Algebraic models for topological spaces

Birgit Richter

Kolloquium Göttingen, May 12th 2022

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case) Sullivan: $A_{PL}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)

Sullivan: $A^*_{PL}(X)$; a strictly dg commutative model for the cochains of a space X.

But these concern the rational homotopy type:

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,...

(simply-connected case)

Sullivan: $A_{PL}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.

But these concern the rational homotopy type:

A simply connected CW complex X is a rational space if and only if its homology groups $H_i(X, \mathbb{Z})$ are rational vector spaces for all i > 0.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,...

(simply-connected case)

Sullivan: $A_{PL}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.

But these concern the rational homotopy type:

A simply connected CW complex X is a rational space if and only if its homology groups $H_i(X, \mathbb{Z})$ are rational vector spaces for all i > 0.

There is a *rationalization* of spaces: $X \mapsto X_{\mathbb{Q}}$.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,...

(simply-connected case)

Sullivan: $A_{PL}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.

But these concern the rational homotopy type:

A simply connected CW complex X is a rational space if and only if its homology groups $H_i(X, \mathbb{Z})$ are rational vector spaces for all i > 0.

There is a *rationalization* of spaces: $X \mapsto X_{\mathbb{Q}}$.

So the above models help to decide whether $X_{\mathbb{Q}} \sim Y_{\mathbb{Q}}$.

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,...

(simply-connected case)

Sullivan: $A_{PL}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.

But these concern the rational homotopy type:

A simply connected CW complex X is a rational space if and only if its homology groups $H_i(X, \mathbb{Z})$ are rational vector spaces for all i > 0.

There is a *rationalization* of spaces: $X \mapsto X_{\mathbb{Q}}$.

So the above models help to decide whether $X_{\mathbb{Q}} \sim Y_{\mathbb{Q}}$. What can we expect, if we want to control the actual (weak) homotopy type?

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure: Additively, $H^*(S^2 \vee S^4)$ is isomorphic to $H^*(\mathbb{C}P^2)$, but the cup-products are different. You all know, that we can sometimes distinguish spaces with the help of the cup-product structure: Additively, $H^*(S^2 \vee S^4)$ is isomorphic to $H^*(\mathbb{C}P^2)$, but the cup-products are different. However: $\Sigma(S^2 \vee S^4) \not\sim \Sigma(\mathbb{C}P^2)$, but here the cup-products are trivial for both spaces.

Additively, $H^*(S^2 \vee S^4)$ is isomorphic to $H^*(\mathbb{C}P^2)$, but the cup-products are different.

However: $\Sigma(S^2 \vee S^4) \not\sim \Sigma(\mathbb{C}P^2)$, but here the cup-products are trivial for both spaces.

In this case, Sq^2 , the second Steenrod square, distinguishes the two spaces.

$$Sq^2 \colon H^*(X; \mathbb{F}_2) \to H^{*+2}(X; \mathbb{F}_2).$$

Additively, $H^*(S^2 \vee S^4)$ is isomorphic to $H^*(\mathbb{C}P^2)$, but the cup-products are different.

However: $\Sigma(S^2 \vee S^4) \not\sim \Sigma(\mathbb{C}P^2)$, but here the cup-products are trivial for both spaces.

In this case, Sq^2 , the second Steenrod square, distinguishes the two spaces.

$$Sq^2 \colon H^*(X; \mathbb{F}_2) \to H^{*+2}(X; \mathbb{F}_2).$$

Does that suffice?

Additively, $H^*(S^2 \vee S^4)$ is isomorphic to $H^*(\mathbb{C}P^2)$, but the cup-products are different.

However: $\Sigma(S^2 \vee S^4) \not\sim \Sigma(\mathbb{C}P^2)$, but here the cup-products are trivial for both spaces.

In this case, Sq^2 , the second Steenrod square, distinguishes the two spaces.

$$Sq^2 \colon H^*(X; \mathbb{F}_2) \to H^{*+2}(X; \mathbb{F}_2).$$

Does that suffice? No!

Additively, $H^*(S^2 \vee S^4)$ is isomorphic to $H^*(\mathbb{C}P^2)$, but the cup-products are different.

However: $\Sigma(S^2 \vee S^4) \not\sim \Sigma(\mathbb{C}P^2)$, but here the cup-products are trivial for both spaces.

In this case, Sq^2 , the second Steenrod square, distinguishes the two spaces.

$$Sq^2 \colon H^*(X; \mathbb{F}_2) \to H^{*+2}(X; \mathbb{F}_2).$$

Does that suffice? **No!**

Other spaces might need secondary operations or worse.

Additively, $H^*(S^2 \vee S^4)$ is isomorphic to $H^*(\mathbb{C}P^2)$, but the cup-products are different.

However: $\Sigma(S^2 \vee S^4) \not\sim \Sigma(\mathbb{C}P^2)$, but here the cup-products are trivial for both spaces.

In this case, Sq^2 , the second Steenrod square, distinguishes the two spaces.

$$Sq^2 \colon H^*(X; \mathbb{F}_2) \to H^{*+2}(X; \mathbb{F}_2).$$

Does that suffice? No!

Other spaces might need secondary operations or worse.

Do all Steenrod operations and their higher structure suffice?

Additively, $H^*(S^2 \vee S^4)$ is isomorphic to $H^*(\mathbb{C}P^2)$, but the cup-products are different.

However: $\Sigma(S^2 \vee S^4) \not\sim \Sigma(\mathbb{C}P^2)$, but here the cup-products are trivial for both spaces.

In this case, Sq^2 , the second Steenrod square, distinguishes the two spaces.

$$Sq^2 \colon H^*(X; \mathbb{F}_2) \to H^{*+2}(X; \mathbb{F}_2).$$

Does that suffice? No!

Other spaces might need secondary operations or worse.

Do all Steenrod operations and their higher structure suffice? Jim McClure, Jeff Smith: Multivariable cochain operations and little *n*-cubes. J. Amer. Math. Soc. 16 (2003).

They construct an E_{∞} -operad out of such cochain operations and their generalizations. This operad acts on cochains of a space.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras. Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞} -structure on the cochains!

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras. Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞} -structure on the cochains!

 E_{∞} stands for homotopy everything:

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras. Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞} -structure on the cochains!

 E_{∞} stands for *homotopy everything*: homotopy commutative and two such homotopies itself are homotopic and so on.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞} -algebras. Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞} -structure on the cochains!

 E_{∞} stands for *homotopy everything*: homotopy commutative and two such homotopies itself are homotopic and so on.

Formally: We have chain complexes E(n) that are contractible and free as Σ_n -chain complexes, together with actions

$$E(n)\otimes_{\Sigma_n}S^*(X)^{\otimes n}\to S^*(X),$$

satisfying a long list of coherence conditions...

Can we replace the E_{∞} -algebra of cochains $S^*(X; k)$ by a strictly commutative model, if k is any commutative ring?

Can we replace the E_{∞} -algebra of cochains $S^*(X; k)$ by a strictly commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra!

Can we replace the E_{∞} -algebra of cochains $S^*(X; k)$ by a strictly commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra! But: Yes, if one works in a different category.

Can we replace the E_{∞} -algebra of cochains $S^*(X; k)$ by a strictly commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra! But: Yes, if one works in a different category.

Let ${\mathcal I}$ be the (skeleton) of the category of finite sets and injective functions.

Can we replace the E_{∞} -algebra of cochains $S^*(X; k)$ by a strictly commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra! But: Yes, if one works in a different category.

Let ${\mathcal I}$ be the (skeleton) of the category of finite sets and injective functions.

Theorem [R-Shipley 2017]

There is a zigzag of Quillen equivalences between the category of differential graded E_{∞} -algebras and the category of commutative \mathcal{I} -chain-algebras.

Note: Functors from ${\cal I}$ to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability.

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

The functors X → hocolim_IA^I(X; k) and X → S^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → S^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → S^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

What about the other models?

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:

There is a commutative \mathcal{I} -chain algebra, $A^{\mathcal{I}}(X; k)$, such that

- The functors X → hocolim_IA^I(X; k) and X → S^{*}(X; k) from simplicial sets to E_∞-algebras are naturally quasi-isomorphic.
- ► Two nilpotent spaces X, Y of finite type are weakly equivalent iff A^I(X; Z) and A^I(Y; Z) are weakly equivalent as commutative *I*-chain algebras.

What about the other models? So what about differential graded cocommutative coalgebras and Lie-algebras?

> some basics on \mathcal{I} -chain complexes,

▶ some basics on *I*-chain complexes,

the homotopy colimit,

- ▶ some basics on *I*-chain complexes,
- the homotopy colimit,
- ▶ some problems, and

- ▶ some basics on *I*-chain complexes,
- the homotopy colimit,
- some problems, and
- a nice feature.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =:$ n for $n \ge 0$ with $0 = \emptyset$.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

$$(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p}\sqcup\mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$$

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

$$(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p} \sqcup \mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$$

The unit is 1 with $1(n) := S^0$ for any $n \ge 0$.

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\} =: n$ for $n \ge 0$ with $0 = \emptyset$. The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m.

The category \mathcal{I} is symmetric monoidal under concatenation of sets: $n \sqcup m := n + m$. The initial object 0 is the unit of this symmetric monoidal structure.

We call functors from \mathcal{I} to the category of chain complexes \mathcal{I} -chain complexes and denote the corresponding functor category by $Ch^{\mathcal{I}}$. The Day convolution product gives $Ch^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I} -chain complexes X_*, Y_*

$$(X_* \boxtimes Y_*)(\mathsf{n}) = \operatorname{colim}_{\mathcal{I}(\mathsf{p} \sqcup \mathsf{q},\mathsf{n})} X_*(\mathsf{p}) \otimes Y_*(\mathsf{q}).$$

The unit is 1 with $1(n) := S^0$ for any $n \ge 0$.

Definition: Commutative \mathcal{I} -chain algebras are commutative monoids in $Ch^{\mathcal{I}}$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathsf{Ch} \to \mathsf{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

As 0 is initial, $F_0^{\mathcal{I}}(C_*)$ is the constant \mathcal{I} -chain complex on C_* and $F_0^{\mathcal{I}}(S^0) = \mathbb{1}$.

For every $n \ge 0$ there is an evaluation functor $\operatorname{Ev}_n \colon \operatorname{Ch}^{\mathcal{I}} \to \operatorname{Ch}$ sending an X_* to the chain complex $X_*(n)$. These functors have left adjoints

$$F_n^{\mathcal{I}} \colon \mathrm{Ch} \to \mathrm{Ch}^{\mathcal{I}}$$

with

$$F_n^{\mathcal{I}}(C_*)(\mathsf{m}) = \bigoplus_{\mathcal{I}(\mathsf{n},\mathsf{m})} C_* \cong k\{\mathcal{I}(\mathsf{n},\mathsf{m})\} \otimes_k C_*.$$

As 0 is initial, $F_0^{\mathcal{I}}(C_*)$ is the constant \mathcal{I} -chain complex on C_* and $F_0^{\mathcal{I}}(S^0) = \mathbb{1}$.

For any \mathcal{I} -chain complex X_* , the free commutative \mathcal{I} -chain algebra on X_* is

$$S^{\mathcal{I}}(X_*) = \bigoplus_{n \ge 0} X_*^{\boxtimes n} / \Sigma_n.$$

Rough idea: a homotopy invariant version of a colimit.

Rough idea: a homotopy invariant version of a colimit. The homotopy colimit, $\operatorname{hocolim}_{\mathcal{I}} X_*$, of an \mathcal{I} -chain complex X_* is the total complex associated to the bicomplex whose bidegree (p,q)-part is

$$\bigoplus_{f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\text{source}(f_1))$$

[Joachimi, Rodríguez-Gonzáles, Dugger]

Rough idea: a homotopy invariant version of a colimit. The homotopy colimit, $\operatorname{hocolim}_{\mathcal{I}} X_*$, of an \mathcal{I} -chain complex X_* is the total complex associated to the bicomplex whose bidegree (p,q)-part is

$$\bigoplus_{f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\text{source}(f_1))$$

[Joachimi, Rodríguez-Gonzáles, Dugger]

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles E_{∞} -operad.

Rough idea: a homotopy invariant version of a colimit. The homotopy colimit, $\operatorname{hocolim}_{\mathcal{I}} X_*$, of an \mathcal{I} -chain complex X_* is the total complex associated to the bicomplex whose bidegree (p,q)-part is

 $\bigoplus_{[f_q|\ldots|f_1]\in N_q\mathcal{I}} X_p(\operatorname{source}(f_1))$

[Joachimi, Rodríguez-Gonzáles, Dugger]

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_* is a commutative \mathcal{I} -chain algebra, then hocolim $_{\mathcal{I}}X_*$ is an algebra over the Barratt-Eccles E_{∞} -operad.

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, what can we say about hocolim $_{\mathcal{I}}C_*$?

The co-free cocommutative coalgebra on a chain complex C_* , rationally, is described via Σ -invariants:

The co-free cocommutative coalgebra on a chain complex C_* , rationally, is described via Σ -invariants:

$$S'_*(C_*) = \bigoplus_{n \ge 0} (C^{\otimes n}_*)^{\Sigma_n}.$$

The co-free cocommutative coalgebra on a chain complex C_* , rationally, is described via Σ -invariants:

$$S'_*(C_*) = \bigoplus_{n \ge 0} (C_*^{\otimes n})^{\Sigma_n}.$$

Then one uses that rationally the norm map

$$N_n \colon C^{\otimes n}_* / \Sigma_n \to (C^{\otimes n}_*)^{\Sigma_n}$$

is an equivalence in order to determine the homotopy type.

The co-free cocommutative coalgebra on a chain complex C_* , rationally, is described via Σ -invariants:

$$S'_*(C_*) = \bigoplus_{n \ge 0} (C^{\otimes n}_*)^{\Sigma_n}.$$

Then one uses that rationally the norm map

$$N_n \colon C^{\otimes n}_* / \Sigma_n \to (C^{\otimes n}_*)^{\Sigma_n}$$

is an equivalence in order to determine the homotopy type.

In the category of symmetric sequences of chain complexes, Ch^{Σ} , the norm map *is* an iso on reduced objects [Stover, Fresse].

The co-free cocommutative coalgebra on a chain complex C_* , rationally, is described via Σ -invariants:

$$S'_*(C_*) = \bigoplus_{n \ge 0} (C_*^{\otimes n})^{\Sigma_n}.$$

Then one uses that rationally the norm map

$$N_n \colon C^{\otimes n}_* / \Sigma_n \to (C^{\otimes n}_*)^{\Sigma_n}$$

is an equivalence in order to determine the homotopy type.

In the category of symmetric sequences of chain complexes, Ch^{Σ} , the norm map *is* an iso on reduced objects [Stover, Fresse]. **Theorem** There are reduced $X_* \in Ch^{\mathcal{I}}$ (i.e., $X_*(0) = 0$) such that

$$N_n\colon X^{\boxtimes n}_*/\Sigma_n\to (X^{\boxtimes n}_*)^{\Sigma_n}$$

is not an isomorphism.

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels.

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \overline{F} .

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \overline{F} . All structure maps in positive degrees induce the identity on \overline{F} .

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \bar{F} . All structure maps in positive degrees induce the identity on \bar{F} . If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \to 3$ of $\bar{F}(p) \otimes \bar{F}(q)$.

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \bar{F} . All structure maps in positive degrees induce the identity on \bar{F} . If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \to 3$ of $\bar{F}(p) \otimes \bar{F}(q)$.

The class of the identity map viewed as a map $2 \sqcup 1 \to 3$ gives a representative $id \otimes 1 \otimes 1$ in this tensor product.

A counterexample

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \bar{F} . All structure maps in positive degrees induce the identity on \bar{F} . If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \to 3$ of $\bar{F}(p) \otimes \bar{F}(q)$.

The class of the identity map viewed as a map $2 \sqcup 1 \to 3$ gives a representative $id \otimes 1 \otimes 1$ in this tensor product.

There is a zigzag of equivalences coming from the relations for forming the colimit for \boxtimes that says that $\operatorname{id} \otimes 1 \otimes 1$ represents the same element as $(\operatorname{id} \otimes 1 \otimes 1).(1,2)$.

A counterexample

Consider the projection $\pi: F_0^{\mathcal{I}}(k) \to I^0(k)$ where $I^0(k)(n)$ is non-trivial for n = 0 with value k and trivial in all other levels. The kernel of π is a reduced version of $F_0^{\mathcal{I}}(k)$, say \bar{F} . All structure maps in positive degrees induce the identity on \bar{F} . If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \to 3$ of $\bar{F}(p) \otimes \bar{F}(q)$.

The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative $id \otimes 1 \otimes 1$ in this tensor product.

There is a zigzag of equivalences coming from the relations for forming the colimit for \boxtimes that says that $\operatorname{id} \otimes 1 \otimes 1$ represents the same element as $(\operatorname{id} \otimes 1 \otimes 1).(1,2)$.

So this element is invariant under the Σ_2 -action, but it is not in the image of the norm map, unless 2 is invertible in k.

For any chain complex C_* , for every m and for every $p \ge 1$ the norm $N_n = \sum_{\sigma \in \Sigma_n} \sigma \in \mathbb{Z}[\Sigma_n]$ induces an isomorphism of chain complexes

$$N_n: (F_p^{\mathcal{I}}(C_*)^{\boxtimes n}/\Sigma_n)(\mathsf{m}) \to ((F_p^{\mathcal{I}}(C_*)^{\boxtimes n})^{\Sigma_n}(\mathsf{m}))^{\Sigma_n}(\mathsf{m})$$

For any chain complex C_* , for every m and for every $p \ge 1$ the norm $N_n = \sum_{\sigma \in \Sigma_n} \sigma \in \mathbb{Z}[\Sigma_n]$ induces an isomorphism of chain complexes

$$N_n\colon (F_p^{\mathcal{I}}(C_*)^{\boxtimes n}/\Sigma_n)(\mathsf{m})\to ((F_p^{\mathcal{I}}(C_*)^{\boxtimes n})^{\Sigma_n}(\mathsf{m}))$$

This follows from the fact that $(F_p^{\mathcal{I}}(C_*))^{\boxtimes n} \cong F_{pn}^{\mathcal{I}}(C_*^{\otimes n})$ and that the Σ_n -action is free on $\mathcal{I}(pn,m)$ as long as $p \ge 1$.

For any chain complex C_* , for every m and for every $p \ge 1$ the norm $N_n = \sum_{\sigma \in \Sigma_n} \sigma \in \mathbb{Z}[\Sigma_n]$ induces an isomorphism of chain complexes

$$N_n: (F_p^{\mathcal{I}}(C_*)^{\boxtimes n} / \Sigma_n)(\mathsf{m}) \to ((F_p^{\mathcal{I}}(C_*)^{\boxtimes n})^{\Sigma_n}(\mathsf{m}))^{\Sigma_n}(\mathsf{m})$$

This follows from the fact that $(F_p^{\mathcal{I}}(C_*))^{\boxtimes n} \cong F_{pn}^{\mathcal{I}}(C_*^{\otimes n})$ and that the Σ_n -action is free on $\mathcal{I}(pn, m)$ as long as $p \ge 1$. Note that this implies that the free commutative monoid on $F_p^{\mathcal{I}}(C_*)$ is isomorphic to the free divided power algebra and the cofree cocommutative coalgebra generated on $F_p^{\mathcal{I}}(C_*)$.

$$(H_*X_*)(n) := H_*(X_*(n)).$$

$$(H_*X_*)(n) := H_*(X_*(n)).$$

This can be considered as an $\mathcal I\text{-}\mathsf{chain}$ complex with trivial differential.

$$(H_*X_*)(n) := H_*(X_*(n)).$$

This can be considered as an \mathcal{I} -chain complex with trivial differential.

For two $X_*, Y_* \in Ch^{\mathcal{I}}$ there is a Künneth map

 $H_*X_* \boxtimes H_*Y_* \to H_*(X_* \boxtimes Y_*).$

$$(H_*X_*)(n) := H_*(X_*(n)).$$

This can be considered as an \mathcal{I} -chain complex with trivial differential.

For two $X_*, Y_* \in \mathsf{Ch}^\mathcal{I}$ there is a Künneth map

$$H_*X_* \boxtimes H_*Y_* \to H_*(X_* \boxtimes Y_*).$$

Proposition Even if we work over a field, the Künneth map is in general *not* an isomorphism.

$$(H_*X_*)(n) := H_*(X_*(n)).$$

This can be considered as an $\mathcal I\text{-chain}$ complex with trivial differential. ${}_{\mathcal T}$

For two $X_*, Y_* \in Ch^{\mathcal{I}}$ there is a Künneth map

$$H_*X_* \boxtimes H_*Y_* \to H_*(X_* \boxtimes Y_*).$$

Proposition Even if we work over a field, the Künneth map is in general *not* an isomorphism.

There is a concrete counterexample.

$$\operatorname{Sym}^{\mathcal{I}}(C_*)(\mathsf{n}) := C_*^{\otimes n}.$$

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \rightarrow C_*$ representing c_0 .

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \to C_*$ representing c_0 . For $C_* = D^1$ we consider $H_* \text{Sym}^{\mathcal{I}}(D^1) \boxtimes H_* \text{Sym}^{\mathcal{I}}(D^1)(1)$.

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \to C_*$ representing c_0 . For $C_* = D^1$ we consider $H_* \operatorname{Sym}^{\mathcal{I}}(D^1) \boxtimes H_* \operatorname{Sym}^{\mathcal{I}}(D^1)(1)$. This is trivial, because $H_* D^1 = 0$.

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \to C_*$ representing c_0 . For $C_* = D^1$ we consider $H_* \text{Sym}^{\mathcal{I}}(D^1) \boxtimes H_* \text{Sym}^{\mathcal{I}}(D^1)(1)$. This is trivial, because $H_*D^1 = 0$.

On the other hand, the colimit for $\operatorname{Sym}^{\mathcal{I}}(D^1) \boxtimes \operatorname{Sym}^{\mathcal{I}}(D^1)(1)$ is the pushout

$$S^0 \otimes S^0 \longrightarrow S^0 \otimes D^1$$

$$\downarrow$$

$$D^1 \otimes S^0$$

$$\operatorname{\mathsf{Sym}}^{\mathcal{I}}(\mathit{C}_*)(\mathsf{n}):=\mathit{C}_*^{\otimes n}$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^0 \to C_*$ representing c_0 . For $C_* = D^1$ we consider $H_* \text{Sym}^{\mathcal{I}}(D^1) \boxtimes H_* \text{Sym}^{\mathcal{I}}(D^1)(1)$. This is trivial, because $H_*D^1 = 0$.

On the other hand, the colimit for $\operatorname{Sym}^{\mathcal{I}}(D^1) \boxtimes \operatorname{Sym}^{\mathcal{I}}(D^1)(1)$ is the pushout

$$S^{0} \otimes S^{0} \longrightarrow S^{0} \otimes D^{1}$$

$$\downarrow$$

$$D^{1} \otimes S^{0}$$

This results in $D^1 \oplus_{S^0} D^1$ which has nontrivial H_1 .

Theorem The homotopy colimit $hocolim_{\mathcal{I}} \colon Ch^{\mathcal{I}} \to Ch$ is an E_{∞} -comonoidal functor.

Theorem The homotopy colimit $hocolim_{\mathcal{I}} \colon Ch^{\mathcal{I}} \to Ch$ is an E_{∞} -comonoidal functor.

What does that mean?

Theorem The homotopy colimit $hocolim_{\mathcal{I}} \colon Ch^{\mathcal{I}} \to Ch$ is an E_{∞} -comonoidal functor.

What does that mean?

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, then $hocolim_{\mathcal{I}}C_*$ is not cocommutative on the nose, but up to homotopy and all higher homotopies.

Theorem The homotopy colimit $hocolim_{\mathcal{I}} \colon Ch^{\mathcal{I}} \to Ch$ is an E_{∞} -comonoidal functor.

What does that mean?

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, then $hocolim_{\mathcal{I}}C_*$ is not cocommutative on the nose, but up to homotopy and all higher homotopies.

Idea of proof: hocolim_I = $Tot \circ C_* \circ srep$.

Theorem The homotopy colimit $hocolim_{\mathcal{I}} \colon Ch^{\mathcal{I}} \to Ch$ is an E_{∞} -comonoidal functor.

What does that mean?

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, then $hocolim_{\mathcal{I}}C_*$ is not cocommutative on the nose, but up to homotopy and all higher homotopies.

Idea of proof: hocolim_I = $Tot \circ C_* \circ srep$.

Tot is strong symmetric (co-)monoidal,

Theorem The homotopy colimit $hocolim_{\mathcal{I}} \colon Ch^{\mathcal{I}} \to Ch$ is an E_{∞} -comonoidal functor.

What does that mean?

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, then $hocolim_{\mathcal{I}}C_*$ is not cocommutative on the nose, but up to homotopy and all higher homotopies.

Idea of proof: hocolim_{*I*} = $Tot \circ C_* \circ srep$.

Tot is strong symmetric (co-)monoidal,

 C_* is E_∞ -comonoidal [R, 2006], and

Theorem The homotopy colimit $hocolim_{\mathcal{I}} \colon Ch^{\mathcal{I}} \to Ch$ is an E_{∞} -comonoidal functor.

What does that mean?

If C_* is a cocommutative comonoid in $Ch^{\mathcal{I}}$, then $hocolim_{\mathcal{I}}C_*$ is not cocommutative on the nose, but up to homotopy and all higher homotopies.

Idea of proof: hocolim₁ = Tot $\circ C_* \circ$ srep. Tot is strong symmetric (co-)monoidal, C_* is E_{∞} -comonoidal [R, 2006], and srep is lax symmetric comonoidal.

Is there a model for the E_{∞} -coalgebra of chains on a space, $S_*(X)$ as a cocommutative \mathcal{I} -chain coalgebra?

Is there a model for the E_{∞} -coalgebra of chains on a space, $S_*(X)$ as a cocommutative \mathcal{I} -chain coalgebra?

Is there a model category structure for cocommutative $\mathcal I\text{-chain}$ algebras?

Is there a model for the E_{∞} -coalgebra of chains on a space, $S_*(X)$ as a cocommutative \mathcal{I} -chain coalgebra?

Is there a model category structure for cocommutative $\mathcal I\text{-chain}$ algebras?

Thank you!