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Classical setting: Rational homotopy theory

Quillen (1969), Sullivan (1977), Bousfield-Gugenheim (1976),
Neisendorfer (1978):
Algebraic models for simply-connected rational spaces of finite type
(later nilpotent spaces).

Quillen: cocommutative dg coalgebras, Lie algebras,...
(simply-connected case)
Sullivan: A∗PL(X ); a strictly dg commutative model for the
cochains of a space X .
But these concern the rational homotopy type:
A simply connected CW complex X is a rational space if and only
if its homology groups Hi (X ,Z) are rational vector spaces for all
i > 0.
There is a rationalization of spaces: X 7→ XQ.

So the above models help to decide whether XQ ∼ YQ.
What can we expect, if we want to control the actual (weak)
homotopy type?
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You all know, that we can sometimes distinguish spaces with the
help of the cup-product structure:

Additively, H∗(S2 ∨ S4) is isomorphic to H∗(CP2), but the
cup-products are different.
However: Σ(S2 ∨ S4) 6∼ Σ(CP2), but here the cup-products are
trivial for both spaces.
In this case, Sq2, the second Steenrod square, distinguishes the
two spaces.

Sq2 : H∗(X ;F2)→ H∗+2(X ;F2).

Does that suffice? No!
Other spaces might need secondary operations or worse.
Do all Steenrod operations and their higher structure suffice?
Jim McClure, Jeff Smith: Multivariable cochain operations and
little n-cubes. J. Amer. Math. Soc. 16 (2003).
They construct an E∞-operad out of such cochain operations and
their generalizations. This operad acts on cochains of a space.
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Mandell (2006): Finite type nilpotent spaces are weakly equivalent
iff their singular cochains are quasi-isomorphic as E∞-algebras.

Thus, if you don’t want to restrict to rational homotopy theory,
then you need the full information of the E∞-structure on the
cochains!
E∞ stands for homotopy everything: homotopy commutative and
two such homotopies itself are homotopic and so on.
Formally: We have chain complexes E (n) that are contractible and
free as Σn-chain complexes, together with actions

E (n)⊗Σn S
∗(X )⊗n → S∗(X ),

satisfying a long list of coherence conditions...
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A strictly commutative model

Can we replace the E∞-algebra of cochains S∗(X ; k) by a strictly
commutative model, if k is any commutative ring?

Certainly not as a differential graded commutative algebra!
But: Yes, if one works in a different category.

Let I be the (skeleton) of the category of finite sets and injective
functions.
Theorem [R-Shipley 2017]
There is a zigzag of Quillen equivalences between the category of
differential graded E∞-algebras and the category of commutative
I-chain-algebras.
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Note: Functors from I to the category of modules feature
prominently in the work by Church-Ellenberg-Farb on
representation stability.

Functors from I to spaces have been used
before in topology (Bökstedt, Sagave, Schlichtkrull,...).

Theorem [R-Sagave, 2020]:
There is a commutative I-chain algebra, AI(X ; k), such that

I The functors X 7→ hocolimIA
I(X ; k) and X 7→ S∗(X ; k) from

simplicial sets to E∞-algebras are naturally quasi-isomorphic.

I Two nilpotent spaces X ,Y of finite type are weakly equivalent
iff AI(X ;Z) and AI(Y ;Z) are weakly equivalent as
commutative I-chain algebras.

What about the other models? So what about differential graded
cocommutative coalgebras and Lie-algebras?
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I the homotopy colimit,

I some problems, and

I a nice feature.



Let’s see

I some basics on I-chain complexes,

I the homotopy colimit,

I some problems, and

I a nice feature.



Let’s see

I some basics on I-chain complexes,

I the homotopy colimit,

I some problems, and

I a nice feature.



Let’s see

I some basics on I-chain complexes,

I the homotopy colimit,

I some problems, and

I a nice feature.



Let’s see

I some basics on I-chain complexes,

I the homotopy colimit,

I some problems, and

I a nice feature.



Basics on I-chain complexes

Let I be the category of finite sets and injections whose objects
are the sets {1, . . . , n} =: n for n ≥ 0 with 0 = ∅.

The morphism set I(n,m) consists of all injective functions from n
to m.
The category I is symmetric monoidal under concatenation of
sets: n tm := n + m. The initial object 0 is the unit of this
symmetric monoidal structure.
We call functors from I to the category of chain complexes I-chain
complexes and denote the corresponding functor category by ChI .
The Day convolution product gives ChI a symmetric monoidal
structure. Explicitly, for two I-chain complexes X∗,Y∗

(X∗ � Y∗)(n) = colimI(ptq,n)X∗(p)⊗ Y∗(q).

The unit is 11 with 11(n) := S0 for any n ≥ 0.

Definition: Commutative I-chain algebras are commutative
monoids in ChI .
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Free things

For every n ≥ 0 there is an evaluation functor Evn : ChI → Ch
sending an X∗ to the chain complex X∗(n).

These functors have left adjoints

F In : Ch→ ChI

with
F In (C∗)(m) =

⊕
I(n,m)

C∗ ∼= k{I(n,m)} ⊗k C∗.

As 0 is initial, F I0 (C∗) is the constant I-chain complex on C∗ and
F I0 (S0) = 11.

For any I-chain complex X∗, the free commutative I-chain algebra
on X∗ is

SI(X∗) =
⊕
n≥0

X�n∗ /Σn.
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The homotopy colimit

Rough idea: a homotopy invariant version of a colimit.
The homotopy colimit, hocolimIX∗, of an I-chain complex X∗ is
the total complex associated to the bicomplex whose bidegree
(p, q)-part is ⊕

[fq |...|f1]∈NqI

Xp(source(f1))

[Joachimi, Rodŕıguez-Gonzáles,Dugger]

Theorem [R-Sagave 2020; idea of Schlichtkrull]: If X∗ is a
commutative I-chain algebra, then hocolimIX∗ is an algebra over
the Barratt-Eccles E∞-operad.

If C∗ is a cocommutative comonoid in ChI , what can we say about
hocolimIC∗?
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Some problems

The co-free cocommutative coalgebra on a chain complex C∗,
rationally, is described via Σ-invariants:

S ′∗(C∗) =
⊕
n≥0

(C⊗n∗ )Σn .

Then one uses that rationally the norm map

Nn : C⊗n∗ /Σn → (C⊗n∗ )Σn

is an equivalence in order to determine the homotopy type.

In the category of symmetric sequences of chain complexes, ChΣ,
the norm map is an iso on reduced objects [Stover, Fresse].
Theorem There are reduced X∗ ∈ ChI (i.e., X∗(0) = 0) such that

Nn : X�n∗ /Σn → (X�n∗ )Σn

is not an isomorphism.
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A counterexample

Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of π is a reduced version of F I0 (k), say F̄ . All structure
maps in positive degrees induce the identity on F̄ .
If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).
The class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.
There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).
So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .



A counterexample
Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.

The kernel of π is a reduced version of F I0 (k), say F̄ . All structure
maps in positive degrees induce the identity on F̄ .
If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).
The class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.
There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).
So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .



A counterexample
Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of π is a reduced version of F I0 (k), say F̄ .

All structure
maps in positive degrees induce the identity on F̄ .
If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).
The class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.
There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).
So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .



A counterexample
Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of π is a reduced version of F I0 (k), say F̄ . All structure
maps in positive degrees induce the identity on F̄ .

If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).
The class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.
There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).
So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .



A counterexample
Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of π is a reduced version of F I0 (k), say F̄ . All structure
maps in positive degrees induce the identity on F̄ .
If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).

The class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.
There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).
So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .



A counterexample
Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of π is a reduced version of F I0 (k), say F̄ . All structure
maps in positive degrees induce the identity on F̄ .
If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).
The class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.

There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).
So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .



A counterexample
Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of π is a reduced version of F I0 (k), say F̄ . All structure
maps in positive degrees induce the identity on F̄ .
If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).
The class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.
There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).

So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .



A counterexample
Consider the projection π : F I0 (k)→ I 0(k) where I 0(k)(n) is
non-trivial for n = 0 with value k and trivial in all other levels.
The kernel of π is a reduced version of F I0 (k), say F̄ . All structure
maps in positive degrees induce the identity on F̄ .
If we consider (F̄ � F̄ )(3) then this is the colimit over the category
I t I → 3 of F̄ (p)⊗ F̄ (q).
The class of the identity map viewed as a map 2 t 1→ 3 gives a
representative id⊗ 1⊗ 1 in this tensor product.
There is a zigzag of equivalences coming from the relations for
forming the colimit for � that says that id⊗ 1⊗ 1 represents the
same element as (id⊗ 1⊗ 1).(1, 2).
So this element is invariant under the Σ2-action, but it is not in
the image of the norm map, unless 2 is invertible in k .



For any chain complex C∗, for every m and for every p ≥ 1 the
norm Nn =

∑
σ∈Σn

σ ∈ Z[Σn] induces an isomorphism of chain
complexes

Nn : (F Ip (C∗)
�n/Σn)(m)→ ((F Ip (C∗)

�n)Σn(m).

This follows from the fact that (F Ip (C∗))�n ∼= F Ipn(C⊗n∗ ) and that
the Σn-action is free on I(pn,m) as long as p ≥ 1.
Note that this implies that the free commutative monoid on
F Ip (C∗) is isomorphic to the free divided power algebra and the

cofree cocommutative coalgebra generated on F Ip (C∗).
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For an I-chain complex X∗ we can consider the graded I-chain
module H∗X∗ with

(H∗X∗)(n) := H∗(X∗(n)).

This can be considered as an I-chain complex with trivial
differential.
For two X∗,Y∗ ∈ ChI there is a Künneth map

H∗X∗ � H∗Y∗ → H∗(X∗ � Y∗).

Proposition Even if we work over a field, the Künneth map is in
general not an isomorphism.
There is a concrete counterexample.
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H∗X∗ � H∗Y∗ → H∗(X∗ � Y∗).

Proposition Even if we work over a field, the Künneth map is in
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H∗X∗ � H∗Y∗ → H∗(X∗ � Y∗).

Proposition Even if we work over a field, the Künneth map is in
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Consider a chain complex C∗ over a field with a chosen zero cycle
c0 and let SymI(C∗) ∈ ChI be defined as

SymI(C∗)(n) := C⊗n∗ .

The maps in I induce permutation of tensor factors and the
inclusions coming from S0 → C∗ representing c0.
For C∗ = D1 we consider H∗SymI(D1)� H∗SymI(D1)(1).
This is trivial, because H∗D

1 = 0.

On the other hand, the colimit for SymI(D1)� SymI(D1)(1) is
the pushout

S0 ⊗ S0 //

��

S0 ⊗ D1

D1 ⊗ S0

This results in D1 ⊕S0 D1 which has nontrivial H1.
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A nice feature

Theorem The homotopy colimit hocolimI : ChI → Ch is an
E∞-comonoidal functor.

What does that mean?

If C∗ is a cocommutative comonoid in ChI , then hocolimIC∗ is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.
Idea of proof: hocolimI = Tot ◦ C∗ ◦ srep.
Tot is strong symmetric (co-)monoidal,
C∗ is E∞-comonoidal [R, 2006], and
srep is lax symmetric comonoidal.



A nice feature

Theorem The homotopy colimit hocolimI : ChI → Ch is an
E∞-comonoidal functor.

What does that mean?

If C∗ is a cocommutative comonoid in ChI , then hocolimIC∗ is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.
Idea of proof: hocolimI = Tot ◦ C∗ ◦ srep.
Tot is strong symmetric (co-)monoidal,
C∗ is E∞-comonoidal [R, 2006], and
srep is lax symmetric comonoidal.



A nice feature

Theorem The homotopy colimit hocolimI : ChI → Ch is an
E∞-comonoidal functor.

What does that mean?

If C∗ is a cocommutative comonoid in ChI , then hocolimIC∗ is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.
Idea of proof: hocolimI = Tot ◦ C∗ ◦ srep.
Tot is strong symmetric (co-)monoidal,
C∗ is E∞-comonoidal [R, 2006], and
srep is lax symmetric comonoidal.



A nice feature

Theorem The homotopy colimit hocolimI : ChI → Ch is an
E∞-comonoidal functor.

What does that mean?

If C∗ is a cocommutative comonoid in ChI , then hocolimIC∗ is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.

Idea of proof: hocolimI = Tot ◦ C∗ ◦ srep.
Tot is strong symmetric (co-)monoidal,
C∗ is E∞-comonoidal [R, 2006], and
srep is lax symmetric comonoidal.



A nice feature

Theorem The homotopy colimit hocolimI : ChI → Ch is an
E∞-comonoidal functor.

What does that mean?

If C∗ is a cocommutative comonoid in ChI , then hocolimIC∗ is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.
Idea of proof: hocolimI = Tot ◦ C∗ ◦ srep.

Tot is strong symmetric (co-)monoidal,
C∗ is E∞-comonoidal [R, 2006], and
srep is lax symmetric comonoidal.



A nice feature

Theorem The homotopy colimit hocolimI : ChI → Ch is an
E∞-comonoidal functor.

What does that mean?

If C∗ is a cocommutative comonoid in ChI , then hocolimIC∗ is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.
Idea of proof: hocolimI = Tot ◦ C∗ ◦ srep.
Tot is strong symmetric (co-)monoidal,

C∗ is E∞-comonoidal [R, 2006], and
srep is lax symmetric comonoidal.



A nice feature

Theorem The homotopy colimit hocolimI : ChI → Ch is an
E∞-comonoidal functor.

What does that mean?

If C∗ is a cocommutative comonoid in ChI , then hocolimIC∗ is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.
Idea of proof: hocolimI = Tot ◦ C∗ ◦ srep.
Tot is strong symmetric (co-)monoidal,
C∗ is E∞-comonoidal [R, 2006], and

srep is lax symmetric comonoidal.



A nice feature

Theorem The homotopy colimit hocolimI : ChI → Ch is an
E∞-comonoidal functor.

What does that mean?

If C∗ is a cocommutative comonoid in ChI , then hocolimIC∗ is not
cocommutative on the nose, but up to homotopy and all higher
homotopies.
Idea of proof: hocolimI = Tot ◦ C∗ ◦ srep.
Tot is strong symmetric (co-)monoidal,
C∗ is E∞-comonoidal [R, 2006], and
srep is lax symmetric comonoidal.



Open problems:

Is there a model for the E∞-coalgebra of chains on a space, S∗(X )
as a cocommutative I-chain coalgebra?
Is there a model category structure for cocommutative I-chain
algebras?

Thank you!
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