(Z[G],M) //HomZ(Z[G2],M) // . . .

where the coboundary map sends an m ∈ M to δ(m)(g) = gm−m = m−m = 0. An f̃ ∈ HomZ(Z[G],M)
corresponds to a map of sets f : G→M . Here, δ sends f to δ(f)(g1, g2) = f(g1)− f(g1g2) + f(g2). So f is
a cocycle if and only if

f(g1g2) = f(g1) + f(g2)

and this is equivalent to f being a homomorphism. �

Next we want to identify H2(G;M) with a suitable set of equivalence classes of extensions. Here, we
consider extensions of the form

(III.2.1) 0 //M
i //E

π //G //1.

So, G is a given group, M is the given G-module viewed as an abelian group and the sequence (III.2.1)
is a short exact sequence in the category Gr. The sequence is called split if there is a σ ∈ Gr(G,E) with
π ◦ σ = idG. You know that in this case E ∼= M oG.

Lemma III.2.6. In any extension as in (III.2.1) the group G acts on M by conjugation in E.

Proof. As i is a monomorphism, we can identify M with its image im(i) < E and as im(i) = ker(π)
we also know that im(i) C E. The group E acts on itself by conjugation, and as M is abelian, im(i) acts on
itself trivially by conjugation, so the conjugation action by E on im(i) factors through

E/im(i)× im(i)→ im(i).

As E/im(i) ∼= G, the claim follows. �

We can now state the main result of this section. The proof will take a while...

Theorem III.2.7. Let G be a group and let M be a G-module. There is a bijection between H2(G;M) and
equivalence classes of extensions as in (III.2.1) such that the induced G-action on M coincides with the given
G-module structure.
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Here, we consider the analogous equivalence relation on extensions as in Definition II.4.1: Two exten-

sions 0 //M
i //E

π //G //1 and 0 //M
i′ //E′

π′ //G //1 are equivalent if there is an
isomorphism of group φ : E → E′ such that the diagram

E

π

  
φ

��

0 // M

i

==

i′   

G // 1

E′
π′

>>

commutes.

For every extension 0 //M
i //E

π //G //1 we can find a set-level section s : G → E with
π ◦ s = idG and we can also choose s such that s(1G) = 1E . But of course this section won’t be a group
homomorphism in general. We measure its deviation from being one as follows:

Lemma III.2.8. The function

[−,−] : G×G→ E, (g1, g2) 7→ s(g1)s(g2)(s(g1g2))−1

has values in im(i) ∼= M .

Proof. As π is a group homomorphism and as π ◦ s = idG, we obtain

π(s(g1)s(g2)(s(g1g2))−1) = g1g2(g1g2)−1 = 1G.

�

The notation [−,−] goes back to Otto Schreier, 1901–1929.

Definition III.2.9. The function [−,−] is called the factor set.

Beware that [−,−] actually depends on the extension and a choice of s. This is suppressed in the
notation.

Lemma III.2.10. If two extensions 0 //M
ij
//Ej

πj
//G //1 (j = 1, 2) with chosen set level sec-

tions sj yield the same factor set, then the extensions are equivalent.

Proof. Both sections give bijections of sets E1
∼= G×M ∼= E2 where we send e ∈ Ej to (πj(e), e(sj(πj(e))

−1))
respectively (g,m) to ij(m)sj(g). Fixing the bijection defines a group structure on G ×M by demanding
that the bijection be an isomorphism. This yields the relations

(i) (1,m)(1, n) = (1,m+ n)
(ii) (1,m)(g, 0) = (g,m)
(iii) (g, 0)(1,m) = (g, gm)

for 1, g ∈ G, 0,m, n ∈M .
We prove (i) and leave the remaining relations as an exercise: The bijection above sends ((1,m), (1, n))

to (ij(m)sj(1), ij(n)sj(1)). We have sj(1) = 1, so if we multiply the values we obtain ij(m)ij(n) = ij(m+n)
and this has as a unique preimage under the bijection the element (1,m+ n).

So the above three relations give a group structure that is independent of the chosen section. We have
to know what (g1, 0)(g2, 0) is in order to understand what the group structure is on E1 and E2.

The bijection sends ((g1, 0), (g2, 0)) to

(ij(0)sj(g1), ij(0)sj(g2)) = (sj(g1), sj(g2))

and this is sent back to the element

(g1g2, sj(g1)sj(g2)(sj(g1g2)−1)) = (g1g2, [g1, g2]sj ).

By assumption [g1, g2]s1 = [g1, g2]s2 , so the induced group structure on G ×M agrees and we obtain the
desired equivalence of extensions. �
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Lecture 16

Remark III.2.11. The proof above gives the explicit group structure for given E and chosen s on G×M
as (g1,m1)(g2,m2) = (g1g2,m1 + g1m2 + [g1, g2]) because we can unravel this as

(g1,m1)(g2,m2) = (1,m1)(g1, 0)(1,m2)(g2, 0) by (ii)

= (1,m1)(g1, g1m2)(g2, 0), by (iii)

= (1,m1)(1, g1m2)(g1, 0)(g2, 0), by (ii)

= (1,m1 + g1m2)(g1g2, [g1, g2]), by (i) and the argument above

= (1,m1 + g1m2)(1, [g1, g2])(g1g2, 0), by (ii)

= (g1g2,m1 + g1m2 + [g1, g2]), by (i) and (ii).

If s happens to be a group homomorphism, then [g1, g2] = 1 for all gi ∈ G and then E ∼= M oG, so that the
extension splits. In total we obtain that the extension splits if and only if [−,−] ≡ 1.

Proposition III.2.12. Let M be a G-module. A function [−,−] : G×G→M is a factor set if and only if
it satisfies

(a) [1, g] = [g, 1] = 0 for all g ∈ G.
(b) For all g1, g2, g3 ∈ G:

g1[g2, g3]− [g1g2, g3] + [g1, g2g3]− [g1, g2] = 0.

Functions that satisfy the two conditions above are called normalized 2-cocycles. Condition (b) just says
that [−,−] ∈ Z2(G;M) and (a) is a normalization condition.

Proof. If we assume that [−,−] is a factor set for a section s, then as s(1) = 1 we get

[1, g] = s(1)s(g)s(1 · g)−1 = 1.

As we write M as an additive group, this gives (a). As the composition in E is associative, we get in
particular that

((g1, 0)(g2, 0))(g3, 0) = (g1, 0)((g2, 0)(g3, 0))

and this gives the condition

(g1g2g3, [g1, g2] + 0 + [g1g2, g3]) = (g1g2g3, 0 + g1[g2, g3] + [g1, g2g3])

and thus (b) holds as well.
Assume now that E is G×M as a set with multiplication

(g1,m1)(g2,m2) = (g1g2,m1 + g1m2 + [g1, g2]).

Then we obtain that

(g,m)(1, 0) = (g,m) = (1, 0)(g,m),

so (1, 0) is a neutral element. We calculate that for an arbitrary (g,m)

(g,m)(g−1,−g−1m− g−1[g, g−1]) = (1,m− gg−1m− gg−1[g, g−1] + [g, g−1])

= (1, 0),

so we have an inverse for every (g,m). You check that the product is associative.
Thus E is a group and we can embed M into E as {1} × M . Then {1} × M is normal in E and

E/{1} ×M ∼= G, so

0 //M //E //G //1

is an extension. �

Lemma III.2.13. Two choices of s, s′ make the two corresponding factor sets [−,−]s and [−,−]s′ differ by
a coboundary.

51



Proof. We identify M again with i(M). Two sections s, s′ of π with s(1) = 1 = s′(1) result in the
same coset

s(g)i(M) = s′(g)i(M)

for all g ∈ G because im(i) = ker(π). So for every g ∈ G we find an m = mg such that s(g) = i(mg)s
′(g).

This defines a function

β : G→M, g 7→ mg.

A calculation now gives that [g, h]s′ = [g, h]s + (δβ)(g, h):

[g, h]s′ = s′(g)s′(h)((s′(gh))−1)

= β(g)s(g)β(h)s(h)((β(gh)s(gh))−1)

= β(g)s(g)β(h)s(g)−1s(g)s(h)s(gh)−1β(gh)−1.

Here, β(g), s(g)β(h)s(g)−1, s(g)s(h)s(gh)−1 and β(gh)−1 are elements of the abelian group M and we can
therefore express the above term as

β(g) + s(g)β(h)s(g)−1 + [g, h]s − β(gh).

The G-action on an element β(h) is given by conjugation, hence

s(g)β(h)s(g)−1 = g.β(h)

and in total we obtain

[g, h]s + g.β(h)− β(gh) + β(g) = [g, h]s + δ(β)(g, h).

�

The normalization condition does not change the cohomology (see [12, Theorem 8.3.8]) and so we obtain
the claimed bijection between H2(G;M) and the set of equivalence classes of extensions.

III.3. Shapiro’s Lemma and transfer

We now turn to the relationship between the (co)homology of a group G and the (co)homology of its
subgroups H < G. Again, we need some background from category theory.

Definition III.3.1. Let C and D be categories. An adjunction between C and D is a pair of functors
L : C → D, R : D → C, such that for each pair of objects C of C and D of D, there is a bijection of sets

(III.3.1) ϕC,D : D(L(C), D) ∼= C(C,R(D)),

which is natural in C and D.
The functor L is then left adjoint to R, and R is right adjoint to L. We call (L,R) an adjoint pair of

functors.

The naturality condition on the bijections ϕC,D can be spelled out explicitly as follows: For all morphisms
f : C1 → C2 in C and g : D1 → D2 in D, the diagram

D(L(C2), D1)
D(Lf,D1)

//

ϕC2,D1

��

D(L(C1), D1)
D(L(C1),g)

//

ϕC1,D1

��

D(L(C1), D2)

ϕC1,D2

��

C(C2, R(D1))
C(f,R(D1))

// C(C1, R(D1))
C(C,R(g))

// C(C1, R(D2))

commutes.

One often denotes adjunctions as C
L //D
R
oo or as L : C //D : R.oo

Remark III.3.2. For every object C of C and D of D there are morphisms ηC ∈ C(C,RL(C)) and εD ∈
D(LR(D), D) that correspond to idLC and idRD under the above bijection ϕ. One calls η the unit of the
adjunction and ε the counit of the adjunction.
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Definition III.3.3. Let F,G be two functors from C to D. A natural transformation τ from F to G
consists of a class of morphisms τC ∈ D(F (C), G(C)), the components of τ , such that for every morphism
f ∈ C(C1, C2),

τC2
◦ F (f) = G(f) ◦ τC1

,

that is, the diagram

F (C1)

F (f)

��

τC1 // G(C1)

G(f)

��

F (C2)
τC2 // G(C2)

commutes.

For an adjunction (L,R) the morphisms ηC are the components of a natural transformation η : IdC ⇒ RL
and the εDs are the components of ε : LR⇒ IdD.

Examples III.3.4.
• Let U be the functor that maps an abelian group A to the underlying set of A and let F be the

functor that sends a set S to the free abelian group with basis S,
⊕

S Z. Then F is left adjoint
to U : for any function f from S to the underlying set of an abelian group A, there is a unique
morphism of abelian groups from F (S) to A extending f that is determined by sending the basis
element of the copy of Z in component s ∈ S to f(s).

• Let I : Ab→ Gr be the functor that sends an abelian group A to A and an f ∈ Ab(A,B) to I(f) = f .
Then I has a left adjoint, namely the functor that sends a group G to G/[G,G] because you know
from your lecture course in algebra that

Gr(G, I(A)) = Gr(G,A) ∼= Ab(G/[G,G], A).

• Let R1, R2 be rings and let f be a ring homomorphism f : R1 → R2. Then f defines a functor
f∗ : R2-mod→ R1-mod by sending M to f∗(M) whose underlying abelian group is the same as M ,
but f∗(M) carries an R1-module structure via r1.m := f(r1).m. If α : M1 →M2 is R2-linear, then
α induces an R1-linear map

f∗(α) : f∗(M1) = M1 →M2 = f∗(M2)

with

f∗(α)(r1.m) = f∗(α)(f(r1).m) = α(f(r1)m) = f(r1)α(m) = f(r1)f∗(α)(m).

The functor f∗ is often called the restriction of scalars.

Lemma III.3.5. Let f : R1 → R2 be a ring map. Then f∗ has a left adjoint L and a right adjoint R.

Proof. We define L : R1-mod→ R2-mod as L(N) := R2⊗R1N , where we view R2 as a right R1-module
via f , thus r2 ⊗ r1n = r2f(r1)⊗ n for ri ∈ Ri and n ∈ N . Then R2 ⊗R1 N is a left R2-module and

HomR2
(R2 ⊗R1

N,M) ∼= HomR1
(N, f∗(M)) :

A g ∈ HomR1
(N, f∗(M)) is sent to g̃ : R2 ⊗R1

N →M with

g̃(r2 ⊗ n) = r2g(n)

and we map an h : R2 ⊗R1
N →M to h̄ with h̄(n) = h(1⊗ n). This bijection is binatural.

For the right adjoint we define R as R(N) := HomR1
(R2, N) where we view R2 as an R1-module via f .

The R2-module structure on R(N) is given by the right R2-module structure of R2. Then

HomR1
(f∗(M), N) ∼= HomR2

(M,HomR1
(R2, N))

and the bijection is given by sending a g ∈ HomR1
(f∗(M), N) to the map that sends an m ∈ M to the

morphism r2 7→ g(r2m). Conversely, an h ∈ HomR2(M,HomR1(R2, N)) is mapped to

m 7→ h(m)(1R2
).

�
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Lecture 17

Example III.3.6. Every group homomorphism ϕ : G1 → G2 induces a ring homomorphism f = Z[ϕ] : Z[G1]→
Z[G2]. In particular, if H < G, then the inclusion map i : H ↪→ G induces a ring map i : Z[H]→ Z[G].

Definition III.3.7. Let G be a group and H < G.

(a) For any Z[H]-module N the Z[G]-module Z[G] ⊗Z[H] N is the induced module and is denoted by

IndGH(N).

(b) The Z[G]-module HomZ[H](Z[G], N) is the coinduced module and is denoted by CoindGH(N).
(c) The inclusion i : H ↪→ G gives rise to a ring map i : Z[H]→ Z[G] and for a Z[G]-module M , i∗(M)

is the restriction and is denoted by ResGH(M).

Remark III.3.8. So we already know that

HomZ[G](Z[G]⊗Z[H] N,M) ∼= HomZ[H](N, i
∗M)(= HomZ[H](N,M))

and

(HomZ[H](M,N) =)HomZ[H](i
∗M,N) ∼= HomZ[G](M,HomZ[H](Z[G], N)).

Often, i∗(−) is suppressed from the notation.
Note that Z[G] is a free Z[H]-module because the decompositon of sets G =

⊔
G/H H gives

Z[G] ∼=
⊕
G/H

Z[H].

Theorem III.3.9 (Shapiro’s Lemma). Let G be a group, H a subgroup of G and N an H-module. Then

(a) H∗(G; IndGH(N)) ∼= H∗(H;N).

(b) H∗(G;CoindGH(N)) ∼= H∗(H;N).

Proof. As Z[G] is a free Z[H]-module, every projective resolution P∗ → Z by right Z[G]-modules is
also a projective resolution of Z by right Z[H]-modules. The claim now follows from the identifications

H∗(G; IndGH(N)) = H∗(P∗ ⊗Z[G] (Z[G]⊗Z[H] N)) ∼= H∗(P∗ ⊗Z[H] N)

and

H∗(G;CoindGH(N)) = H∗(HomZ[G](P∗,HomZ[H](Z[G], N)))

∼= H∗(HomZ[G](P∗ ⊗Z[H] Z[G], N))

∼= H∗(HomZ[H](P∗, N))

= H∗(H;N).

�

Lemma III.3.10. Assume that H is a subgroup of G and that [G : H] <∞. Let N be an H-module. Then
there is an isomorphism of Z[G]-modules

IndGH(N) ∼= CoindGH(N).

Proof. We define ϕ : N → CoindGH(N) as

ϕ(n)(g) :=

{
gn, g ∈ H,
0, otherwise.

We have to show that ϕ(n) ∈ HomZ[H](Z[G], N), but for every h ∈ H we have that hg ∈ H if and only if
g ∈ H, so ϕ(n) is Z[H]-linear because in this case ϕ(n)(hg) = hgn = hϕ(n)(g).

We extend ϕ to a Z[G]-linear map

ϕ̃ : Z[G]⊗Z[H] N → HomZ[H](Z[G], N)

by Lemma III.3.5; this gives

ϕ̃(g′ ⊗ n)(g) = g′.ϕ(n)(g).
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Conversely, we define

ψ : HomZ[H](Z[G], N)→ Z[G]⊗Z[H] N, ψ(α) :=
∑
g∈X

g ⊗ α(g−1),

where X is a set of representatives for the left cosets of H in G.
The composite ψ ◦ ϕ̃ is the identity because

ψ(ϕ̃(g ⊗ n)) =
∑
g̃∈X

g̃ ⊗ ϕ̃(g ⊗ n)(g̃−1)

=

{
g̃ ⊗ g̃−1gn, g̃−1g ∈ H,
0, otherwise,

= g ⊗ n.

Here we use that if g̃−1g = h for some h ∈ H, then g̃ = gh−1, so then the value is gh−1 ⊗ hn = g ⊗ n.
For the other composite we get

ϕ̃(ψ(f)) = ϕ̃

∑
g∈X

g ⊗ f(g−1)


and

(III.3.2) ϕ̃(ψ(f))(g̃) =
∑
g∈X

ϕ(f(g−1))(g̃g).

But there is only one g ∈ X such that g̃g ∈ H and again if g̃g = h ∈ H, then g = g̃−1h and g−1 = h−1g̃, so
that (III.3.2) is equal to hf(h−1g̃) = f(g̃) because f is Z[H]-linear by assumption. �

Before we present some applications of Shapiro’s lemma, we use it first for defining transfer maps.

Definition III.3.11. Let H be a subgroup of G with [G : H] < ∞ and let M be a G-module. We denote
by i the inclusion of H into G.

(a) The homological transfer is the map i! : H∗(G;M)→ H∗(H;ResGH(M)) given by the composite

H∗(G;M)
i! //

H∗(G;ηM )

��

H∗(H;ResGH(M))

H∗(G;CoindGH(ResGH(M)))
∼= // H∗(G; IndGH(ResGH(M)))

∼=

OO

where the isomorphism at the bottom is the one from Lemma III.3.10 and the vertical isomorphism
comes from the Shapiro Lemma.

(b) Dually, the cohomological transfer is the map i! : H
∗(H;ResGH(M)) → H∗(G;M) that is the com-

posite

H∗(H;ResGH(M))
i! //

∼=
��

H∗(G;M)

H∗(G;CoindGH(ResGH(M)))
∼= // H∗(G; IndGH(ResGH(M)))

H∗(G;εM )

OO

where the vertical isomorphism comes from the Shapiro Lemma and the horizontal isomorphism is
again the one from Lemma III.3.10.

Remark III.3.12. Often ResGH(M) is just denoted byM and then the transfer maps look like i! : H∗(G;M)→
H∗(H;M) and i! : H

∗(H;M)→ H∗(G;M), but this can be confusing.
The transfer maps are also often denoted by trGH .
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Lemma III.3.13. If again [G : H] <∞ and if M is a G-module, then the composite

H∗(G;M)
i! //H∗(H;M)

H∗(i;M)
//H∗(G;M)

is the multiplication by [G : H] and so is

H∗(G;M)
H∗(i;M)

//H∗(H;M)
i! //H∗(G;M).

Proof. We unravel the maps that are used in the definition. The composite

M
ηM //CoindGH(ResGH(M))

∼=
ψ
// IndGH(ResGH(M))

εM //M

induces the map H∗(i;M)◦ i! on homology. So we have to understand the unit and counit of the adjunction.
The unit

ηM : M → CoindGH(ResGH(M)) = HomZ[H](Z[G],ResGH(M))

is adjoint to the identity map on ResGH(M)) and it sends an m ∈ M to the map that sends a g ∈ G to the
identity evaluated on gm. We call this map αm, so αm(g) = gm.

The isomorphism ψ : CoindGH(ResGH(M)) → IndGH(ResGH(M)) applied to αm gives (compare the proof of
Lemma III.3.10)

ψ(αm) =
∑
g∈X

g ⊗ αm(g−1) =
∑
g∈X

g ⊗ g−1m.

The counit of the adjunction εM : IndGH(ResGH(M)) → M is adjoint to the identity map on ResGH(M) and it

maps a generator g ⊗m ∈ Z[G]⊗Z[H] Res
G
H(M) to gm. Therefore the composite εM ◦ ψ ◦ ηM is

m 7→
∑
g∈X

g ⊗ g−1m 7→
∑
g∈X

gg−1m =
∑
g∈X

m = [G : H]m.

�

In the following we state some consequences and for simplicity we state them only in the case of homology
groups. There are analogous statements for cohomology.

Corollary III.3.14. Assume that [G : H] <∞ and that the multiplication by the index is an isomorphism
in a G-module M . Then H∗(G;M) is a direct summand in H∗(H;M).

In particular, if p is a prime with p - |G|, then H∗(G;Z/pZ) = 0 for all ∗ > 0.

Proof. For the first claim we know that the composite

H∗(G;M)
i! //H∗(H;M)

H∗(i;M)
//H∗(G;M)

is the multiplication by [G : H], so it is an isomorphism, hence the claim follows.
If p does not divide |G|, then the multiplication by |G| is an isomorphism, but it is also the composite

H∗(G;M)
i! //H∗({e};M)

H∗(i;M)
//H∗(G;M).

But the trivial group does not have any non-trivial homology groups in positive degrees. �

Example III.3.15. The group Σ3 has order 6 and [Σ3 : C3] = 2, [Σ3 : C2] = 3. Here, C2 is any group
generated by a transposition. Then we get that H∗(Σ3;F2) is a direct summand of H∗(C2;F2) and H∗(Σ3;F3)
is a direct summand of H∗(C3,F3). We also get that H∗(Σ3;Fp) = 0 for ∗ > 0 and p a prime with p > 5.

Lemma III.3.16. If M is any abelian group, then H∗(G;Z[G]⊗Z M) = 0 for all ∗ > 0.

Proof. Apply the Shapiro Lemma to H = {1}. Then

H∗(G;Z[G]⊗Z M) = H∗(G; IndG{e}(M)) ∼= H∗({e};M) = 0

for positive ∗. �
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Example III.3.17. If K ⊂ L is a finite Galois extension with Galois group G, then H∗(G;L) ∼= H∗(G;L) =
0 for all ∗ > 0 and of course H0(G;L) = LG = K, but also K = LG = H0(G;L). We only show the claim
for homology.

One can show that there is an a ∈ L such that (g(a))g∈G is a basis of L over K (see for instance Jantzen-
Schwermer, Algebra, VI.3) and as a K-vector space we can identify L and K[G] by sending an element∑
g∈G λgg(a) to

∑
g∈G λgg. This is actually an isomorphism of G-modules and therefore

H∗(G;L) ∼= H∗(G;K[G]) ∼= H∗(G;Z[G]⊗Z K)

so we get the claimed result with Lemma III.3.16.
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CHAPTER IV

Hochschild homology

Lecture 18

Hochschild homology is a homology theory for associative algebras. Again, we will only cover some
basics. For more background and examples see [5, 12].

IV.1. Definition and basic examples

You start with a commutative ring with unit k 6= 0, a k-algebra A, and an A-bimodule M , so M has
a compatible right and left A-action: a1(ma2) = (a1m)a2 for all ai ∈ A and m ∈ M and restricted to k
this module structure is symmetric. We denote the unit of the algebra A as ηA : k → A and we denote the
multiplication in A by µ : A⊗k A→ A and abbreviate µ(a⊗ b) as usual to ab.

Definition IV.1.1. The ith Hochschild homology group of A over k with coefficients in M , HHki (A;M) is
defined as

Hi(C
k
∗ (A;M)) := Hi( . . .

b // M ⊗A⊗2 b // M ⊗A b // M ).

Here, the tensor products are over k and b =
∑n
i=0(−1)idi, where

(IV.1.1) di(a0 ⊗ . . .⊗ an) =

{
a0 ⊗ . . .⊗ aiai+1 ⊗ . . . an, for i < n and

ana0 ⊗ . . .⊗ an−1, for i = n.

for a0 ∈M and ai ∈ A for 0 < i < n.

Again, we have di ◦ dj = dj−1 ◦ di for i < j and this ensures that b is a boundary operator. The
Hochschild homology groups carry the structure of k-modules. You will show that this can be extended to
a module structure over the center of A, Z(A).

A nice way to visualize this is to draw elements in the Hochschild complex in a cyclic manner:

a0

a1

an

⊗ ⊗

⊗

⊗ · · ·

···

Then the ith face map in the Hochschild complex just multiplies the elements ai and ai+1 together,
where now, the indices have to be read modulo n + 1. If we take A as an A-module, then this gives rise
to the important cyclic structure on the Hochschild complex [5]. For M = A we shorten the notation to
HH∗(A) and use Ck∗ (A) for the corresponding chain complex.

Remark IV.1.2. A morphism f : M → M ′ of A-bimodules induces a chain map Ck∗ (A; f) : Ck∗ (A;M) →
Ck∗ (A;M ′) and therefore an induced map HHk∗(A; f) : HHk∗(A;M)→ HHk∗(A;M ′).

A map of k-algebras g : A → B gives rise to a morphism idM ⊗ g⊗n : M ⊗ A⊗n → M ⊗ B⊗n which is
compatible with the boundary maps for every B-bimodule M , so we obtain a chain map Ck∗ (g;M) and an
induced map

HH∗(g;M) : HH∗(A;M)→ HH∗(B;M)

where we view M as an A-bimodule via g.
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Definition IV.1.3. Consider A⊗k Aop. This is a k-algebra with unit

k ∼= k ⊗k k
ηA⊗kηAop

//A⊗k Aop

and multiplication

(a1 ⊗ a2)(a3 ⊗ a4) := a1a3 ⊗ a4a2 for ai ∈ A.
Then Ae := A⊗k Aop is the enveloping algebra of A.

Lemma IV.1.4. A left Ae-module structure on a symmetric k-module M is the same as an A-bimodule
structure on M .

Proof. The correspondence is given by

(a1 ⊗ a2).m = a1ma2.

�

This is also equivalent to the right Ae-structure on M given by

m.(a1 ⊗ a2) = a2ma1.

Proposition IV.1.5.
(a) For every k-algebra A and every A-bimodule M we have

HHk0(A;M) = M/U

where U is the k-submodule of M generated by elements of the form am − ma for m ∈ M and
a ∈ A. In particular, for M = A we obtain

HH0(A) = A/[A,A],

where [A,A] is the k-submodule of A generated by ab− ba for a, b ∈ A.
(b)

HHk∗(k) ∼=

{
k, ∗ = 0,

0, otherwise.

Proof. For (a) we consider b : Ck1 (A;M) = M ⊗A→ Ck0 (A;M) = M and get

b(m⊗ a) = ma− am.

For (b) we use that k⊗kn+1 ∼= k for all n > 0, so the Hochschild chain complex in this case is isomorphic
to

. . .
b //k

b //k
b //k

b //k.

The face maps di correspond to identity maps under this isomorphism, so the Hochschild complex is isomor-
phic to the complex

. . .
id //k

0 //k
id //k

0 //k

and hence the homology groups are as claimed. �

Example IV.1.6. If A is not flat over k, weird things can happen. Take for instance A = Z/nZ for some
2 6 n ∈ N. This is a ring, hence a Z-algebra. But as Z/nZ ⊗Z Z/nZ ∼= Z/nZ, the Hochschild complex
CZ
∗ (Z/nZ) is isomorphic to

. . .
id //Z/nZ 0 //Z/nZ id //Z/nZ 0 //Z/nZ

and

HHZ
∗(Z/nZ) ∼=

{
Z/nZ, ∗ = 0,

0, otherwise.

One can avoid these pathologies by considering a derived version of Hochschild homology, called Shukla
homology.
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Example IV.1.7. For every group G, every commutative ring k and every k[G]-bimodule we can consider

the Hochschild homology of k[G] with coefficients in M , HHk∗(k[G];M) but we can also view M as a G-module
by defining the G-action on M as

g.m := gmg−1 for g ∈ G,m ∈M.

It is common to denote M with this G-action by M c. You will show in an exercise that

HHk∗(k[G];M) ∼= H∗(G;M c),

so in particular for M = k with the trivial G-action we obtain

HHk∗(k[G]; k) ∼= H∗(G).

Lecture 19

Remark IV.1.8. If A happens to be commutative, then HHk0(A) ∼= A. What about HHk1(A;M) in this
case? The Hochschild complex in low degrees is

. . .
b //M ⊗A⊗2 b //M ⊗A b //M

and this yields

HHk1(A;M) =
ker(b : M ⊗A→M)

im(b : M ⊗A⊗A→M ⊗A)
.

Here, b : M ⊗A→M is zero, if M is a symmetric A-bimodule, i.e., if ma = am for all a ∈ A and m ∈M .
In this case, HHk1(A;M) is the quotient of M ⊗ A by the submodule generated by all ma1 ⊗ a2 −m ⊗

a1a2 + a2m⊗ a1.

Definition IV.1.9. Let A be a commutative k-algebra. The A-module of Kähler differentials of A over k,
Ω1
A|k is F/U , where F is the free A-module generated by symbols da for a ∈ A and U is the A-submodule

generated by

(a) d(λa+ µb)− λda− µdb, for a, b ∈ A, λ, µ ∈ k.
(b) d(ab)− adb− bda for a, b ∈ A.

Remark IV.1.10. Property (a) is the k-linearity of d(−) and property (b) says that d(−) is a derivation,
so it satisfies the Leibniz rule that you know from differentiation of real functions: (fg)′ = f ′g + fg′.

There is also an analogue of the property that constant function have trivial derivative: If λ is an element
of k, then we obtain

d(λ · 1A) = λd(1A) = λd(1A · 1A) = λ1Ad(1A) + λ1Ad(1A) = 2λd(1A),

and hence, d(λ · 1A) = 0.

Proposition IV.1.11.
(a) If A is a commutative k-algebra, then

HHk1(A) ∼= Ω1
A|k.

(b) If in addition M is a symmetric A-bimodule, then

HHk1(A;M) ∼= M ⊗A Ω1
A|k.

Proof. We know that for (a) the boundary map b : A⊗A→ A is trivial because A is commutative and
b : A⊗3 → A⊗A is given by

b(a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2 − a0 ⊗ a1a2 + a2a0 ⊗ a1.

We define ϕ : HHk1(A)→ Ω1
A|k as

ϕ[a0 ⊗ a1] := a0d(a1).

This is well-defined, because a0a1 ⊗ a2 − a0 ⊗ a1a2 + a2a0 ⊗ a1 maps to

a0a1d(a2)− a0d(a1a2) + a2a0d(a1) = a0a1d(a2)− a0a1d(a2)− a0a2d(a1) + a2a0d(a1) = 0.
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The map ψ : Ω1
A|k → HHk1(A), ψ(adb) = [a⊗ b] is an inverse to ϕ. It is well-defined, because a⊗ b is a cycle,

tensors are bilinear, and the relation coming from the Leibniz rule gives rise to boundaries.
In the case of coefficients in M as in (b) note that m⊗a is a cycle for all m ∈M and a ∈ A because M is a

symmetric A-bimodule. Therefore ϕ[m⊗a] := m⊗da gives a map from HH1(A;M) to M⊗AΩ1
A|k. It is well-

defined, because ϕ sends ma1⊗a2−m⊗a1a2 +a2m⊗a1 to zero. The inverse of ϕ is ψ(m⊗ad(b)) = [ma⊗b].
As ψ(ma⊗ b) = ψ(m⊗ ad(b)), this map is well-defined. �

Example IV.1.12. Let A be k[x]. For Ω1
k[x]|k we have to understand d of a general polynomial. But as

d(cnx
n + . . .+ c1x+ c0) = cnd(xn) + . . .+ c1d(x)

we only have to understand what d(xi) is for all i > 1. An induction shows d(xi) = ixi−1d(x), so Ω1
k[x]|k

is generated as a k[x]-module by dx and as there are no relations for dx we obtain an isomorphism of
k[x]-modules

Ω1
k[x]|k

∼= k[x].

Example IV.1.13. Let A be Fp[x]/(xp − x) for a prime p. Then again Ω1
Fp[x]/(xp−x)|Fp

is generated by dx,

but in this example the relation xp = x gives

d(x) = d(xp) = pxp−1d(x) = 0

and hence Ω1
Fp[x]/(xp−x)|Fp

= 0.

IV.2. Hochschild homology as a derived functor

We consider an auxiliary complex:

Definition IV.2.1. For any associative k-algebra A we consider the bar complex of A, Cbar,k∗ (A), with

Cbar,kn (A) = A⊗n+2 and differential b′ : Cbar,kn (A) = A⊗n+2 → Cbar,kn−1 (A) = A⊗n+1, b′ :=
∑n
i=0(−1)idi:

. . .
b′ //A⊗4 b′ //A⊗3 b′ //A⊗A

Remark IV.2.2. Note that the last face map dn+1 does not occur!

There is an augmentation map εA : Cbar,k∗ (A)→ A given by

εA|Cbar,k
n (A) =

{
µ, n = 0,

0, otherwise.

Lemma IV.2.3. For any associative k-algebra the complex Cbar,k∗ (A) is a resolution of A as a left Ae-module.

Proof. We define the Ae-module structure on every Cbar,kn (A) as

(a⊗ a′).(a0 ⊗ a1 ⊗ . . .⊗ an ⊗ an+1) := aa0 ⊗ a1 ⊗ . . .⊗ an ⊗ an+1a
′.

As b′ only involves the face maps d0 up to dn this module structure is compatible with b′, and it is also
compatible with the augmentation.

We define sn : Cbar,kn (A)→ Cbar,kn+1 (A) as

sn(a0 ⊗ a1 ⊗ . . .⊗ an ⊗ an+1) = 1⊗ a0 ⊗ a1 ⊗ . . .⊗ an ⊗ an+1.

Then disn = sn−1di−1 holds for 1 6 i 6 n+ 1 and d0sn = id. Therefore b′sn + sn−1b
′ = idCbar,k

n (A). �

Note the similarity to the proof of Lemma III.2.3. The chain homotopy s = (sn) if often called the extra
degeneracy.

Theorem IV.2.4. If A is an associative k-algebra whose underlying k-module is projective, then for every
A-bimodule M

HHk∗(A;M) ∼= TorA
e

∗ (M,A).
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Proof. As A is projective over k, so is A⊗n for all n > 1. Therefore, Cbar,k∗ (A) is a projective resolution
of A as a Ae-module, so

TorA
e

∗ (M,A) = H∗(M ⊗Ae Cbar,k∗ (A)).

We can identify

M ⊗Ae Cbar,kn (A) = M ⊗Ae A⊗n+2 ∼= M ⊗A⊗n,
because in M ⊗Ae Cbar,kn (A) we have that

m⊗ a0 ⊗ a1 ⊗ . . .⊗ an ⊗ an+1 = an+1ma0 ⊗ 1⊗ a1 ⊗ . . .⊗ an ⊗ 1

and we identify the latter with

an+1ma0 ⊗ a1 ⊗ . . .⊗ an.
Under this isomorphism the boundary map idM ⊗Ae b′ is identified with b: for the face maps d1, . . . , dn−1

this is obvious.
The zeroth face map d0(m⊗a1⊗ . . .⊗an) corresponds to d0(m⊗1⊗a1⊗ . . .⊗an⊗1) in M⊗AeCbar,kn (A)

and this is m ⊗ a1 ⊗ . . . ⊗ an ⊗ 1 which again corresponds to ma1 ⊗ . . . ⊗ an and dn(m ⊗ a1 ⊗ . . . ⊗ an)
corresponds to dn(m⊗ 1⊗ a1 ⊗ . . .⊗ an ⊗ 1) in M ⊗Ae Cbar,kn (A) and this is m⊗ 1⊗ a1 ⊗ . . .⊗ an which is
identified with anm⊗ a1 ⊗ . . .⊗ an−1. �

Remark IV.2.5. For Theorem IV.2.4 to hold, it actually suffices to assume that A is flat as a k-module
[12, Corollary 9.1.5]. Thus if A is flat over k, then HHk∗(A;M) is the derived functor of HHk0(A;M) =

M/(am − ma, a ∈ A,m ∈ M). You might think of HHk0(A;M) as the symmetrization of the A-bimodule
structure on M .

Example IV.2.6. Let A be k[x]. Then this is even free as a k-module, so

HHk∗(k[x]) ∼= Tork[x]e

∗ (k[x], k[x]).

But as k[x] is commutative, we have

k[x]e = k[x]⊗k k[x]op = k[x]⊗k k[x] = k[x, y].

The k[x, y]-module structure on k[x] is given by

k[x, y]⊗k k[x]
f⊗id

//k[x]⊗k k[x]
µ

//k[x],

where f(x) = x = f(y). We need a projective resolution of k[x] as a k[x, y]-module and

k[x, y]
x−y

//k[x, y]

does the trick: Multiplication by x− y is injective and k[x, y]/(x− y) ∼= k[x]. Therefore

HHk∗(k[x]) = H∗( . . . //0 //k[x, y]⊗k[x,y] k[x]
(x−y)⊗id

//k[x, y]⊗k[x,y] k[x])

and this is the homology of the complex

. . . //0 //k[x]
0 //k[x].

Thus we obtain

HHk∗(k[x]) ∼=

{
k[x], ∗ = 0, 1,

0, otherwise.

We already new that HHk0(k[x]) ∼= k[x] and HHk1(k[x]) ∼= Ω1
k[x]|k

∼= k[x], so the calculation above says that

these are the only non-trivial Hochschild homology groups.

Lecture 20
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Example IV.2.7. The above result can be generalized to quotients of the form A = k[x]/φ(x), where
φ(x) ∈ k[x] is any monic polynomial [2]. Let k 6= 0 be again an arbitrary commutative ring and let A be
k[x]/(φ(x)) where φ is any monic polynomial. As A is commutative, we have Ae = A ⊗k A and this is a
quotient of k[x, y]. We consider the complex of Ae-free modules F∗ of A that is free of rank one over Ae with
generator xn in every degree n > 0. We define its boundary as

d(xn) =

{
φ(x)⊗1−1⊗φ(y)

x⊗1−1⊗y xn−1, n even,

(x⊗ 1− 1⊗ y)xn−1, n odd.

In [2] it is shown that this is actually a resolution of A. Assume that M is a symmetric A-bimodule (for
instance M = A). Then

HHk∗(k[x]/(φ(x));M) ∼= H∗( . . .
φ′(x)

//M
0 //M

φ′(x)
//M

0 // . . .
0 //M ).

For instance, if k = M = F3 and A = F3[x]/(x3) then the boundary maps in the above complex are trivial
because (x3)′ = 3x2 ≡ 0 and hence

HHF3
∗ (F3[x]/x3;F3) ∼= F3, for all ∗ > 0.

IV.3. Morita invariance

You might have seen the following important definition in other contexts:

Definition IV.3.1. Let A and B be two associative k-algebras. Then A and B are Morita equivalent, if
there is an A-B-bimodule P and a B-A-bimodule Q together with isomorphisms

ϕ : P ⊗B Q ∼= A, and ψ : Q⊗A P ∼= B,

where ϕ is an isomorphism of A-bimodules and ψ is an isomorphism of B-bimodules.

Remark IV.3.2. You know from an exercise that in the above situation P is projective as an A-module
and as a right B-module and dually, that Q is projective as a B-module and a right A-module.

Example IV.3.3. For all rings 6= 0 the ring R is Morita equivalent to the ring of n × n-matrices over R,
Mn(R) for every n > 1. Here, one can take P = Rn = Q, but we view P as row vectors, (Rn)t. Then

(Rn)t ⊗Mn(R) R
n ∼= R, and Rn ⊗R (Rn)t ∼= Mn(R).

Hochschild homology is Morita invariant:

Theorem IV.3.4. If A and B are two k-algebras that are Morita equivalent and if M is an A-bimodule,
then

HHk∗(A;M) ∼= HHk∗(B;Q⊗AM ⊗A P ).

In particular, for M = A:

HHk∗(A) ∼= HHk∗(B;Q⊗A A⊗A P ) ∼= HHk∗(B).

We prove a special case for now and defer the full proof of Theorem IV.3.4 to later (see Section V.4).

Theorem IV.3.5. Let A be an associative k-algebra and let M be an A-bimodule, then

HHk∗(Mr(A);Mr(M)) ∼= HHk∗(A;M) for all r > 1.

Proof. We define the generalized trace map

tr : Mr(M)⊗Mr(A)⊗n →M ⊗A⊗n

as

tr(B0 ⊗B1 ⊗ . . .⊗Bn) :=
∑

16i0,...,in6r

b0i0,i1 ⊗ . . .⊗ b
n
in,i0 .

(So if you multiply tensor factors in the summands you actually get the trace of the product of the matrices.)
As di ◦ tr = tr ◦ di for all 0 6 i 6 n, the generalized trace map induces a chain map

tr : Ck∗ (Mr(A);Mr(M))→ Ck∗ (A;M).

64



Define i : A→Mr(A) and i : M →Mr(M) as

(i(x))ij =

{
x, i = j = 1,

0, otherwise.
=


x 0 . . . 0

0 0
...

...
. . .

...
0 . . . . . . 0


We extend i to a map

i : M ⊗A⊗n →Mr(M)⊗Mr(A)⊗n, i(m⊗ a1 ⊗ . . .⊗ an) = i(m)⊗ i(a1)⊗ . . .⊗ i(an).

Again, dj ◦ i = i ◦ dj for 0 6 j 6 n, so i induces a chain map.
The composite tr ◦ i applied to an element m⊗ a1 ⊗ . . .⊗ an is

tr(i(m)⊗ i(a1)⊗ . . .⊗ i(an))

and this actually has a single non-trivial summand, namely the one for i0 = . . . = in = 1 and this returns
m⊗ a1 ⊗ . . .⊗ an, so tr ◦ i = idCk

∗ (A;M).
The other composite i ◦ tr places the result of the generalized trace map into the upper left corner of a

matrix, so this is not the identity map, but we show that it is homotopic to the identity map.
To this end we define for 0 6 j 6 n

hj(B
0⊗ . . .⊗Bn) :=

∑
16i0,...,ij+16r

Ei0,1(b0i0,i1)⊗E1,1(b1i1,i2)⊗ . . .⊗E1,1(bjijij+1
)⊗E1,ij+1

(1)⊗Bj+1⊗ . . .⊗Bn.

Here, Eij(x) is the matrix that has x in spot (i, j) and is trivial otherwise, and in+1 = i0 for hn.

• We obtain d0h0 = id because

d0h0(B0 ⊗ . . .⊗Bn) = d0(
∑
i0,i1

Ei0,1(b0i0,i1)⊗ E1,i1(1)⊗B1 ⊗ . . .⊗Bn)

=
∑
i0,i1

Ei0,i1(b0i0,i1)⊗B1 ⊗ . . .⊗Bn

= B0 ⊗B1 ⊗ . . .⊗Bn.

• For dn+1 ◦ hn(B0 ⊗ . . .⊗Bn) we obtain

dn+1

 ∑
16i0,...,in6r

Ei0,1(b0i0,i1)⊗ E1,1(b1i1,i2)⊗ . . .⊗ E1,1(bnin,i0)⊗ E1,i0(1)


but as

E1,i0(1)Ei0,1(b0i0,i1) = E11(b0i0,i1) = i(b0i0,i1)

we obtain dn+1hn = i ◦ tr.
• These maps also satisfy the identities

dihj = hj−1di for i < j,

dihi = dihi−1 for 0 < i 6 n,

dihj = hjdi−1 for i > j + 1.

This ensures that the map H :=
∑n
j=0(−1)jhj satisfies

bH +Hb = id− i ◦ tr,

to that i ◦ tr is chain homotopic to the identity. �

Corollary IV.3.6. For all r > 2 the trace map induces an isomorphism

Mr(A)/[Mr(A),Mr(A)]→ A/[A,A].
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Proof. This follows from the case n = 0 from above: The trace tr : Mr(A)→ A can be prolonged to

Mr(A)
tr //A //A/[A,A] = HHk0(A)

and this map in turn factors through HHk0(Mr(A))

Mr(A)
tr //

��

A // A/[A,A] = HHk0(A)

HHk0(Mr(A)) = Mr(A)/[Mr(A),Mr(A)]

tr

22

and the proof of Theorem IV.3.5 shows that tr is an isomorphism. �

IV.4. Hochschild cohomology

Definition IV.4.1. Let A be a k-algebra and let M be an A-bimodule. We set

C∗k(A;M) := HomAe(Cbar,k∗ (A),M)

and define the Hochschild cohomology of A with coefficients in M as

HH∗k(A;M) := H∗(C∗k(A;M)).

Remark IV.4.2.
• The definition above implies directly that HHnk (A;M) ∼= ExtnAe(A;M) if A is projective as a k-

module.
• We can simplify the description of C∗k(A;M). If g is an Ae-linear map

g : A⊗A⊗n ⊗A→M

then we can identify it with the k-linear map f : A⊗n → M where f(a1 ⊗ . . . ⊗ an) = g(1 ⊗ a1 ⊗
. . .⊗ an ⊗ 1). The isomorphism

HomAe(A⊗A⊗n ⊗A,M) ∼= Homk(A⊗n,M)

also yields an identification of the coboundary operator which is given on an f ∈ Homk(A⊗n,M) as

δ(f)(a1⊗. . .⊗an+1) = a1f(a2⊗. . .⊗an+1)+

n∑
i=1

(−1)if(a1⊗. . .⊗aiai+1⊗. . .⊗an+1)+(−1)n+1f(a1⊗. . .⊗an)an+1.

The next result follows directly from the definition of Hochschild cohomology and the above identifica-
tions.

Proposition IV.4.3. For any k-algebra A and any A-bimodule M we obtain

(a)
HH0

k(A;M) = {m ∈M,am = ma for all a ∈ A},
and in particular

HH0
k(A) = {a ∈ A, ab = ba for all b ∈ A} = Z(A),

where Z(A) denotes the center of A.
(b) HH1

k(A;M) is the quotient of the k-module of derivations from A to M modulo the k-submodule
of inner derivations. Here a k-linear map D : A → M is a derivation, if D(ab) = aD(b) + D(a)b
for all a, b ∈ A. A derivation D is an inner derivation if there is an m ∈ M such that D(a) =
ma− am =: [m, a].

Lecture 21

Remark IV.4.4.
• Check that inner derivations are actually derivations!
• Compare this notion of derivations with the one for Kähler differentials. Beware that here the

Leibniz rule is different: D(a) and D(b) are elements of M and for aD(b) we use the left A-module
structure on M whereas for D(a)b we use the right A-module structure.
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• HH1
k(A) is actually a Lie-algebra with Lie bracket

[D1, D2] := D1 ◦D2 −D2 ◦D1,

where D1, D2 are (classes of) derivations.

As for groups, we can relate the second Hochschild cohomology groups to equivalence classes of suitable
extensions. We consider short exact sequences

0 //M
i //E

π //A //0

that are split as sequences of k-modules. The objects M,E,A are algebras where M is without unit and
carries the trivial multiplication: m ·m′ = 0 for all m,m′ ∈M .

Let s : A → E be a k-linear section. Hence E ∼= A ⊕M as k-modules. Then M can be viewed as a
submodule of E and carries an induced A-bimodule structure via

ν : A⊗ E ⊗A→ A, ν(a⊗ e⊗ b) := s(a) · e · s(b).

As π(s(a) · e · s(b)) = aπ(e)b = 0 for e ∈ i(M), this restricts to an A-bimodule structure on M .

Proposition IV.4.5. For every k-algebra A and every A-bimodule M there is a bijection between HH2
k(A;M)

and the set of equivalence classes of extensions as above where the induced A-bimodule structure on M is the
given one.

Sketch of proof. Assume that f : A⊗2 →M is a Hochschild cocycle. Then we define a multiplication
on the k-module E(f) := A⊕M as:

(a1,m1)(a2,m2) := (a1a2, a1m2 +m1a2 + f(a1 ⊗ a2)).

The cocycle condition for f ensures that this multiplication is associative.

If f1 = f2 + δ(g) for some g ∈ Homk(A,M), then the corresponding extensions are equivalent, i.e., there
is an isomorphism of k-algebras φ : E(f1)→ E(f2) such that

0 // M
i1 // E(f1)

φ

��

π1 // A // 0

0 // M
i2 // E(f2)

π2 // A // 0

commutes. Explicitly, φ is given by φ(a,m) := (a,m+ g(a)).
Vice versa, given an extension, we define f : A⊗2 →M by the requirement that

(a1, 0)(a2, 0) = (a1a2, f(a1 ⊗ a2)).

Then the fact that the multiplication is associative implies the cocycle condition. Isomorphisms of extensions
are always of the form φ(a,m) = (a, g(a) + m) and this implies that equivalent extensions give rise to two
cocycles that differ by a coboundary. �

IV.5. Additional structure

Hochschild (co)homology has some rich structure that is similar to features of singular (co)homology. In
the following we just present a few basics.

The first feature exploits the duality between homology and cohomology.

Definition IV.5.1. Let A be a k-algebra and let M1,M2 be A-bimodules.
The map

〈−,−〉 : Cnk (A;M1)⊗ Ckn(A;M2)→M1 ⊗Ae M2

that sends an f ∈ Homk(A⊗n,M1) and an m2 ⊗ a1 ⊗ . . .⊗ an to

〈f,m2 ⊗ a1 ⊗ . . .⊗ an〉 := f(a1 ⊗ . . .⊗ an)⊗m2

is the Kronecker pairing.
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Remark IV.5.2. A direct calculation shows that

〈δ(f),m2 ⊗ a1 ⊗ . . .⊗ an+1〉 = 〈f, b(m2 ⊗ a1 ⊗ . . .⊗ an+1)〉,

so that we get an induced map

〈−,−〉 : HHnk (A;M1)⊗ HHkn(A;M2)→M1 ⊗Ae M2.

Definition IV.5.3. Let A be a k-algebra and let f ∈ Cnk (A), g ∈ Cmk (A). The cup-product of f and g is
the cochain f ∪ g ∈ Cn+m

k (A) with

(f ∪ g)(a1 ⊗ . . .⊗ an ⊗ an+1 ⊗ . . .⊗ an+m) := f(a1 ⊗ . . .⊗ an) · g(an+1 ⊗ . . .⊗ an+m).

Lemma IV.5.4. The cup-product satisfies a Leibniz rule:

δ(f ∪ g) = δ(f) ∪ g + (−1)nf ∪ δ(g).

Proof. Let us write down, what δ(f ∪ g) is:

δ(f ∪ g)(a1 ⊗ . . .⊗ an ⊗ an+1 ⊗ . . .⊗ an+m+1)

=a1f(a2 ⊗ . . .⊗ an+1) · g(an+2 ⊗ . . .⊗ an+m+1)

− f(a1a2 ⊗ . . .⊗ an+1) · g(an+2 ⊗ . . .⊗ an+m+1)

± . . .+ (−1)nf(a1 ⊗ . . .⊗ anan+1) · g(an+2 ⊗ . . .⊗ an+m+1)

+ (−1)n+1f(a1 ⊗ . . .⊗ an)g(an+1an+2 ⊗ . . .⊗ an+m+1)

± . . .+ (−1)n+m+1f(a1 ⊗ . . .⊗ an)g(an+1 ⊗ . . .⊗ an+m)an+m+1.

In the sum (δ(f) ∪ g + (−1)nf ∪ δ(g))(a1 ⊗ . . .⊗ an ⊗ an+1 ⊗ . . .⊗ an+m+1) we get the additional two
summands (−1)n+1(f(a1 ⊗ . . . ⊗ an)an+1)g(an+2 ⊗ . . . ⊗ an+m+1) as the last coface map of δ(f) ∪ g and
(−1)nf(a1 ⊗ . . .⊗ an)(an+1g(an+2 ⊗ . . .⊗ an+m+1)) from the zeroth coface map in (−1)nf ∪ δ(g), but their
sum cancels. �

Definition IV.5.5. Let p and q be natural numbers. A (p, q)-shuffle is a σ ∈ Σn with n = p+ q such that

σ(1) < . . . < σ(p) and σ(p+ 1) < . . . < σ(p+ q).

We denote the set of (p, q)-shuffles by Sh(p, q).

So think of such a shuffle as shuffeling a deck of p cards and a deck of q cards.

Example IV.5.6. For n = 3 the (1, 2)-shuffles are all permutations with σ(2) < σ(3), so the identity,
σ = (1, 2) and (1, 3, 2).

Remark IV.5.7. Note that |Sh(p, q)| is just the binomial coefficient
(
p+q
p

)
=
(
p+q
q

)
because a shuffle is

completely determined by the set {σ(1), . . . , σ(p)}. So you know that there are 6 (2, 2)-shuffles in Σ4. It’s a
good exercise to draw them.

We define shuffle maps on the level of Hochschild chains:

Definition IV.5.8. Let

shp,q : Ckp (A;M)⊗ Ckq (A′;M ′)→ Ckp+q(A⊗A′;M ⊗M ′)

be defined as

shp,q((m⊗ a1 ⊗ . . .⊗ ap)⊗ (m′ ⊗ a′p+1 ⊗ . . .⊗ a′p+q)) :=

m⊗m′ ⊗

 ∑
σ∈Sh(p,q)

sign(σ)σ.(a1 ⊗ 1)⊗ . . .⊗ (ap ⊗ 1)⊗ (1⊗ a′p+1)⊗ . . .⊗ (1⊗ a′p+q)

 .

Here, σ.(c1 ⊗ . . .⊗ cp+q) = cσ−1(1) ⊗ . . .⊗ cσ−1(p+q).
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So for instance sh1,2((m⊗ a1)⊗ (m′ ⊗ a′2 ⊗ a′3)) has three summands, namely

(m⊗m′)⊗((a1 ⊗ 1)⊗ (1⊗ a′2)⊗ (1⊗ a′3)− (1⊗ a′2)⊗ (a1 ⊗ 1)⊗ (1⊗ a′3) + (1⊗ a′2)⊗ (1⊗ a′3)⊗ (a1 ⊗ 1)) .

A proof of the following Proposition can be found in [5][ref].

Proposition IV.5.9. For all x ∈ Ckp (A;M) and y ∈ Ckq (A′;M ′):

b(shp,q(x⊗ y)) = shp−1,q(b(x)⊗ y) + (−1)pshp,q−1(x⊗ b(y)). �

Remark IV.5.10. If A is a commutative k-algebra, then the multiplication µ : A⊗k A→ A is a morphism
of k-algebras, so in this case we can prolong the above shuffle map with µ.

Definition IV.5.11. Let A be a commutative k-algebra, the we define

∗ : Ckp (A)⊗ Ckq (A)→ Ckp+q(A)

as the composite Ckp+q(µ) ◦ shp,q:

Ckp (A)⊗ Ckq (A)
shp,q

//Ckp+q(A⊗A)
Ck

p+q(µ)
//Ckp+q(A).

Corollary IV.5.12. If A is a commutative k-algebra, then the shuffle map induces a graded commutative
product on HHk∗(A):

∗ : HHkp(A)⊗ HHkq (A)→ HHkp+q(A).

This map actually factors through the tensor product over A:

∗ : HHkp(A)⊗A HHkq (A)→ HHkp+q(A).

Remark IV.5.13. Why is this graded commutative and not just commutative? Consider the permutation
χ ∈ Σp+q that is given by

χ(i) =

{
p+ i, 1 6 i 6 q,

q − i, q + 1 6 i 6 q + p.

Then χ has sign(χ) = (−1)pq and a σ is in Sh(p, q) if and only if σ◦χ ∈ Sh(q, p). So χ induces a bijection
on the indexing set for the shuffle product and therefore

(a0 ⊗ a1 ⊗ . . .⊗ ap) ∗ (a′0 ⊗ ap+1 ⊗ . . .⊗ ap+q) = (−1)pq(a′0 ⊗ ap+1 ⊗ . . .⊗ ap+q) ∗ (a0 ⊗ a1 ⊗ . . .⊗ ap).

We saw that for commutative k-algebras A the module of Kähler differentials describes HHk1(A).

Definition IV.5.14. Let n be a natural number and let A be a commutative k-algebra. The module of
differential n-forms on A over k is

ΩnA|k := ΛnAΩ1
A|k.

Elements in ΩnA|k are of the form a0da1 ∧ . . . ∧ dan and for every σ ∈ Σn we have the relation

a0daσ−1(1) ∧ . . . ∧ daσ−1(n) = sign(σ)a0da1 ∧ . . . ∧ dan.

Example IV.5.15. For A commutative we know that HHk1(A) ∼= Ω1
A|k. Let ϕ : Ω1

A|k ⊗ Ω1
A|k → HHk2(A) be

the map

Ω1
A|k ⊗ Ω1

A|k
∼= // HHk1(A)⊗ HHk1(A)

∗ // HHk2(A).

The graded-commutativity of ∗ implies that ϕ factors through Ω2
A|k.

Remark IV.5.16. We know that HHk∗(k[x]) ∼= Ω∗k[x]|k if we agree to set Ω0
k[x]|k = k[x]. For k[x1, . . . , xn]

one can similarly show that
HHk∗(k[x1, . . . , xn]) ∼= Ω∗k[x1,...,xn]|k.

By the Theorem of Hochschild-Kostant-Rosenberg [5, Theorem 3.4.4] this can be generalize to smooth k-
algebras: If A is smooth over k, then

HHk∗(A) ∼= Ω∗A|k.
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Remark IV.5.17. The Hochschild cochain complex of a k-algebra has a very rich structure which is struc-
tural similar to that of a double based loop space: If X is a pointed topological space, then Ω2X is the
space of basepoint preserving maps from the 2-sphere to X. Pierre Deligne conjectured that a structure that
Murray Gerstenhaber established on HH∗k(A) [4] refines to such a structure on the level of cochains. Jim
McClure and Jeff Smith proved that conjecture in 1999 [8].

You will investigate the Gerstenhaber algebra structure on HH∗k(A) in an exercise.

IV.6. Cyclic homology

Let A be a k-algebra. If we take the Hochschild chain complex with coefficients then we already noticed
the cyclic symmetriy of Ck∗ (A). Alain Connes was the first to exploit that symmetry: In 1981 he noted that
the quotients A⊗n+1/(1 − t) still give rise to a chain complex. Here 〈t〉 = Z/(n + 1)Z. This chain complex
has good properties if Q ⊂ k. There is a definition of cyclic homology that does not need this restrictive
assumption, but that works in any characteristic, for any commutative ring k.

Definition IV.6.1. Let tn be a generator of Z/(n+ 1)Z < Σn+1 = Σ{0,...,n}, tn = (0, 1, . . . , n). We define

Z/(n+ 1)Z× Ckn(A)→ Ckn(A)

by
tn(a0 ⊗ . . .⊗ an) = (−1)nan ⊗ a0 ⊗ . . .⊗ an−1.

Note that sign(tn) = (−1)n, so this definition is consistent with the earlier action of the symmetric
groups on the Hochschild complex, because

an ⊗ a0 ⊗ . . .⊗ an−1 = at−1
n (0) ⊗ . . .⊗ at−1

n (n).

Recall our earlier notation. We had

N =

n∑
i=0

tin, b =

n∑
i=0

(−1)idi and b′ =

n−1∑
i=0

(−1)idi.

These maps are compatible in the following sense:

Lemma IV.6.2.

(1− t)b′ = b(1− t)
b′N = Nb.

Proof. The claims follow from the relations ditn = −tn−1di−1 for 0 < i 6 n and d0tn = (−1)ndn, and
these are checked by a direct computation. �

Definition IV.6.3. Let A be a k-algebra.

(a) The cyclic bicomplex of A over k is CCk∗,∗(A) defined as CCkp,q(A) = A⊗q+1 and

...

b

��

...

−b′

��

...

b

��

...

−b′

��

A⊗2

b

��

A⊗2id−t1oo

−b′
��

A⊗2

b

��

Noo A⊗2id−t1oo

−b′
��

. . .
Noo

A A
id−t0=0

oo A
N=idoo A

id−t0=0
oo . . .

N=idoo

(b) The nth cyclic homology group of A over k, HCkn(A), is

HCkn(A) = Hn(TotCCk∗,∗(A)).

Note that

(TotCCk∗,∗(A))n =
⊕
p+q=n

CCkp,q(A) =

n+1⊕
i=1

A⊗i.

70



Example IV.6.4. As Σ1 is the trivial group, we get that id− t0 = 0, so

HCk0(A) = HHk0(A) = A/[A,A].

If you stare at the zeroth column of the cyclic bicomplex, you see the Hochschild complex of A, and the
same repeats in all even columns to the right. This periodicity gives rise to the following important exact
sequence, that allows us to relate cyclic homology to Hochschild homology.

Theorem IV.6.5 (Connes’ Periodicity Sequence). For any k-algebra A there is a long exact sequence

HCkn−1(A)

B // HHkn(A)
I // HCkn(A)

S // HCkn−2(A)

B // HHkn−1(A)
I // . . .

This is often called the BIS-sequence.

Proof. Consider the bicomplex CC
[2]
∗,∗(A) that has as non-trivial entries only the first two columns of

the bicomplex CCk∗,∗(A), so

CC
[2]
∗,∗(A) =

...

b

��

...

−b′

��

...

��

...

��

A⊗2

b

��

A⊗2id−t1oo

−b′
��

0oo

��

0oo

��

. . .oo

A A
id−t0=0

oo 0oo 0oo . . .oo

We know that the b′-complex is contractible and you can adept the chain homotopy to this bicomplex.
Therefore

Hn(Tot(CC
[2]
∗,∗(A))) ∼= HHkn(A).

Denote by I : CC
[2]
∗,∗(A) ↪→ CCk∗,∗(A) the inclusion of the bicomplex CC

[2]
∗,∗(A) into CCk∗,∗(A). We get a

short exact sequence of bicomplexes

0 //CC
[2]
∗,∗(A)

I //CCk∗,∗(A)
S //coker(I) //0

and a resulting short exact sequence of chain complexes after applying Tot.
Note that

coker(I)p,q ∼=

{
CCkp−2,q(A), p > 2,

0, p < 2.

Hence Hn(Tot(coker(I)∗,∗) ∼= HCn−2(A). If we abuse notation and use I and S also for the maps induced
on homology and if we denote by B the connecting homomorphism, then the result follows. �

In many cases Hochschild homology is easier to calculate than cyclic homology, so the above sequence
helps in these cases.

In low degrees we recover the result that HHk0(A) ∼= HCk0(A).

Example IV.6.6. We saw in Proposition IV.1.5, that HHk∗(k) is only non-trivial for ∗ = 0 where it is k.
The Periodicity Sequence then gives us immediately that

HCk∗(k) ∼=

{
k, ∗ > 0 and even,

0, otherwise.

71



Example IV.6.7. If A is commutative, then we know that HHk0(A) = A = HCk0(A) and HHk1(A) ∼= Ω1
A|k.

You can check that the map
B : HCk0(A) = A→ HHk1(A) ∼= Ω1

A|k

sends an a ∈ A to da. This implies that HCk1(A) is isomorphic to Ω1
A|k/U where U is the k-submodule of

Ω1
A|k generated by the elements da for a ∈ A.

Remark IV.6.8. If cyclic homology is harder to calculate than Hochschild homology, why should we bother?
One reason is, that it is used as an approximation to algebraic K-theory.

The algebraic K-groups of a ring R, K∗(R), contain arithmetic information about the ring, such as the
units of R, and if R is commutative, then the Picard group of R and its Brauer group. The groups K∗(R)
are really hard to compute. For instance K∗(Z) is not completely known.

The zeroth group, K0(R), is the so-called group completion of the monoid of isomorphism classes of
finitely generated projective R-modules. If R is a field or a PID, then K0(R) ∼= Z.

The next one, K1(R) is
K1(R) = GL(R)/[GL(R), GL(R)]

where GL(R) =
⋃
n>1GLn(R) and GLn(R) is viewed as a subgroup of GLn+1(R) by identifying an A ∈

GLn(R) with the block matrix

(
A 0
0 1

)
∈ GLn+1(R). You know by Proposition III.2.4 that you can also

describe K1(R) as H1(GL(R);Z). In K1(R) you find the units of R. For example K1(Z) ∼= Z/2Z.
The group K2(R) can be expressed in terms of group homology as

K2(R) ∼= H2(E(R);Z)

where E(R) is the normal subgroup of GL(R) generated by elementary matrices, i.e., by quadratic matrices
eij(r) for r ∈ R and i 6= j with

(eij(r))p,q =


r, (p, q) = (i, j),

1, p = q,

0, otherwise.

For higher n, Kn(R), still contains important information, but it is defined as the higher homotopy
groups of a rather complicated space. For instance, it was shown in 2019 that K8(Z) is trivial [3].

There are ’trace maps’ (called the Dennis trace map to Hochschild homology and the Chern character
to negative cyclic homology)

K∗(R)

$$zz

HC−∗ (R) HHZ
∗(R)

In this sense Hochschild homology and HC−∗ (R), the negative cyclic homology of R, a slight variant of
HC∗(R), can be thought of as approximations of algebraic K-theory. For more about algebraic K-theory and
its relation to Hochschild and cyclic homology see [10].
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CHAPTER V

Spectral sequences

Spectral sequences were first studied starting from 1946 in many different contexts, for instance by
Hochschild, Koszul, Leray, Lyndon, Serre and many more. They are an important tool for calculations, but
they can also be used for proofs in homological algebra, algebraic topology, algebraic geometry and many
other areas of mathematics. We will only cover an extremely concise introduction to spectral sequences. For
more details and examples see [12, 7, 6].

So what are they? A typical statement about a spectral sequence is of the following type:
If M is a G-module for some groups G, if N is a normal subgroup of G, then there is a spectral sequence

E2
p,q = Hp(G/N ;Hq(N ;M))⇒ Hp+q(G;M).

So our goals are to understand what the above statement actually means, and then to do calculations
with the help of spectral sequences. In the above example you might want to calculate H∗(G;M) and you do
that by calculating the homology groups of G/N with coefficients in Hq(N ;M). So one has to understand
for instance how G/N acts on Hq(N ;M), but then, of course, we need to know what the symbols E2

p,q and
⇒ mean.

V.1. Definitions

Definition V.1.1.
• A Z-bigraded R-module is a family E = (Ep,q)p,q∈Z of R-modules Ep,q.
• A differential dr of bidegree (−r, r−1) on E for r > 0 is a family dr : Ep,q → Ep−r,q+r−1 of R-linear

maps with dr ◦ dr = 0. We denote the bidegree of dr by ||dr|| = (−r, r − 1).
So we have ||d0|| = (0,−1), ||d1|| = (−1, 0), ||d2|| = (−2, 1), ||d3|| = (−3, 2) and so on:

•

?

� HH
H
HH

HY

Q
Q

Q
Q

Q
Q
Q

QQk

d0d1

d2

d3

• The homology of E with respect to dr is the Z-graded module

H(E, dr)p,q :=
ker(dr : Ep,q → Ep−r,q+r−1)

im(dr : Ep+r,q−r+1 → Ep,q)
.

• A spectral sequence E = (Er, dr) is a sequence of Z-bigraded modules Er (for r > 0, or 1 or 2)
together with a differential dr of bidegree ||dr|| = (−r, r − 1) such that

Er+1 ∼= H(Er, dr).

• If E = (Er, dr) and Ẽ = (Ẽr, d̃r) are two spectral sequences, then a morphism of spectral sequences

f : E → Ẽ is a family
frp,q : Erp,q → Ẽrp,q

of R-linear maps such that
dr ◦ fr = fr ◦ d̃r for all r

and such that fr+1 is induced by fr.
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Remark V.1.2.
(a) The definition above describes a spectral sequence of homological type. The ones of cohomomological

type have differentials dr of bidegree ||dr|| = (r, 1 − r) and the definition has to be modified
accordingly.

(b) Think of a spectral sequence Erp,q as an infinite stack of sheets of papers. You start with E0 (or E1

or E2) and then you have to calculate Er+1 from Er and dr. This is a priori an infinite process...
(c) As we have Er+1 = H(Er, dr) as bigraded objects, we can think of a spectral sequence in terms of

nested subobjects. For instance,

E3 = H(E2, d2) = Z2/B2

where we use Z2 for the Z-bigraded module of d2-cycles and B2 for the Z-bigraded module of
d2-boundaries. Say we start with E2, then we get

0 = B1 ⊂ B2 ⊂ B3 ⊂ . . . . . . ⊂ Z3 ⊂ Z2 ⊂ Z1 = E2.

The boundary map dr+1 : Zr/Br → Zr/Br has kernel

ker(dr+1) = Zr+1/Br

and image
im(dr+1) = Br+1/Br.

How do we talk about this?

We call the elements of Zr, the elements that survive until stage r + 1,

The elements of Br are the ones that are boundaries in stage r, so they ’die at stage r’.

We denote by Z∞

Z∞ :=
⋂
r

Zr

and call these the ’surviving cycles’.

We set B∞ as
B∞ =

⋃
r

Br

and call its elements the ones that eventually become boundaries. These are the elements that ’die’ in a
spectral sequence.

Note that B∞ ⊂ Z∞, so we can form

E∞p,q := Z∞p,q/B
∞
p,q.

The Er approximate E∞ and the E∞-term is called the abutment of the spectral sequence.

But what have we actually calculated with E∞?

Definition V.1.3. A spectral sequence (Er, dr) is first quadrant if Erp,q = 0 for all negative p, q.

Remark V.1.4.
• If you fix a bidegree (p, q) in a first quadrant spectral sequence, then there are only finitely many

non-trivial differentials that start in the spot (p, q), but there are also only finitely many non-trivial
differentials that end in the spot (p, q). So for a fixed (p, q) you get at E∞p,q in finitely many steps!

• The elements in Erp,0 are special in such a spectral sequence: They can never be hit by a differential.
Therefore

(V.1.1) Er+1
p,0 = ker(dr : Erp,0 → Erp−r,r−1) ⊂ Erp,0

and hence
E∞p,0 = Ep+1

p,0 ⊂ . . . ⊂ E3
p,0 ⊂ E2

p,0.

• Dually, the elements x ∈ Er0,q are always cycles, so drx = 0. Therefore

(V.1.2) E2
0,q � E3

0,q � . . .� E∞0,q.
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Definition V.1.5. The composite morphisms in (V.1.1) and (V.1.2) are called edge homomorphisms.

6

-
6

� • E2
0,qE∞0,q

•
E2
p,0

E∞p,0

Definition V.1.6. If (Er, dr) is a spectral sequence, then we say that it collapses at the Es-term, if dr = 0
for all r > s.

If that happens, then Es = E∞ because all elements on the Es-term are cycles and there are only trivial
boundaries.

How do spectral sequences arise?

V.2. Filtered complexes

Definition V.2.1. Let M be an R-module.

(a) An increasing filtration (FpM)p∈Z of M is a family of submodules FpM ⊂M such that

. . . ⊂ Fp−1M ⊂ FpM ⊂ Fp+1M ⊂ . . .

(b) The associated graded module of (FpM)p∈Z is grM with

grpM := FpM/Fp−1M.

(c) Let (FpM)p∈Z and (FpN)p∈Z be two filtered R-modules. A morphism of filtered modules is an
R-linear map f : M → N such that f(FpM) ⊂ FpN for all p ∈ Z.

If we reach the trivial submodule 0 to the left or the full submodule M to the right, we have reached the
constant part of the filtration. Beware that there might be infinite filtrations that never become stationary
in either direction.

Examples V.2.2.
(a)

. . . 0 = 0 ⊂ Z/4Z ∼= 4Z/16Z ⊂ Z/16Z = Z/16Z = Z/16Z = . . .

and

. . . 0 ⊂ F1(Z/16) = 8Z/16Z ⊂ F2(Z/16) = 4Z/16Z ⊂ F3(Z/16) = 2Z/16Z ⊂ F4(Z/16) = Z/16Z . . .

are two filtrations of Z/16Z.
The associated graded of the first one is trivial but for two degrees where we obtain Z/4Z

whereas the second one has four non-trivial terms:

grp(Z/16Z) ∼= Z/2Z, 1 6 p 6 4.
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(b) Let M be Z/4Z and N = Z/2Z× Z/2Z with filtrations

. . . 0 ⊂ F1M = 2Z/4Z ⊂ Z/4Z = F2M . . .

and
. . . 0 ⊂ F1N = Z/2Z ⊂ Z/2Z× Z/2Z = F2N . . .

Then M and N have isomorphic associated graded modules, but of course M and N are not
isomorphic.

(c) Also the filtrations
. . . 0 ⊂ 2Z ⊂ Z . . .

and
. . . 0 ⊂ Z ∼= Z× {0} ⊂ Z⊕ Z/2Z . . .

have isomorphic associated graded modules, but again Z is not isomorphic to Z⊕ Z/2Z.

Remark V.2.3. We saw above that it can happen that the associated graded modules gr∗M and gr∗N
are isomorphic despite the fact that M and N are not. If we want to reconstruct a filtered module M from
its associated graded, we have to solve extension problems and you know that extensions are detected by
Ext1-terms.

Definition V.2.4. Let C∗ be a chain complex of R-modules. An increasing filtration of C∗ is a family of
subcomplexes FpC∗ ⊂ C∗ such that

. . . ⊂ Fp−1C∗ ⊂ FpC∗ ⊂ Fp+1C∗ ⊂ . . .

Remark V.2.5.
• For all p the diagram

Fp−1Cn

dn|Fp−1

��

// FpCn

dn|Fp

��

Fp−1Cn−1
// FpCn−1.

commutes. Therefore, we get an induced filtration on the homology groups of C∗:

FpHn(C∗) = im(HnFp(C∗)→ Hn(C∗)).

You know that inclusions of subcomplexes don’t necessarily induce monomorphisms on the level of
homology groups. Thus we have to take the image.

• A filtration on a chain complex C∗ as above induces a filtration FpCn of each Cn, so in total we
obtain a Z-bigraded module.

Definition V.2.6. Let FpC∗ be a filtered chain complex. Then we define

(FC∗)p,q := FpCp+q

and we call p the filtration degree and q the internal degree.

Example V.2.7. Let C∗,∗ be a double complex, so we have R-modules Cp,q together with horizontal and
vertical differentials dh, dv, such that

dhdh = 0 = dvdv = dhdv + dvdh.

There are two common filtrations on such a bicomplex. We define

F ′p(C∗,∗)n :=
⊕
r6p

Cr,n−r.

This gives rise to a filtration of the total complex TotC∗,∗, where you consider all summands up to column
number p.

The second filtration counts rows:

F ′′p (C∗,∗)n :=
⊕
r6p

Cn−r,r.

So on the total complex you consider all summands up to row p.
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Definition V.2.8. A filtration FpC∗ of a chain complex C∗ is bounded if for all n there is an s = s(n) <
t = t(n) such that FsCn = 0 and FtCn = Cn.

Thus in this case every module Cn has a finite filtration

0 = FsCn ⊂ Fs+1Cn ⊂ . . . ⊂ Ft−1Cn ⊂ FtCn = Cn.

Definition V.2.9. A spectral sequence (Er, dr) converges to a graded module H =
⊕
Hn if there is a

filtration FpH on H and for every p there is an isomorphism E∞p
∼= FpH/Fp−1H, i.e.,

E∞p,q
∼= FpHp+q/Fp−1Hp+q.

In this case one uses the notation

E2
p,q ⇒ Hp+q.

An important special case is the following.

Definition V.2.10. Let C∗ be a chain complex with Ci = 0 for i < 0. Then a filtration (FpC∗)p is
canonically bounded, if F−1C∗ = 0 and if for all n > 0:

0 ⊂ F0Cn ⊂ . . . ⊂ FnCn = Cn.

Remark V.2.11. In the situation above the homology of C∗ has an induced filtration of the form

0 = F−1HnC∗ ⊂ F0HnC∗ ⊂ . . . ⊂ FnHnC∗ = HnC∗.

So in order to reconstruct HnC∗ from the E∞-term, one has to solve extension problems because we want
to know HnC∗ from

FnHnC∗/Fn−1HnC∗, Fn−1HnC∗/Fn−2HnC∗, . . . , F1HnC∗/F0HnC∗, F0HnC∗/0 = F0HnC∗.

Hence you can read off F0HnC∗, but not F1HnC∗ up to FnHnC∗.

Theorem V.2.12. Let FpC∗ be a filtered chain complex. Then FpC∗ determines a spectral sequence (Er, dr),
r > 1 with

E1
p,q
∼= Hp+q(FpC∗/Fp−1C∗).

If the filtration is bounded, then there are natural isomorphisms

E∞p,q
∼= Fp(Hp+q(C∗))/Fp−1(Hp+q(C∗)).

Sketch of proof of Theorem V.2.12. We consider subobjects of the associated graded module and
define

Zrp,q := {[c] ∈ grpCp+q, dc ∈ Fp−rCp+q−1}.
So these are elements whose boundary isn’t necessarily zero, but is in lower filtration. Thus one can think
of these elements as being cycles modulo Fp−r.

The differential of C∗ restricts to morphisms of the form

d : Zrp,q → Zrp−r,q+r−1

because the differential applied to a representative of [c] ∈ Zrp,q has dc ∈ Fp−rCp+q−1 and this gives rise to
a class in

Zrp−r,p+q−1−p+r = Zrp−r,q+r−1.

Note that d(d(c)) = 0, because d was a differential.
We denote d(Zrp+r,q−r+1) by Brp,q and by definition d(Zrp+r,q−r+1) ⊂ Zrp,q. For r > 1 we set

Erp := Zrp/B
r
p.

It is consistent to set

Z0
p,q := FpCp+q/Fp−1Cp+q = E0

p,q and Z∞p,q := {c ∈ FpCp+q, dc = 0}/Fp−1Cp+q

so we start with the associated graded and end up with the cycles in it.
We claim that

Zr+1
p,q = ker(d : Zrp,q → Zrp−r,q+r−1).
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An element c ∈ FpCp+q represents an element in Zrp,q if dc ∈ Fp−rCp+q−1 and it represents an element in

Zr+1
p,q if the stronger condition dc ∈ Fp−r−1Cp+q−1 ⊂ Fp−rCp+q−1 holds. But the second condition says

precisely that dc represents zero in the quotient Fp−rCp+q−1/Fp−r−1Cp+q−1. But this is equivalent to dc
being zero in Zrp−r,q+r−1 ⊂ Fp−rCp+q−1/Fp−r−1Cp+q−1.

We obtain a tower of subquotients

0 =: B0
p,q ⊂ . . . ⊂ Brp,q ⊂ . . . ⊂ Zrp,q ⊂ . . . Z1

p,q ⊂ Z0
p,q = E0

p,q.

We know that the differential of C∗ induces a differential on Zrp+q and it induces one on Erp,q which we
call dr, so

dr : Erp,q → Erp−r,q+r−1.

For the fact that

Er+1
p,q
∼=

ker(dr : Erp,q → Erp−r,q+r−1)

im(dr : Erp+r,q−r+1 → Erp,q)

and for the identification of the E∞-term, we refer to [6, Proof of Theorem 3.1 in Chapter IX]. Please beware
the non-standard notation in [6]. �

As an application we prove that Connes’ definition of cyclic homology agrees with the one given as the
homology of the cyclic bicomplex in characteristic zero:

Example V.2.13. Fix a k-algebra A. We defined the cyclic bicomplex CCk∗,∗(A) of A as

...

b

��

...

−b′

��

...

b

��

...

−b′

��

A⊗2

b

��

A⊗2id−t1oo

−b′
��

A⊗2

b

��

Noo A⊗2id−t1oo

−b′
��

. . .
Noo

A A
id−t0=0

oo A
N=idoo A

id−t0=0
oo . . .

N=idoo

We consider the second filtration on the associated total complex, so

F ′′p Tot(CC
k
∗,∗(A))n =

⊕
r6p

CCkn−r,r.

The filtration quotient
F ′′p Tot(CC

k
∗,∗(A))∗/F

′′
p−1Tot(CC

k
∗,∗(A))∗

is isomorphic to CCk∗,p and this is precisely the pth row of the bicomplex CCk∗,∗. Therefore

E1
p,q
∼= Hq(CC

k
∗,p) =

ker(dh : CCkq,p(A)→ CCkq−1,p(A))

im(dh : CCkq+1,p(A)→ CCkq,p(A))
.

The horizontal chain complex is

A⊗p+1 A⊗p+1
id−tp

oo A⊗p+1Noo . . .
id−tp

oo

with 〈tp〉 = Z/(p+ 1)Z =: Cp+1 < Σp+1 and therefore

E1
p,q = Hq(Cp+1;A⊗p+1).

If Q ⊂ k, then the group order of Cp+1 is invertible in k and hence

Hq(Cp+1;A⊗p+1) ∼=

{
(A⊗p+1)/(id− tp), q = 0,

0, otherwise.

by Corollary III.3.14.
So the spectral sequence is concentrated in one line. The next differential is induced by the b-differential,

say b̄, so we obtain the homology of the coinvariants with respect to this differential in bidegree (p, 0):
Hp(A

⊗∗+1/(id− t∗), b̄).
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All higher differentials are trivial and there are no extension issues. We therefore obtain that if Q ⊂ k,
then

HCkn(A) ∼= Hn(A⊗∗+1/(id− t∗), b̄),
and hence we obtain the agreement of the homology groups of Connes’ chain complex and HCk∗(A).

Lecture 25

V.3. Exact couples

Exact couples are a means for constructing spectral sequences.

Definition V.3.1. Let E and D be two R-modules for R 6= 0.

(a) Assume that we have R-linear maps i : D → D, j : D → E and k : E → D. We call

D
i // D

j
~~

E

k

``

exact, if im(i) = ker(j), im(j) = ker(k) and im(k) = ker(i). Then (D,E, i, j, k) is an exact couple.
(b) We set D′ := im(i) ⊂ D and E′ := ker d

imd for d := j ◦ k.
We define i′ : D′ → D′ as i′(i(x)) := i(i(x)), j′(i(x)) := [j(x)] = j(x) + imd and k′[y] := k(y).

Then (D′, E′, i′, j′, k′) is the derived couple.

You showed that the maps are well-defined and that the derived couple is again and exact couple.
Exact couples give rise to spectral sequences with explicit control over dr. Given an exact couple as

above we define

E1 := E, d1 = d, E2 = E′, d2 = j′ ◦ k′

and Er := E(r−1), dr = j(r−1) ◦k(r−1), where (D(r−1), E(r−1), i(r−1), j(r−1), k(r−1)) is the (r−1)-fold derived
couple of (D,E, i, j, k).

Lemma V.3.2. Setting D(r) := im(i◦r) and E(r) := k−1(i◦r(D))/j(ker(i◦r)) gives the rth derived couple
of (D,E, i, j, k) where ir is the restriction i|D(r) , jr is j|(i◦r)−1(D), so you take a preimage under the r-fold
composite of i and then apply j. The map kr is induced by the map k.

Proof. Exactness is clear as long as E(r+1) = H∗(E
(r), jr ◦ kr). We show that

(a) ker(jr ◦ kr) = k−1(i◦(r+1)(D))/B
(b) im(jr ◦ kr) = j(ker(i◦(r+1)))/B

with E(r) = C/B where C = k−1(i◦r(D)) and B = j(ker(i◦r)).
For (a) assume that (jr ◦ kr)(c+B) = 0 for c+B ∈ E(r). Then k(c) = i◦r(y) for some y ∈ D, but this

implies

jr ◦ kr(c+B) = jr(k(c)) = j(y) +B.

Thus if jr ◦ kr(c + B) = 0, then j(y) ∈ B, hence there is an x ∈ ker(i◦r) with j(y) = j(x). Then
j(y − x) = 0 and by exactness y − x = i(z) for some z ∈ D. But this implies that

k(c) = i◦r(y) = i◦r(z) = i◦(r+1)(z)

and c ∈ k−1(i◦(r+1)(D)).

For (b) we write jr ◦ kr(c+B) again as j(y) +B as above with k(c) = i◦r(y). But then

i◦(r+1)(y) = ik(c) = 0

because i and k are consecutive maps in an exact couple. This shows one subset relation.
Assume conversely that i◦(r+1)(y) = 0. Then by exactness there is a c with k(c) = i◦r(y). But then

j(y) +B = jrk(c) = jr(kr(c+B)). �

The techniques and results above transfer to the Z-bigraded setting as follows:
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Corollary V.3.3. Let (D,E, i, j, k) be an exact couple of Z-bigraded R-modules with

||i|| = (1,−1), ||j|| = (0, 0) and ||k|| = (−1, 0).

Then (D,E, i, j, k) determines a spectral sequence (Er, dr) of homological type with Er = E(r−1) and dr =
jr−1 ◦ kr−1.

Proof. It remains to check the bidegree of dr. As ir−1 is just a restriction of i, it still has bidegree
(1,−1). As jr−1 takes a preimage under i◦(r−1) and then applies j to it, we get a bidegree

||jr|| = (−r + 1, r − 1).

The map kr−1 is again just a restriction of k, so it still has bidegree (−1, 0).
Thus we obtain for dr = jr−1 ◦ kr−1:

||dr|| = ||jr−1 ◦ kr−1|| = (−r + 1, r − 1) + (−1, 0) = (−r, r − 1).

�

We can now define an exact couple associated to a filtered chain complex C∗ with filtration (FpC∗)p∈Z.
Then for each p we get a short exact sequence of chain complexes

0 //Fp−1C∗ //FpC∗ // //FpC∗/Fp−1C∗ //0

and an induced long exact sequence on homology groups

Hn(FpC∗/Fp−1C∗)

δ=k // Hn−1(Fp−1C∗)
i // Hn−1(FpC∗)

j
// Hn−1(FpC∗/Fp−1C∗)

δ=k // Hn−2(Fp−1C∗)
i // . . .

Definition V.3.4. In the situation above we define

Dp,q = Hp+q(FpC∗),

Ep,q = Hp+q(FpC∗/Fp−1C∗)

Then i : Hp+q(Fp−1C∗) = Dp−1,q+1 → Hp+q(FpC∗) = Dp,q has bidegree (1,−1), the map j : Hp+q(FpC∗)→
Hp+q(FpC∗/Fp−1C∗) has bidegree (0, 0) and k = δ : Hp+q(FpC∗/Fp−1C∗) = Ep,q → Hp+q−1(Fp−1C∗) =
Dp−1,q has bidegree (−1, 0).

This is an exact couple associated to the filtration FpC∗ and we get a spectral sequence as above. This
spectral sequence is isomorphic to the one in Theorem V.2.12.

A prototypical situation is that you have a long exact sequence on homology that you can reinterpret as
an exact couple.

Examples V.3.5.
• Let C∗ be a chain complex of abelian groups such that every Cn is torsionfree (for instance the

singular chains on a topological space). Consider the short exact sequence

0 //Z n //Z //Z/nZ //0.

This gives a short exact sequence

0 //C∗
n //C∗

π //C∗ ⊗ Z/nZ //0
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of chain complexes and hence a long exact sequence on homology groups

Hm(C∗ ⊗ Z/nZ)

δ // Hm−1(C∗)
n // Hm−1(C∗)

Hm−1(π)
// Hm−1(C∗ ⊗ Z/nZ)

δ // Hm−2(C∗)
n // . . .

In this case we can define D as the homology of C∗, E as the homology of C∗ ⊗ Z/nZ, the map
i is the one that’s induced by the multiplication by n, j is H∗(π) and k is again the connecting
homomorphism. The associated spectral sequence is the Bockstein spectral sequence.

• Let X be a topological space with a filtration

∅ ⊂ X0 ⊂ . . . ⊂ Xp ⊂ Xp+1 ⊂ . . . ⊂ X.
For every p we obtain a long exact sequence of singular homology groups

Hp+q+1(Xp, Xp−1)

δ // Hp+q(Xp−1) // Hp+q(Xp) // Hp+q(Xp, Xp−1)

δ // Hp+q−1(Xp−1) // . . .

that gives rise to the exact couple and to a spectral sequence. What do you obtain when X is a
CW complex and Xp is the p-skeleton?

Lecture 26

V.4. The two spectral sequences associated to a bicomplex

We have already seen a non-trivial example of one of these spectral sequences in Example V.2.13. How
do they look like in general?

We start with a bicomplex (C∗,∗, d
h, dv) and consider the filtrations of Tot(C∗,∗)

(F ′pC∗,∗)n =
⊕
r6p

Cr,n−r and (F ′′p C∗,∗)n =
⊕
r6p

Cn−r,r

so in the first case we take everything in Tot(C∗,∗) up to column p and in the second case we throw away
everything in Tot(C∗,∗) beyond row p.

For the first filtration we obtain IE0
p,q := Cp,q and d0 = dv. Therefore the E1-term in this case is

IE1
p,q = Hv

q (Cp,∗).

The d1-differential on the E1-page is induced by the horizontal differential, so

d1 : Hv
q (Cp,∗)→ Hv

q (Cp−1,∗), [c] 7→ [dh(c)].

It is common and suggestive to denote the resulting E2-term as

IE2
p,q = Hh

p (Hv
q (C∗,∗)).

If C∗,∗ is for instance concentrated in the first quadrant we get

IE∞pq = F ′p(Hp+qTot(C∗,∗))/F
′
p−1(Hp+qTot(C∗,∗))

and this is denoted by
IE2

p,q = Hh
p (Hv

q (C∗,∗))⇒ Hp+qTot(C∗,∗)
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but beware that the IE∞pq -term only contains filtration quotients, so we only know the associated graded of
Hp+qTot(C∗,∗) and might need to solve extension problems to get the final result.

Dually, the second filtration has
IIE0

p,q = Cq,p, d0 = dh

and
IIE1

p,q = Hh
q (C∗,p)

and d1 is induced by dv:

d1 : Hh
q (C∗,p)→ Hh

q (C∗,p−1), [c] 7→ [dv(c)].

The resulting E2-page is
IIE2

p,q = Hv
pH

h
q (C∗,∗)

and in good cases we get
IIE2

p,q = Hv
pH

h
q (C∗,∗)⇒ Hp+qTot(C∗,∗).

As a non-trivial example of a proof that uses these spectral sequences we prove the general version of
Morita invariance of Hochschild homology from Theorem IV.3.4:

If A and B are two k-algebras that are Morita equivalent and if M is an A-bimodule, then we show that

HHk∗(A;M) ∼= HHk∗(B;Q⊗AM ⊗A P ).

In particular, for M = A this yields.

HHk∗(A) ∼= HHk∗(B;Q⊗A A⊗A P ) ∼= HHk∗(B).

Before we start the actual proof, we need a lemma:

Lemma V.4.1. Let A be a k-algebra and let P and M ′ be symmetric k-modules. If M ′ is a right A-module
and if P is projective as an A-module, then HHk∗(A;P⊗kM ′) ∼= 0 for ∗ > 0 and HHk0(A;P⊗kM ′) ∼= M ′⊗AP .

Dually, if Q is projective as a right A-module and M ′′ is an A-module, then HHk∗(A;M ′′ ⊗k Q) ∼= 0 for

∗ > 0 and HHk0(A;M ′′ ⊗k Q) ∼= Q⊗AM ′′.

Proof. The Hochschild complex has

Ckp (A;P ⊗kM ′) = P ⊗M ′ ⊗A⊗p ∼= M ′ ⊗A⊗p ⊗ P

and the complex is isomorphic to the two-sided bar construction B(M ′, A, P ). If P is free as an A-module
then we know that this complex is a resolution of M ′ ⊗A P by an adaption of the argument in the proof of
Lemma III.2.3. The general case follows by finding a free R-module F with P ⊕ P ′ = F . �

We consider the bicomplex C∗,∗ with

Cp,q = B⊗p ⊗N ⊗A⊗q ⊗ P

and with N := Q⊗AM .
We define the horizontal differential

dh : Cp,q ∼= (N ⊗A⊗q ⊗ P )⊗B⊗p → (N ⊗A⊗q ⊗ P )⊗B⊗p−1 = Cp−1,q

as the Hochschild differential b and the vertical differential

dv : Cp,q ∼= (P ⊗B⊗p ⊗N)⊗A⊗q → (P ⊗B⊗p ⊗N)⊗A⊗q−1

as dv = −b.
We know that P is projective as an A-module and as a right B-module.
In a first step we calculate first the horizontal and then the vertical homology. The projectivity of P as

a right B-module gives with Lemma V.4.1 that Hh
pC∗,q is trivial for p 6= 0. For p = 0 we get an isomorphism

to

P ⊗B (Q⊗AM ⊗A⊗p) ∼= (P ⊗B Q)⊗AM ⊗A⊗p ∼= A⊗AM ⊗A⊗p ∼= M ⊗A⊗p

and the vertical differential can be identified with the negative of the Hochschild boundary for Ck∗ (A;M).

Therefore the E2-page is concentrated in the (p = 0)-line with terms HHk∗(A;M).
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Taking first the vertical homology and using that P is projective as an A-module gives something that
is concentrated in the (q = 0)-line isomorphic to

N ⊗A (P ⊗B⊗p) ∼= (Q⊗AM ⊗A P )⊗B⊗p

and the horizontal differential is the Hochschild boundary of Ck∗ (B;Q⊗AM ⊗A P ), so the E2-page is

E2
p,0
∼= HHkp(B;Q⊗AM ⊗A P ).

and this proves Theorem IV.3.4.

V.5. The Lyndon-Hochschild-Serre spectral sequence

This is actually the example from the very beginning of this chapter. Let G be a group with normal
subgroup N and factor group G/N . We want to calculate H∗(G) from H∗(N) and H∗(G/N).

Lemma V.5.1. If M is a G-module, then G/N acts on H∗(N ;M).

Proof. Let F∗ be a Z[G]-free resolution of Z, for instance the bar resolution. Then F∗ is also a Z[N ]-free
resolution of Z because Z[G] ∼=

⊕
G/N Z[N ]. Let g ∈ G and define

g∗ : F∗ ⊗Z[N ] M → F∗ ⊗Z[N ] M, g∗(x⊗m) := xg−1 ⊗ gm.
As F∗ is a chain complex of right Z[G]-modules, g∗ is a chain map. If n ∈ N , then n∗ = id, because
xn−1 ⊗ nm = x⊗ n−1nm = x⊗m. Therefore the G-action via g∗ factors through G/N . �

On the zeroth homology we get the correct result:

Lemma V.5.2. For any G-module M and any normal subgroup N in G:

(MN )G/N ∼= MG.

Proof. Recall that MG = Z⊗Z[G] M . We obtain directly that

Z⊗Z[G] M ∼= Z⊗Z[G/N ] Z[G/N ]⊗Z[G] M.

We claim that Z[G/N ]⊗Z[G] M ∼= MN and this proves the lemma.
We define ϕ : MN → Z[G/N ]⊗Z[G] M as ϕ(m+ U) := 1⊗m, where U is the submodule generated by

{nm−m,n ∈ N,m ∈M}.
Note that 1 = 1Z[G/N ]=N = N . This is well-defined: If n ∈ N , then

ϕ(nm+ U) = 1⊗ nm = 1⊗m.
Conversely let ψ : Z[G/N ]⊗Z[G] M →MN be ψ(gN ⊗m) := gm+ U . Then

ψ ◦ ϕ(m+ U) = ψ(1⊗m) = m+ U

and ϕ ◦ ψ(gN ⊗m) = ϕ(gm+ U) = 1⊗ gm = gN ⊗m. �

Remark V.5.3. If F∗ is a free Z[G] resolution of Z, then

(F∗ ⊗Z M)G ∼= F∗ ⊗Z[G] M

if the G-action on the left hand side is defined as g.(x⊗m) = xg−1 ⊗ gm.
With Lemma V.5.2 one therefore obtains on the level of resolutions

F∗ ⊗Z[G] M ∼= (F∗ ⊗Z M)G ∼= ((F∗ ⊗Z M)N )G/N .

Theorem V.5.4. For every group G with a normal subgroup N and every G-module M there is a spectral
sequence

E2
p,q = Hp(G/N ;Hq(N ;M))⇒ Hp+q(G;M).

This is the Lyndon-Hochschild-Serre (LHS) spectral sequence. On the p-axis you have the groups
Hp(G/N ;MN ) whereas on the q-axis you get (Hq(N ;M))G/N .

Lecture 27
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Proof. Let F∗ be a Z[G]-free resolution of Z and let F̄∗ be a Z[G/N ]-free resolution of Z.
We consider the bicomplex

Cp,q := F̄p ⊗Z[G/N ] ((Fq ⊗M)N ).

Here we take as the horizontal differential dF̄∗ ⊗ id and adjust the sign for the vertical differential which is

dv = ±id⊗ dF∗ ⊗ id so that we actually obtain a bicomplex with dhdv + dvdh = 0.
As each Fq is free over Z[G] we get

Fq =
⊕
Iq

Z[G] ∼= Z[G]⊗Z Xq

with Xq =
⊕

Iq
Z.

We get a similar description of F̄p as

F̄p ∼= Z[G/N ]⊗Z Yp.

We can also express (Fq ⊗M)N as

(Fq ⊗M)N = Z⊗Z[N ] (Fq ⊗M) ∼= Z⊗Z[N ] Z[G]⊗Z Xq ⊗M ∼= Z[G/N ]⊗Xq ⊗M

and

Cp,q ∼= F̃p ⊗Z[G/N ] Z[G/N ]⊗Xq ⊗M.

But as Z[G/N ]⊗Xq is free over Z[G/N ] Lemma III.3.16 yields

Hh
p (C∗,q) ∼=

{
0, p 6= 0,

((Fq ⊗M)N )G/N ∼= (Fq ⊗M)G, p = 0.

If we then take the vertical homology we obtain the terms Hq(G;M) concentrated in the (p = 0)-line. Hence
the spectral sequence has no more non-trivial differentials and there are no extension problems.

If we take vertical homology first for fixed horizontal degree p, this gives the homology of the complex

Yp ⊗ (F∗ ⊗Z[N ] M)

with dv = id⊗ d⊗ id and thus

Hv
p,q
∼= Yp ⊗Hq(N ;M) ∼= F̄p ⊗Z[G/N ] Hq(N ;M).

Taking horizontal homology therefore yields

E2
p,q = Hp(G/N ;Hq(N ;M)).

�

A typical application of the Lyndon-Hochschild-Serre spectral sequence is the following result.

Proposition V.5.5. Let G be a finite group and assume that a prime p divides |G|. Assume that G has a
normal p-Sylow subgroup S. Then

Hn(G;Fp) ∼= (Hn(S;Fp))G/S .

Proof. We have the LHS spectral sequence with

E2
r.s = Hr(G/S;Hs(S;Fp))⇒ Hr+s(G;Fp).

The groups Hs(S;Fp) are all Fp-vector spaces. You can actually deduce from the bar resolution that each
Hs(S;Fp) is finite-dimensional. We know that |G/S| is prime to p, hence |G/S| is invertible in M =
Hs(S;Fp). Therefore the spectral sequence is concentrated in the (r = 0)-line with

Hr(G/S;Hs(S;Fp)) ∼=

{
0, r > 0,

(Hs(S;Fp))G/S , r = 0.

There are no further non-trivial differentials and no extension problems. �
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Example V.5.6. Take G = Σ3. Its 3-Sylow subgroup is the alternating group A3
∼= C3 and this is a normal

subgroup. Applying the above result gives

Hn(Σ3;F3) ∼= Hn(C3;F3){±1}.

With the calculation from Example III.1.7 we get that Hn(C3;F3) ∼= F3 for all n > 0. But we still have to
take coinvariants and to this end we have to understand the {±1}-action on Hn(C3;F3) ∼= F3. This is done
in the following example.

In the following we apply the LHS in order to calculate group homology in a case that we couldn’t do
before.

Example V.5.7. We want to determine H∗(Σ3;Z). We view Σ3 as the dihedral group with 6 elements, D6.
This is the symmetry group of a regular triangle, so we have a normal rotation subgroup isomorphic to C3

and a subgroup generated by a reflection and this is isomorphic to Z/2Z.

We have to understand the LHS spectral sequence

E2
p,q = Hp(Z/2Z;Hq(C3;Z))⇒ Hp+q(D6;Z).

We know by Example III.1.7 that

Hq(C3;Z) =


Z, q = 0,

Z/3Z, q odd,

0, otherwise.

so we have to calculate Hp(Z/2Z;Z) and Hp(Z/2Z;Z/3Z). As the group order of Z/2Z is invertible in Z/3Z,
we obtain that the groups Hp(Z/2Z;Z/3Z) are trivial for p > 0, but we need to understand the Z/2Z-action
on H2n−1(C3;Z) in order to understand the coinvariants for p = 0.

The group {±1} acts by conjugation on C3 and this is easier to understand if we switch to the Σ3-picture
and write

C3 = 〈(1, 2, 3)〉, {±1} ∼= 〈τ〉
and we choose τ = (1, 2). All the other transpositions are conjugate to (1, 2) and conjugation induces the
trivial action on homology.

As (1, 2)(1, 2, 3)(1, 2) = (1, 3, 2), the action is non-trivial. We denote (1, 2, 3) by t in the following. We
take the standard resolution

P∗ = . . .
id−t

//Z[C3]
N // //Z[C3]

id−t
//Z[C3].

We need a chain map from P∗ to (τ(−)τ−1)∗(P∗). As τ ◦ t ◦ τ−1 = t2 the boundary map id− t in P∗ turns
into id− t2 in the twisted complex. We need maps fn such that the diagram

. . .
id−t

// Z[C3]

f2

��

N //// Z[C3]

f1

��

id−t
// Z[C3]

f0

��

. . .
id−t2

// Z[C3]
N //// Z[C3]

id−t2
// Z[C3]

commutes.
We claim that the definitions

f2n = (−1)ntn, f2n−1 = (−1)ntn

work. We have f2n ◦ (id− t) = (−1)ntn − (−1)ntn+1. On the other hand

(id− t2) ◦ f2n+1 = (id− t2) ◦ (−1)n+1tn+1 = (−1)n+1tn+1 − (−1)n+1tn+3.

As tn+3 = tn, both terms agree.
For the squares involving the norm map we get

f2n−1 ◦N = (−1)ntnN = (−1)nN

and N ◦ f2n = (−1)nNtn = (−1)nN , so these agree as well. Therefore these fn constitute a chain map.
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We are only interested in the effect in odd degrees. If the degree is of the form 4n + 1, then f4n+1 is
the multiplication by −t2n+1, so we get an action by a minus sign. For degrees of the form 4n+ 3 f4n+3 is
multiplication by t2(n+1), so no sign is introduced.

Therefore

(H4n+1(C3;Z))Z/2Z = (Z/3Z)/(x ∼ −x) = 0, (H4n+3(C3;Z))Z/2Z = (Z/3Z)/(x ∼ x) = Z/3Z.
We have the terms Hp(Z/2Z;Z) on the (q = 0)-line and the above terms in the (p = 0)-line and nothing

in the middle. In the picture � stands for Z in (0, 0), • for Z/2Z for odd p and q = 0 and a N stands for a
Z/3Z in q-degrees of the form 4n+ 3 and q = 0. The lines indicate constant total degree.
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There cannot be any non-trivial differentials for degree reasons. We don’t actually get extension problems
because the elements in total degree of the form 4n+ 3 give a Z/2Z× Z/3Z ∼= Z/6Z.

So in total we obtain:

Hn(D6,Z) ∼=


Z, n = 0,

Z/2Z, n ≡ 1 mod 4,

Z/6Z, n ≡ 3 mod 4,

0, otherwise.

Remark V.5.8. You actually get a similar answer for all dihedral groups D2m with m odd:

Hn(D2m,Z) ∼=


Z, n = 0,

Z/2Z, n ≡ 1 mod 4,

Z/2mZ, n ≡ 3 mod 4,

0, otherwise.
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