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Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976),
Neisendorfer (1978):

Algebraic models for simply-connected rational spaces of finite type
(later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,...
(simply-connected case)

Sullivan: App (X); a strictly dg commutative model for the
cochains of a space X.

But these concern the rational homotopy type:

A simply connected CW complex X is a rational space if and only
if its homology groups H;(X,Z) are rational vector spaces for all
i>0.

There is a rationalization of spaces: X — Xg.

So the above models help to decide whether Xg ~ Yg.

What can we expect, if we want to control the actual (weak)
homotopy type?
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You all know, that we can sometimes distinguish spaces with the
help of the cup-product structure:

Additively, H*(S? v §*%) is isomorphic to H*(CP?), but the
cup-products are different.

However: ¥ (52 V $%) # £(CP?), but here the cup-products are
trivial for both spaces.

In this case, Sq?, the second Steenrod square, distinguishes the
two spaces.

Sq?: H*(X; ) — H*2(X; Fy).

Does that suffice? No!

Other spaces might need secondary operations or worse.

Do all Steenrod operations and their higher structure suffice?

Jim McClure, Jeff Smith: Multivariable cochain operations and
little n-cubes. J. Amer. Math. Soc. 16 (2003).

They construct an E,.-operad out of such cochain operations and
their generalizations. This operad acts on cochains of a space.
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Mandell (2006): Finite type nilpotent spaces are weakly equivalent
iff their singular cochains are quasi-isomorphic as E..-algebras.
Thus, if you don't want to restrict to rational homotopy theory,
then you need the full information of the E..-structure on the
cochains!

E. stands for homotopy everything: homotopy commutative and
two such homotopies itself are homotopic and so on.

Formally: We have chain complexes E(n) that are contractible and
free as X ,-chain complexes, together with actions

E(n) ®x, S*(X)®" — S*(X),

satisfying a long list of coherence conditions...
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A strictly commutative model

Can we replace the E,-algebra of cochains S*(X; k) by a strictly
commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra!
But: Yes, if one works in a different category.

Let Z be the (skeleton) of the category of finite sets and injective
functions.

Theorem [R-Shipley 2017]

There is a zigzag of Quillen equivalences between the category of
differential graded E..-algebras and the category of commutative
7Z-chain-algebras.
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Note: Functors from Z to the category of modules feature
prominently in the work by Church-Ellenberg-Farb on
representation stability. Functors from Z to spaces have been used
before in topology (Bokstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:
There is a commutative Z-chain algebra, AZ(X; k), such that
» The functors X — hocolimzAZ(X; k) and X — S*(X; k) from
simplicial sets to E..-algebras are naturally quasi-isomorphic.

> Two nilpotent spaces X, Y of finite type are weakly equivalent
iff AZ(X;Z) and AL(Y;Z) are weakly equivalent as
commutative Z-chain algebras.
What about the other models? So what about differential graded
cocommutative coalgebras and Lie-algebras?
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» some problems, and

» a nice feature.
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Basics on Z-chain complexes

Let 7 be the category of finite sets and injections whose objects

are the sets {1,...,n} =:n for n > 0 with 0 = @.
The morphism set Z(n, m) consists of all injective functions from n
to m.

The category Z is symmetric monoidal under concatenation of
sets: nUm :=n -+ m. The initial object O is the unit of this
symmetric monoidal structure.

We call functors from 7 to the category of chain complexes Z-chain
complexes and denote the corresponding functor category by Ch”.
The Day convolution product gives Ch? a symmetric monoidal
structure. Explicitly, for two Z-chain complexes X, Y

(X* X Y*)(n) = COlimI(puq,n)X*(p) ® Y*(q)

The unit is 1 with I(n) := S° for any n > 0.

Definition: Commutative Z-chain algebras are commutative
monoids in Ch”.
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Free things

For every n > 0 there is an evaluation functor Ev,,: ChT — Ch
sending an X, to the chain complex X, (n).
These functors have left adjoints

FZ.Ch— Ch*

with
FH(CI)m)= @ C.=k{Z(n,m)} & C..
Z(n,m)

As 0 is initial, FZ(C,) is the constant Z-chain complex on C, and
FF(S%) =1.
For any Z-chain complex Xj, the free commutative Z-chain algebra
on Xy is

SH(X.) = P XE" /5.

n>0
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The homotopy colimit

Rough idea: a homotopy invariant version of a colimit.

The homotopy colimit, hocolimzX,, of an Z-chain complex X, is
the total complex associated to the bicomplex whose bidegree
(p; q)-part is

@ Xp(source(f1))

[fal--|AlENGT
[Joachimi, Rodriguez-Gonzéles,Dugger]

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X, is a
commutative Z-chain algebra, then hocolimz X, is an algebra over
the Barratt-Eccles E.-operad.

If C, is a cocommutative comonoid in ChZ, what can we say about
hocolimz C,.?
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Some problems

The co-free cocommutative coalgebra on a chain complex C,,
rationally, is described via X-invariants:

si(c.) = @peen®.

n>0

Then one uses that rationally the norm map
N,: CE" /¥, — (CEM)En
is an equivalence in order to determine the homotopy type.

In the category of symmetric sequences of chain complexes, Ch*,
the norm map is an iso on reduced objects [Stover, Fresse].
Theorem There are reduced X, € Ch” (i.e., X.(0) = 0) such that

No: X2 /50 — (X27)

is not an isomorphism.
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A counterexample

Consider the projection 7: Ff (k) — 1°(k) where 19(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of 7 is a reduced version of F¥(k), say F. All structure
maps in positive degrees induce the identity on F.

If we consider (F X F)(3) then this is the colimit over the category
TUTZ — 3 of F(p) ® F(q).

The class of the identity map viewed as a map 2111 — 3 gives a
representative id ® 1 ® 1 in this tensor product.

There is a zigzag of equivalences coming from the relations for
forming the colimit for X that says that id ® 1 ® 1 represents the
same element as (id ® 1 ® 1).(1, 2).

So this element is invariant under the ¥ »-action, but it is not in
the image of the norm map, unless 2 is invertible in k.
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For any chain complex C,, for every m and for every p > 1 the
norm N, = > 5y 0 € Z[X,] induces an isomorphism of chain
complexes

Na: (Fp (C)H7/Za)(m) = ((F7 (C)") = (m).

This follows from the fact that (FZ(C,))®" = FZ (C®") and that
the ¥ ,-action is free on Z(pn, m) as long as p > 1.

Note that this implies that the free commutative monoid on
Fg(C*) is isomorphic to the free divided power algebra and the
cofree cocommutative coalgebra generated on FPI(C*).
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This can be considered as an Z-chain complex with trivial
differential.
For two X, Y, € ChZ there is a Kiinneth map

H. X X H, Y. — Ho (X X Ys).

Proposition Even if we work over a field, the Kiinneth map is in
general not an isomorphism.
There is a concrete counterexample.
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Consider a chain complex C, over a field with a chosen zero cycle
co and let SymZ(C,) € Ch” be defined as

SymZ(C,)(n) := C&".

The maps in Z induce permutation of tensor factors and the
inclusions coming from S® — C, representing cp.

For C, = D' we consider H,Sym”(D') X H,SymZ(D)(1).
This is trivial, because H,D* = 0.

On the other hand, the colimit for Sym?(D') X Sym%(D')(1) is

the pushout

9% SO SO% Dt

|

D! @ SO

This results in D @go D! which has nontrivial Hj.
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Theorem The homotopy colimit hocolimz: Ch? — Ch is an
E_.-comonoidal functor.

What does that mean?

If C, is a cocommutative comonoid in Ch%, then hocolimzC, is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.
Idea of proof: hocolim; = Tot o C. o srep.
Tot is strong symmetric (co-)monoidal,

is Es-comonoidal [R, 2006], and
srep is lax symmetric comonoidal.

O
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Is there a model category structure for cocommutative Z-chain
algebras?

Thank you!



