Algebraic models for topological spaces

Birgit Richter

Kolloquium Göttingen, May 12th 2022

Classical setting: Rational homotopy theory

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\mathrm{PL}}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\mathrm{PL}}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.
But these concern the rational homotopy type:

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\text {PL }}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.
But these concern the rational homotopy type:
A simply connected CW complex X is a rational space if and only if its homology groups $H_{i}(X, \mathbb{Z})$ are rational vector spaces for all $i>0$.

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\mathrm{PL}}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.
But these concern the rational homotopy type:
A simply connected CW complex X is a rational space if and only if its homology groups $H_{i}(X, \mathbb{Z})$ are rational vector spaces for all $i>0$.
There is a rationalization of spaces: $X \mapsto X_{\mathbb{Q}}$.

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\mathrm{PL}}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.
But these concern the rational homotopy type:
A simply connected CW complex X is a rational space if and only if its homology groups $H_{i}(X, \mathbb{Z})$ are rational vector spaces for all $i>0$.
There is a rationalization of spaces: $X \mapsto X_{\mathbb{Q}}$.
So the above models help to decide whether $X_{\mathbb{Q}} \sim Y_{\mathbb{Q}}$.

Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976), Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type (later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,... (simply-connected case)
Sullivan: $A_{\mathrm{PL}}^{*}(X)$; a strictly dg commutative model for the cochains of a space X.
But these concern the rational homotopy type:
A simply connected CW complex X is a rational space if and only if its homology groups $H_{i}(X, \mathbb{Z})$ are rational vector spaces for all $i>0$.
There is a rationalization of spaces: $X \mapsto X_{\mathbb{Q}}$.
So the above models help to decide whether $X_{\mathbb{Q}} \sim Y_{\mathbb{Q}}$.
What can we expect, if we want to control the actual (weak) homotopy type?

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:
Additively, $H^{*}\left(S^{2} \vee S^{4}\right)$ is isomorphic to $H^{*}\left(\mathbb{C} P^{2}\right)$, but the cup-products are different.

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:
Additively, $H^{*}\left(S^{2} \vee S^{4}\right)$ is isomorphic to $H^{*}\left(\mathbb{C} P^{2}\right)$, but the cup-products are different. However: $\Sigma\left(S^{2} \vee S^{4}\right) \nsim \Sigma\left(\mathbb{C} P^{2}\right)$, but here the cup-products are trivial for both spaces.

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:
Additively, $H^{*}\left(S^{2} \vee S^{4}\right)$ is isomorphic to $H^{*}\left(\mathbb{C} P^{2}\right)$, but the cup-products are different.
However: $\Sigma\left(S^{2} \vee S^{4}\right) \nsim \Sigma\left(\mathbb{C} P^{2}\right)$, but here the cup-products are trivial for both spaces.
In this case, $S q^{2}$, the second Steenrod square, distinguishes the two spaces.

$$
S q^{2}: H^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow H^{*+2}\left(X ; \mathbb{F}_{2}\right)
$$

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:
Additively, $H^{*}\left(S^{2} \vee S^{4}\right)$ is isomorphic to $H^{*}\left(\mathbb{C} P^{2}\right)$, but the cup-products are different. However: $\Sigma\left(S^{2} \vee S^{4}\right) \nsim \Sigma\left(\mathbb{C} P^{2}\right)$, but here the cup-products are trivial for both spaces.
In this case, $S q^{2}$, the second Steenrod square, distinguishes the two spaces.

$$
S q^{2}: H^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow H^{*+2}\left(X ; \mathbb{F}_{2}\right)
$$

Does that suffice?

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:
Additively, $H^{*}\left(S^{2} \vee S^{4}\right)$ is isomorphic to $H^{*}\left(\mathbb{C} P^{2}\right)$, but the cup-products are different. However: $\Sigma\left(S^{2} \vee S^{4}\right) \nsim \Sigma\left(\mathbb{C} P^{2}\right)$, but here the cup-products are trivial for both spaces.
In this case, $S q^{2}$, the second Steenrod square, distinguishes the two spaces.

$$
S q^{2}: H^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow H^{*+2}\left(X ; \mathbb{F}_{2}\right)
$$

Does that suffice? No!

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:
Additively, $H^{*}\left(S^{2} \vee S^{4}\right)$ is isomorphic to $H^{*}\left(\mathbb{C} P^{2}\right)$, but the cup-products are different.
However: $\Sigma\left(S^{2} \vee S^{4}\right) \nsim \Sigma\left(\mathbb{C} P^{2}\right)$, but here the cup-products are trivial for both spaces.
In this case, $S q^{2}$, the second Steenrod square, distinguishes the two spaces.

$$
S q^{2}: H^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow H^{*+2}\left(X ; \mathbb{F}_{2}\right)
$$

Does that suffice? No!
Other spaces might need secondary operations or worse.

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:
Additively, $H^{*}\left(S^{2} \vee S^{4}\right)$ is isomorphic to $H^{*}\left(\mathbb{C} P^{2}\right)$, but the cup-products are different.
However: $\Sigma\left(S^{2} \vee S^{4}\right) \nsim \Sigma\left(\mathbb{C} P^{2}\right)$, but here the cup-products are trivial for both spaces.
In this case, $S q^{2}$, the second Steenrod square, distinguishes the two spaces.

$$
S q^{2}: H^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow H^{*+2}\left(X ; \mathbb{F}_{2}\right)
$$

Does that suffice? No!
Other spaces might need secondary operations or worse.
Do all Steenrod operations and their higher structure suffice?

You all know, that we can sometimes distinguish spaces with the help of the cup-product structure:
Additively, $H^{*}\left(S^{2} \vee S^{4}\right)$ is isomorphic to $H^{*}\left(\mathbb{C} P^{2}\right)$, but the cup-products are different.
However: $\Sigma\left(S^{2} \vee S^{4}\right) \nsim \Sigma\left(\mathbb{C} P^{2}\right)$, but here the cup-products are trivial for both spaces.
In this case, $S q^{2}$, the second Steenrod square, distinguishes the two spaces.

$$
S q^{2}: H^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow H^{*+2}\left(X ; \mathbb{F}_{2}\right)
$$

Does that suffice? No!
Other spaces might need secondary operations or worse.
Do all Steenrod operations and their higher structure suffice? Jim McClure, Jeff Smith: Multivariable cochain operations and little n-cubes. J. Amer. Math. Soc. 16 (2003).
They construct an E_{∞}-operad out of such cochain operations and their generalizations. This operad acts on cochains of a space.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞}-algebras.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞}-algebras.
Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞}-structure on the cochains!

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞}-algebras.
Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞}-structure on the cochains!
E_{∞} stands for homotopy everything:

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞}-algebras. Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞}-structure on the cochains!
E_{∞} stands for homotopy everything: homotopy commutative and two such homotopies itself are homotopic and so on.

Mandell (2006): Finite type nilpotent spaces are weakly equivalent iff their singular cochains are quasi-isomorphic as E_{∞}-algebras. Thus, if you don't want to restrict to rational homotopy theory, then you need the full information of the E_{∞}-structure on the cochains!
E_{∞} stands for homotopy everything: homotopy commutative and two such homotopies itself are homotopic and so on.
Formally: We have chain complexes $E(n)$ that are contractible and free as Σ_{n}-chain complexes, together with actions

$$
E(n) \otimes \Sigma_{n} S^{*}(X)^{\otimes n} \rightarrow S^{*}(X)
$$

satisfying a long list of coherence conditions...

A strictly commutative model

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $S^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $S^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?
Certainly not as a differential graded commutative algebra!

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $S^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra!
But: Yes, if one works in a different category.

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $S^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra!
But: Yes, if one works in a different category.
Let \mathcal{I} be the (skeleton) of the category of finite sets and injective functions.

A strictly commutative model

Can we replace the E_{∞}-algebra of cochains $S^{*}(X ; k)$ by a strictly commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra!
But: Yes, if one works in a different category.
Let \mathcal{I} be the (skeleton) of the category of finite sets and injective functions.
Theorem [R-Shipley 2017]
There is a zigzag of Quillen equivalences between the category of differential graded E_{∞}-algebras and the category of commutative \mathcal{I}-chain-algebras.

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability.

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto S^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto S^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.
- Two nilpotent spaces X, Y of finite type are weakly equivalent iff $A^{\mathcal{I}}(X ; \mathbb{Z})$ and $A^{\mathcal{I}}(Y ; \mathbb{Z})$ are weakly equivalent as commutative \mathcal{I}-chain algebras.

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto S^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.
- Two nilpotent spaces X, Y of finite type are weakly equivalent iff $A^{\mathcal{I}}(X ; \mathbb{Z})$ and $A^{\mathcal{I}}(Y ; \mathbb{Z})$ are weakly equivalent as commutative \mathcal{I}-chain algebras.
What about the other models?

Note: Functors from \mathcal{I} to the category of modules feature prominently in the work by Church-Ellenberg-Farb on representation stability. Functors from \mathcal{I} to spaces have been used before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:
There is a commutative \mathcal{I}-chain algebra, $A^{\mathcal{I}}(X ; k)$, such that

- The functors $X \mapsto \operatorname{hocolim}_{\mathcal{I}} A^{\mathcal{I}}(X ; k)$ and $X \mapsto S^{*}(X ; k)$ from simplicial sets to E_{∞}-algebras are naturally quasi-isomorphic.
- Two nilpotent spaces X, Y of finite type are weakly equivalent iff $A^{\mathcal{I}}(X ; \mathbb{Z})$ and $A^{\mathcal{I}}(Y ; \mathbb{Z})$ are weakly equivalent as commutative \mathcal{I}-chain algebras.
What about the other models? So what about differential graded cocommutative coalgebras and Lie-algebras?

Let's see

Let's see

- some basics on \mathcal{I}-chain complexes,

Let's see

- some basics on \mathcal{I}-chain complexes,
- the homotopy colimit,

Let's see

- some basics on \mathcal{I}-chain complexes,
- the homotopy colimit,
- some problems, and

Let's see

- some basics on \mathcal{I}-chain complexes,
- the homotopy colimit,
- some problems, and
- a nice feature.

Basics on I-chain complexes

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.

Basics on I-chain complexes

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .

Basics on I-chain complexes

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.

Basics on \mathcal{I}-chain complexes

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$.

Basics on \mathcal{I}-chain complexes

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$. The Day convolution product gives $\mathrm{Ch}^{\mathcal{I}}$ a symmetric monoidal structure.

Basics on \mathcal{I}-chain complexes

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$. The Day convolution product gives $\mathrm{Ch}^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I}-chain complexes X_{*}, Y_{*}

$$
\left(X_{*} \boxtimes Y_{*}\right)(\mathrm{n})=\operatorname{colim}_{\mathcal{I}(\mathrm{p} \sqcup \mathrm{q}, \mathrm{n})} X_{*}(\mathrm{p}) \otimes Y_{*}(\mathrm{q})
$$

Basics on \mathcal{I}-chain complexes

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$. The Day convolution product gives $\mathrm{Ch}^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I}-chain complexes X_{*}, Y_{*}

$$
\left(X_{*} \boxtimes Y_{*}\right)(\mathrm{n})=\operatorname{colim}_{\mathcal{I}(\mathrm{p} \sqcup \mathrm{q}, \mathrm{n})} X_{*}(\mathrm{p}) \otimes Y_{*}(\mathrm{q})
$$

The unit is $\mathbb{1}$ with $\mathbb{1}(\mathrm{n}):=S^{0}$ for any $n \geq 0$.

Basics on \mathcal{I}-chain complexes

Let \mathcal{I} be the category of finite sets and injections whose objects are the sets $\{1, \ldots, n\}=: \mathrm{n}$ for $n \geq 0$ with $0=\varnothing$.
The morphism set $\mathcal{I}(n, m)$ consists of all injective functions from n to m .
The category \mathcal{I} is symmetric monoidal under concatenation of sets: $\mathrm{n} \sqcup \mathrm{m}:=\mathrm{n}+\mathrm{m}$. The initial object 0 is the unit of this symmetric monoidal structure.
We call functors from \mathcal{I} to the category of chain complexes \mathcal{I}-chain complexes and denote the corresponding functor category by $\mathrm{Ch}^{\mathcal{I}}$. The Day convolution product gives $\mathrm{Ch}^{\mathcal{I}}$ a symmetric monoidal structure. Explicitly, for two \mathcal{I}-chain complexes X_{*}, Y_{*}

$$
\left(X_{*} \boxtimes Y_{*}\right)(\mathrm{n})=\operatorname{colim}_{\mathcal{I}(\mathrm{p} \sqcup \mathrm{q}, \mathrm{n})} X_{*}(\mathrm{p}) \otimes Y_{*}(\mathrm{q})
$$

The unit is $\mathbb{1}$ with $\mathbb{1}(\mathrm{n}):=S^{0}$ for any $n \geq 0$.
Definition: Commutative \mathcal{I}-chain algebras are commutative monoids in $\mathrm{Ch}^{\mathcal{I}}$.

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.
These functors have left adjoints

$$
F_{n}^{\mathcal{I}}: \mathrm{Ch} \rightarrow \mathrm{Ch}^{\mathcal{I}}
$$

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.
These functors have left adjoints

$$
F_{n}^{\mathcal{I}}: \mathrm{Ch} \rightarrow \mathrm{Ch}^{\mathcal{I}}
$$

with

$$
F_{n}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{m})=\bigoplus_{\mathcal{I}(\mathrm{n}, \mathrm{~m})} C_{*} \cong k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k} C_{*} .
$$

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.
These functors have left adjoints

$$
F_{n}^{\mathcal{I}}: \mathrm{Ch} \rightarrow \mathrm{Ch}^{\mathcal{I}}
$$

with

$$
F_{n}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{m})=\bigoplus_{\mathcal{I}(\mathrm{n}, \mathrm{~m})} C_{*} \cong k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k} C_{*}
$$

As 0 is initial, $F_{0}^{\mathcal{I}}\left(C_{*}\right)$ is the constant \mathcal{I}-chain complex on C_{*} and $F_{0}^{\mathcal{I}}\left(S^{0}\right)=\mathbb{1}$.

Free things

For every $n \geq 0$ there is an evaluation functor $\mathrm{Ev}_{n}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ sending an X_{*} to the chain complex $X_{*}(\mathrm{n})$.
These functors have left adjoints

$$
F_{n}^{\mathcal{I}}: \mathrm{Ch} \rightarrow \mathrm{Ch}^{\mathcal{I}}
$$

with

$$
F_{n}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{m})=\bigoplus_{\mathcal{I}(\mathrm{n}, \mathrm{~m})} C_{*} \cong k\{\mathcal{I}(\mathrm{n}, \mathrm{~m})\} \otimes_{k} C_{*}
$$

As 0 is initial, $F_{0}^{\mathcal{I}}\left(C_{*}\right)$ is the constant \mathcal{I}-chain complex on C_{*} and $F_{0}^{\mathcal{I}}\left(S^{0}\right)=\mathbb{1}$.
For any \mathcal{I}-chain complex X_{*}, the free commutative \mathcal{I}-chain algebra on X_{*} is

$$
\mathrm{S}^{\mathcal{I}}\left(X_{*}\right)=\bigoplus_{n \geq 0} X_{*}^{\boxtimes n} / \Sigma_{n} .
$$

The homotopy colimit

The homotopy colimit

Rough idea: a homotopy invariant version of a colimit.

The homotopy colimit

Rough idea: a homotopy invariant version of a colimit. The homotopy colimit, hocolim $_{\mathcal{I}} X_{*}$, of an \mathcal{I}-chain complex X_{*} is the total complex associated to the bicomplex whose bidegree (p, q)-part is

$$
\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N_{q} \mathcal{I}} X_{p}\left(\operatorname{source}\left(f_{1}\right)\right)
$$

[Joachimi, Rodríguez-Gonzáles,Dugger]

The homotopy colimit

Rough idea: a homotopy invariant version of a colimit. The homotopy colimit, hocolim $_{\mathcal{I}} X_{*}$, of an \mathcal{I}-chain complex X_{*} is the total complex associated to the bicomplex whose bidegree (p, q)-part is

$$
\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N_{q} \mathcal{I}} X_{p}\left(\operatorname{source}\left(f_{1}\right)\right)
$$

[Joachimi, Rodríguez-Gonzáles,Dugger]
Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_{*} is a commutative \mathcal{I}-chain algebra, then hocolim $\mathcal{I} X_{*}$ is an algebra over the Barratt-Eccles E_{∞}-operad.

The homotopy colimit

Rough idea: a homotopy invariant version of a colimit. The homotopy colimit, hocolim $_{\mathcal{I}} X_{*}$, of an \mathcal{I}-chain complex X_{*} is the total complex associated to the bicomplex whose bidegree (p, q)-part is

$$
\bigoplus_{\left[f_{q}|\ldots| f_{1}\right] \in N_{q} \mathcal{I}} X_{p}\left(\operatorname{source}\left(f_{1}\right)\right)
$$

[Joachimi, Rodríguez-Gonzáles,Dugger]
Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X_{*} is a commutative \mathcal{I}-chain algebra, then hocolim $\mathcal{I} X_{*}$ is an algebra over the Barratt-Eccles E_{∞}-operad.

If C_{*} is a cocommutative comonoid in $\mathrm{Ch}^{\mathcal{I}}$, what can we say about hocolim \mathcal{I}_{*} ?

Some problems

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via \sum-invariants:

Some problems

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via Σ-invariants:

$$
S_{*}^{\prime}\left(C_{*}\right)=\bigoplus_{n \geq 0}\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

Some problems

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via \sum-invariants:

$$
S_{*}^{\prime}\left(C_{*}\right)=\bigoplus_{n \geq 0}\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

Then one uses that rationally the norm map

$$
N_{n}: C_{*}^{\otimes n} / \Sigma_{n} \rightarrow\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

is an equivalence in order to determine the homotopy type.

Some problems

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via Σ-invariants:

$$
S_{*}^{\prime}\left(C_{*}\right)=\bigoplus_{n \geq 0}\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

Then one uses that rationally the norm map

$$
N_{n}: C_{*}^{\otimes n} / \Sigma_{n} \rightarrow\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

is an equivalence in order to determine the homotopy type.
In the category of symmetric sequences of chain complexes, Ch^{Σ}, the norm map is an iso on reduced objects [Stover, Fresse].

Some problems

The co-free cocommutative coalgebra on a chain complex C_{*}, rationally, is described via \sum-invariants:

$$
S_{*}^{\prime}\left(C_{*}\right)=\bigoplus_{n \geq 0}\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

Then one uses that rationally the norm map

$$
N_{n}: C_{*}^{\otimes n} / \Sigma_{n} \rightarrow\left(C_{*}^{\otimes n}\right)^{\Sigma_{n}}
$$

is an equivalence in order to determine the homotopy type.
In the category of symmetric sequences of chain complexes, Ch^{Σ}, the norm map is an iso on reduced objects [Stover, Fresse].
Theorem There are reduced $X_{*} \in \mathrm{Ch}^{\mathcal{I}}$ (i.e., $X_{*}(0)=0$) such that

$$
N_{n}: X_{*}^{\boxtimes n} / \Sigma_{n} \rightarrow\left(X_{*}^{\boxtimes n}\right)^{\Sigma_{n}}
$$

is not an isomorphism.

A counterexample

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(\mathrm{n})$ is non-trivial for $n=0$ with value k and trivial in all other levels.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.
If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \rightarrow 3$ of $\bar{F}(\mathrm{p}) \otimes \bar{F}(\mathrm{q})$.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.
If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \rightarrow 3$ of $\bar{F}(\mathrm{p}) \otimes \bar{F}(\mathrm{q})$.
The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative id $\otimes 1 \otimes 1$ in this tensor product.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.
If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \rightarrow 3$ of $\bar{F}(\mathrm{p}) \otimes \bar{F}(\mathrm{q})$.
The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative id $\otimes 1 \otimes 1$ in this tensor product.
There is a zigzag of equivalences coming from the relations for forming the colimit for \boxtimes that says that id $\otimes 1 \otimes 1$ represents the same element as $(\mathrm{id} \otimes 1 \otimes 1) .(1,2)$.

A counterexample

Consider the projection $\pi: F_{0}^{\mathcal{I}}(k) \rightarrow I^{0}(k)$ where $I^{0}(k)(n)$ is non-trivial for $n=0$ with value k and trivial in all other levels. The kernel of π is a reduced version of $F_{0}^{\mathcal{I}}(k)$, say \bar{F}. All structure maps in positive degrees induce the identity on \bar{F}.
If we consider $(\bar{F} \boxtimes \bar{F})(3)$ then this is the colimit over the category $\mathcal{I} \sqcup \mathcal{I} \rightarrow 3$ of $\bar{F}(\mathrm{p}) \otimes \bar{F}(\mathrm{q})$.
The class of the identity map viewed as a map $2 \sqcup 1 \rightarrow 3$ gives a representative $\mathrm{id} \otimes 1 \otimes 1$ in this tensor product.
There is a zigzag of equivalences coming from the relations for forming the colimit for \boxtimes that says that id $\otimes 1 \otimes 1$ represents the same element as $(\mathrm{id} \otimes 1 \otimes 1) .(1,2)$.
So this element is invariant under the Σ_{2}-action, but it is not in the image of the norm map, unless 2 is invertible in k.

For any chain complex C_{*}, for every m and for every $p \geq 1$ the norm $N_{n}=\sum_{\sigma \in \Sigma_{n}} \sigma \in \mathbb{Z}\left[\Sigma_{n}\right]$ induces an isomorphism of chain complexes

$$
N_{n}:\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n} / \Sigma_{n}\right)(\mathrm{m}) \rightarrow\left(\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m}) .\right.
$$

For any chain complex C_{*}, for every m and for every $p \geq 1$ the norm $N_{n}=\sum_{\sigma \in \Sigma_{n}} \sigma \in \mathbb{Z}\left[\Sigma_{n}\right]$ induces an isomorphism of chain complexes

$$
N_{n}:\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n} / \Sigma_{n}\right)(\mathrm{m}) \rightarrow\left(\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n}\right)^{\Sigma_{n}}(\mathrm{~m}) .\right.
$$

This follows from the fact that $\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)\right)^{\boxtimes n} \cong F_{p n}^{\mathcal{I}}\left(C_{*}^{\otimes n}\right)$ and that the Σ_{n}-action is free on $\mathcal{I}(\mathrm{pn}, \mathrm{m})$ as long as $p \geq 1$.

For any chain complex C_{*}, for every m and for every $p \geq 1$ the norm $N_{n}=\sum_{\sigma \in \Sigma_{n}} \sigma \in \mathbb{Z}\left[\Sigma_{n}\right]$ induces an isomorphism of chain complexes

$$
N_{n}:\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n} / \Sigma_{n}\right)(m) \rightarrow\left(\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)^{\boxtimes n}\right)^{\Sigma_{n}}(m)\right.
$$

This follows from the fact that $\left(F_{p}^{\mathcal{I}}\left(C_{*}\right)\right)^{\boxtimes n} \cong F_{p n}^{\mathcal{I}}\left(C_{*}^{\otimes n}\right)$ and that the Σ_{n}-action is free on $\mathcal{I}(\mathrm{pn}, \mathrm{m})$ as long as $p \geq 1$. Note that this implies that the free commutative monoid on $F_{p}^{\mathcal{I}}\left(C_{*}\right)$ is isomorphic to the free divided power algebra and the cofree cocommutative coalgebra generated on $F_{p}^{\mathcal{I}}\left(C_{*}\right)$.

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

This can be considered as an \mathcal{I}-chain complex with trivial differential.

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

This can be considered as an \mathcal{I}-chain complex with trivial differential.
For two $X_{*}, Y_{*} \in \mathrm{Ch}^{\mathcal{I}}$ there is a Künneth map

$$
H_{*} X_{*} \boxtimes H_{*} Y_{*} \rightarrow H_{*}\left(X_{*} \boxtimes Y_{*}\right)
$$

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

This can be considered as an \mathcal{I}-chain complex with trivial differential.
For two $X_{*}, Y_{*} \in \mathrm{Ch}^{\mathcal{I}}$ there is a Künneth map

$$
H_{*} X_{*} \boxtimes H_{*} Y_{*} \rightarrow H_{*}\left(X_{*} \boxtimes Y_{*}\right)
$$

Proposition Even if we work over a field, the Künneth map is in general not an isomorphism.

For an \mathcal{I}-chain complex X_{*} we can consider the graded \mathcal{I}-chain module $H_{*} X_{*}$ with

$$
\left(H_{*} X_{*}\right)(\mathrm{n}):=H_{*}\left(X_{*}(\mathrm{n})\right) .
$$

This can be considered as an \mathcal{I}-chain complex with trivial differential.
For two $X_{*}, Y_{*} \in \mathrm{Ch}^{\mathcal{I}}$ there is a Künneth map

$$
H_{*} X_{*} \boxtimes H_{*} Y_{*} \rightarrow H_{*}\left(X_{*} \boxtimes Y_{*}\right)
$$

Proposition Even if we work over a field, the Künneth map is in general not an isomorphism.
There is a concrete counterexample.

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}.

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}. For $C_{*}=D^{1}$ we consider $H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$.

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}. For $C_{*}=D^{1}$ we consider $H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$. This is trivial, because $H_{*} D^{1}=0$.

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}.
For $C_{*}=D^{1}$ we consider $H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$.
This is trivial, because $H_{*} D^{1}=0$.
On the other hand, the colimit for $\operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$ is the pushout

Consider a chain complex C_{*} over a field with a chosen zero cycle c_{0} and let $\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right) \in \mathrm{Ch}^{\mathcal{I}}$ be defined as

$$
\operatorname{Sym}^{\mathcal{I}}\left(C_{*}\right)(\mathrm{n}):=C_{*}^{\otimes n} .
$$

The maps in \mathcal{I} induce permutation of tensor factors and the inclusions coming from $S^{0} \rightarrow C_{*}$ representing c_{0}.
For $C_{*}=D^{1}$ we consider $H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes H_{*} \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$.
This is trivial, because $H_{*} D^{1}=0$.
On the other hand, the colimit for $\operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right) \boxtimes \operatorname{Sym}^{\mathcal{I}}\left(D^{1}\right)(1)$ is the pushout

This results in $D^{1} \oplus_{S^{0}} D^{1}$ which has nontrivial H_{1}.

A nice feature

A nice feature

Theorem The homotopy colimit hocolim $\mathcal{I}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ is an E_{∞}-comonoidal functor.

A nice feature

Theorem The homotopy colimit hocolim $\mathcal{I}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ is an E_{∞}-comonoidal functor.

What does that mean?

A nice feature

Theorem The homotopy colimit hocolim $\mathcal{I}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ is an E_{∞}-comonoidal functor.

What does that mean?
If C_{*} is a cocommutative comonoid in $\mathrm{Ch}^{\mathcal{I}}$, then hocolim $\mathcal{I} C_{*}$ is not cocommutative on the nose, but up to homotopy and all higher homotopies.

A nice feature

Theorem The homotopy colimit hocolim $\mathcal{I}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ is an E_{∞}-comonoidal functor.

What does that mean?
If C_{*} is a cocommutative comonoid in $\mathrm{Ch}^{\mathcal{I}}$, then hocolim $\mathcal{I} C_{*}$ is not cocommutative on the nose, but up to homotopy and all higher homotopies. Idea of proof: hocolim $/=$ Tot $\circ C_{*} \circ$ srep.

A nice feature

Theorem The homotopy colimit hocolim $\mathcal{I}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ is an E_{∞}-comonoidal functor.

What does that mean?
If C_{*} is a cocommutative comonoid in $\mathrm{Ch}^{\mathcal{I}}$, then hocolim $\mathcal{I} C_{*}$ is not cocommutative on the nose, but up to homotopy and all higher homotopies.
Idea of proof: hocolim $/=$ Tot $\circ C_{*} \circ$ srep.
Tot is strong symmetric (co-)monoidal,

A nice feature

Theorem The homotopy colimit hocolim $\mathcal{I}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ is an E_{∞}-comonoidal functor.

What does that mean?
If C_{*} is a cocommutative comonoid in $\mathrm{Ch}^{\mathcal{I}}$, then hocolim $\mathcal{I}_{\mathcal{I}}$ is not cocommutative on the nose, but up to homotopy and all higher homotopies. Idea of proof: hocolim $/=$ Tot $\circ C_{*}$ o srep.
Tot is strong symmetric (co-)monoidal,
C_{*} is E_{∞}-comonoidal [$\mathrm{R}, 2006$], and

A nice feature

Theorem The homotopy colimit hocolim $\mathcal{I}: \mathrm{Ch}^{\mathcal{I}} \rightarrow \mathrm{Ch}$ is an E_{∞}-comonoidal functor.

What does that mean?
If C_{*} is a cocommutative comonoid in $\mathrm{Ch}^{\mathcal{I}}$, then hocolim $\mathcal{I}_{\mathcal{I}} C_{*}$ is not cocommutative on the nose, but up to homotopy and all higher homotopies. Idea of proof: hocolim $/=$ Tot $\circ C_{*} \circ$ srep.
Tot is strong symmetric (co-)monoidal,
C_{*} is E_{∞}-comonoidal [$R, 2006$], and
srep is lax symmetric comonoidal.

Open problems:

Open problems:

Is there a model for the E_{∞}-coalgebra of chains on a space, $S_{*}(X)$ as a cocommutative \mathcal{I}-chain coalgebra?

Open problems:

Is there a model for the E_{∞}-coalgebra of chains on a space, $S_{*}(X)$
as a cocommutative \mathcal{I}-chain coalgebra?
Is there a model category structure for cocommutative \mathcal{I}-chain algebras?

Open problems:

Is there a model for the E_{∞}-coalgebra of chains on a space, $S_{*}(X)$
as a cocommutative \mathcal{I}-chain coalgebra?
Is there a model category structure for cocommutative \mathcal{I}-chain algebras?

Thank you!

