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1. Brown representability and the Bousfield-Friedlander structure

Theorem [Br] [Edgar Henry Brown, December 27, 1926–December 22, 2021)] Every
reduced cohomology theory E∗(−) on the category of pointed CW complexes and pointed
maps has the form En(X) ∼= [X,En] for some Ω-spectrum (En)n.

• Singular cohomology is represented by Eilenberg-Mac Lane spaces: For an abelian
group A ([Ma, Chapter 22]):

H̃n(X;A) ∼= [X,K(A, n)].

• Bott periodicity tells us that BU ' ΩSU which extends to Z × BU ' ΩU . The
equivalence U ' ΩBU loops to ΩU ' Ω2BU . The composite is the equivalence
Z×BU ' Ω2(BU) ' Ω2(Z×BU). So

K̃U
0
(X) = [X,Z×BU ]

and the odd degree groups are given by homotopy classes of maps from X to U .

In the following, when I say based spaces, I mean pointed, compactly generated, weak
Hausdorff topological spaces.

The Bousfield-Friedlander category of sequential spectra has sequences of based spaces
En, n ∈ N0 with structure maps σn : ΣEn → En+1 as objects and morphisms f : E → F of
spectra are families of pointed continuous maps fn : En → Fn such that

ΣEn
σn //

Σfn
��

En+1

fn+1

��
ΣFn

σn // Fn+1

commutes for all n.
Aldridge Knight Bousfield (April 5, 1941–October 4, 2020; known as Pete Bousfield)
The kth stable homotopy group of a sequential spectrum E is

πskE = colimnπn+kEn.

A morphism f : E → F of sequential spectra is a

• strict weak equivalence, if each fn is a weak equivalence of topological spaces (ie,
induces an iso on ordinary homotopy groups).
• strict fibration, if each fn is a Serre fibration (ie, has the RLP wrt Dk ↪→ Dk × [0, 1]

for all k).
• strict cofibration if it has the LLP wrt acyclic fibrations.
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One then gets the Bousfield-Friedlander stable model category structure on sequential
spectra by a Bousfield localization. This yields the stable model structure on sequential
spectra:

A morphism f : E → F of sequential spectra is a stable homotopy equivalence, if

πsk(f) : πsk(E) = colimnπn+kEn → colimnπn+kFn = πsk(F )

is an isomorphism for all k.
It is a stable cofibration if it is a strict cofibration and the stable fibrations are the maps

with the RLP wrt stable cofibrations that are stable homotopy equivalences.
Why are we not happy with that structure? We want to do algebra in the category of

spectra. To that end we need an analogue of a tensor product, that is called a smash product.
Sequential spectra have a smash product, but this isn’t good enough.

2. Symmetric and orthogonal spectra

The idea of symmetric spectra and orthogonal spectra is, to require the extra data of
suitable group actions on the spaces in a spectrum that are compatible with the structure
maps. The resulting smash products give rise to a symmetric monoidal category structure.

We start with symmetric spectra [HSS, Sch].

Definition A symmetric spectrum E is a family En of based topological spaces together
with based maps

σ : S1 ∧ En → En+1

for each n ≥ 0 such that there is a base-point preserving left action of Σn on En such that
the composition

σp := σ ◦ (S1 ∧ σ) ◦ . . . ◦ (Sp−1 ∧ σ) : Sp ∧ En → Ep+n

is Σp × Σn-equivariant for all p ≥ 1 and n ≥ 0.
A map f : E → F of symmetric spectra is a family of Σn-equivariant based maps fn : En →

Fn such that the diagram

S1 ∧ En
σ //

S1∧fn
��

En+1

fn+1

��
S1 ∧ Fn

σ // Fn+1

commutes for all n ≥ 0.
We denote by SpΣ the category of symmetric spectra.

For orthogonal spectra you just replace the symmetric groups by the family of orthogonal
groups:

Definition An orthogonal spectrum E is a family En of based topological spaces together
with based maps

σ : S1 ∧ En → En+1

for each n ≥ 0 such that there is a base-point preserving left action of O(n) on En such that
the composition

σp := σ ◦ (S1 ∧ σ) ◦ . . . ◦ (Sp−1 ∧ σ) : Sp ∧ En → Ep+n

is O(p)×O(n)-equivariant for all p ≥ 1 and n ≥ 0.
2



A map f : E → F of orthogonal spectra is a family of O(n)-equivariant based maps
fn : En → Fn such that the diagram

S1 ∧ En
σ //

S1∧fn
��

En+1

fn+1

��
S1 ∧ Fn

σ // Fn+1

commutes for all n ≥ 0.
We denote by SpO the category of symmetric spectra.

For symmetric and orthogonal spectra you use the canonical inclusions Σp × Σn ⊂ Σp+n

and O(p) × O(n) ⊂ O(p + n). Note that the monomorphism Σn → O(n) that sends a per-
mutation to the corresponding permutation matrix ensures that every orthogonal spectrum
is a symmetric spectrum. If you forget the symmetric group action, you get a spectrum in
the sense of Bousfield-Friedlander.

For both types of spectra it is now relatively straightforward to define a smash product:

Definition

• Let E and F be symmetric spectra. Their smash product, E ∧ F is a symmetric
spectrum whose nth space (E ∧ F )n is the coequalizer of the maps

∨
p+1+q=n(Σn)+ ∧Σp×Σ1×Σq Ep ∧ S1 ∧ Fq

αn

//
βn //∨

p+q=n(Σn)+ ∧Σp×Σq Ep ∧ Fq.

Here, αn maps the (p, 1, q)-summand (Σn)+ ∧Σp×Σ1×Σq Ep ∧ S1 ∧ Fq to (Σn)+ ∧Σp×Σq

Ep+1∧Fq by using the permutation Ep∧S1∧Fq → S1∧Ep∧Fq followed by the structure
map σ ∧ Fq : S1 ∧Ep ∧ Fq → Ep+1 ∧ Fq and βn is induced by Ep ∧ σ : Ep ∧ S1 ∧Fq →
Ep ∧ Fq+1.

The structure map σ : S1∧(E∧F )n → (E∧F )n+1 of the smash product is induced
by the structure map on E: On the summand Ep∧Fq one has σ∧Fq : S1∧Ep∧Fq →
Ep+1 ∧ Fq.

Note that we could have also switched the source to Ep ∧S1 ∧Fq in order to apply
the structure map of F . As we defined the smash product as a coequalizer, these two
maps agree.
• For orthogonal spectra, you replace the symmetric groups by the orthogonal groups.

Before we explain, why this gives rise to symmetric monoidal structures, we first introduce
some standard examples. From now on we focus on symmetric spectra.

(1) We use the explicit model of Sn iteratively as S1∧Sn−1. Then Σn permutes the coor-
dinates and σ : S1 ∧ Sn → Sn+1 is the identity. Hence this defines a symmetric spec-
trum, S, which forgets to model of the sphere spectrum in the Bousfield-Friedlander
category.

(2) Similarly, the model of suspension spectra that we considered last time can be lifted
to a model in symmetric spectra. Given a based space X we set (Σ∞X)n := Sn ∧X
and declare that the Σn-action only takes place on the Sn-factor.
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(3) Let A be an abelian group. The symmetric version of the Eilenberg-Mac Lane spec-
trum of A is best defined via simplicial sets. So we take the simplicial model of the
1-sphere, S1 := ∆1/∂∆1 and set Sn := (S1)∧n. Then

(HA)n := A⊗ Z̃[Sn]

where the right hand factor is the reduced free simplicial abelian group generated by
the simplicial n-sphere. If you want a model in spaces, then just take the geometric
realization.

The sphere spectrum is then the unit in (SpΣ,∧): One can describe the smash product of
symmetric spectra as

E ∧ F = E ⊗S F.
Here, E ⊗ F is the smash product of symmetric sequences, so

(E ⊗ F )n =
∨

(Σn)+ ∧Σp×Σq Ep ∧ Fq.

Symmetric spectra are then nothing but S-modules for this structure and thus S ⊗S F ∼= F
and E ⊗S S ∼= E. Associativity of the smash product is clear. Symmetry is interesting:

For E⊗F ∼= F⊗E one sends a representative (τ ; e, f) ∈ (Σn)+∧Σp×ΣqEp∧Fq. to (τ ◦χ; f, e)
where χ is the (q, p)-shuffle in Σn, that sends the first q numbers to p+ 1, . . . , p+ q and the
last p numbers to 1, . . . , p.

3. Model category structures

The first guess would be to define the weak equivalences of symmetric spectra to be the
maps that induce an isomorphism on stable homotopy groups. That does not work.

We start with a level structure:

Definition A morphism f : E → F of symmetric spectra is a level equivalence if each
fn : En → Fn is a weak equivalence of topological spaces. It is a level fibration, if each fn is
a Serre fibration. Level cofibrations are the maps with the LLP wrt acyclic fibrations.

This is indeed a model structure [Sch, Theorem 1.13].

One can show the following: If f is a map of symmetric spectra such that π∗f is an
isomorphism, then f is a stable equivalence. But there are more:

There are free functors from spaces to symmetric spectra: For m ∈ N0 and a based space
X we define the symmetric spectrum FmX as

(FmX)n := (Σn)+ ∧Σn−m×{idm} S
n−m ∧X.

If m > n, then this is set to be a point. The structure map σ : S1 ∧ (FmX)n → (FmX)n+1

merges the S1 with the Sn−m.

The functor Fm is left adjoint to the forgetful functor that sends a symmetric spectrum
to its mth space.

Note that F0X is nothing but the suspension spectrum on X, so in particular π0F0S
0 =

πs0 = Z whereas π0F1S
1 has countably many copies of the integers, because (F 1

S)n =
(Σn)+ ∧Σn−1 S

1 ∧ Sn−1 '
∨n
i=1 S

n and the structure maps for the colimit that calculate
π0 are inclusions of direct summands. Therefore the map F1S

1 → F0S
0 (that is left adjoint

to the identity map S1 → (F0S
0)1 = S1) is not an isomorphism on stable homotopy groups.
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But stably it shouldn’t matter if you take the free spectrum starting in level 0 of S0 or
the free spectrum starting in level 1 of S1, so this map should be a stable equivalence of
symmetric spectra.
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