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This equivalence is X ,-equivariant.
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Some history

If X =Q"Y and n > 2, then the homology of X carries a very rich
structure.

Araki-Kudo (1956): Pontrjagin rings H*(QNS’";IFQ), 0< N < m,
definition of H,-spaces, and some homology operations

Qi: Hy(X;F2) — Hagyi(X;F2)

for X an H,-space and 0 </ < n.

Browder (1960): Description of H,(Q"X"Z;F>) as an algebra in
terms of H,(Z;F,). Construction of a new operation (Browder
operation).
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Some history — continued

Dyer-Lashof (1962): Extension of (some of) the Q;'s to odd
primes. Partial results about H,(Q"¥L"Z;F)).

Milgram (1966): H.(Q2"X"Z;F,) as an algebra, depending only on
the homology of Z and n.

Cohen (1976): Complete description of the homology operations on
iterated loop spaces, and of H,(Q"¥L"Z; k) for k = Q and k = Fp,.
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Let k be a field (for simplicity).

Clear: Q"Y is an H-space, so H.(Q"Y; k) is a k-algebra (a Hopf
algebra).

We also get operations

Ho(Calr): k) @ps,) He(Q"Y3 K)®7 — HA(QY'; k)

via the Kiinneth map.

So the homology of the spaces C,(r) parametrizes operations on
the homology of every n-fold loop space.

H.(Cp, k) is an operad in k-vector spaces, the operad that codifies
(n — 1)-Gerstenhaber algebras.

But in general there is more, unless we have kK = Q...
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Definition An n-Gerstenhaber algebra over Q is a (non-negatively)
graded Q-vector space G, with

1. amap [, —]: G, ® G, — G, that raises degree by n,
2. a graded commutative multiplication of degree zero on G;,
such that [—, —] satisfies a graded version of the Jacobi relation

and graded antisymmetry (i.e., [x,y] = —(—=1)9[y, x] for x € Gg_p
and y € G,_,). In addition there is a Poisson relation

[x,yz] = [x,y]z + (—1)q(r_”)y[x, z].

Cohen showed that the rational homology of any space
X = Q1Y is an n-Gerstenhaber algebra and that

H.(Cr+1Z;Q) = nG(H.(Z; Q))

for any space Z.
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An example over [,

A Browder operation and a restriction:
Note that (»(2) ~ S! as a ¥»-space and consider

Y, —» St St =RPL

We get two operations: The fundamental class of S corresponds
to a Lie bracket of degree one, A, on H*(Q2X;IF2) and the class of
RP! ~ S! gives rise to an operation

€2 Hm(%X; Fa) — Homi1(PX;F2).

For this note, that x ® x is invariant under the Y »-action, thus we
have

x = k([RP] @ (x @ x)).

Think of this as being "half the circle’ giving rise to "half the Lie
bracket [x, x]’, aka the restriction on x.
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Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a C,y31-space. Then there
are operations

Q°: Hy(X;F2) — Hgis(X;F2),s > 0.

These are natural wrt maps of C,1-spaces.

Q°(x) =0if s < |x|,

QM(x) = X2,

Q°(1) =0 for s > 0 (here, 1 € Ho(X;F2)),

There are Cartan formulas and Adem relations. For instance

Q)= Y QAQ().

i+j=s

There are also relations between the Q'’s and the action of the
duals of the S¢/'s (Nishida relations).
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Construction of the Q''s

The Q''s are constructed as restrictions of Dyer-Lashof operations
for infinite loop spaces.

There: The normalized singular chains on C(2), Ci(Coo(2);F2),
are a X o-free resolution of FF».

Take the standard resolution of X, = Z/27, W, and compose

0. Wi ® Cu(X;F2)®? — Cu(Coo(2); F2) ® Cu(X; Fp)®2

s C(Coo(2) X X% T2) — Cu(X;TFa).

Qi(x) = 0.(ej ® x ® x) (e € W) is the induced map on homology
and Q°(x) := Qs_|x|(x) if s — |x| > 0 (0 otherwise).
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At odd primes

For any odd prime p we have
Q%1 Hg(X: Fp) — Hgyos(p—1)(X: Fp)

Take W, to be the standard resolution of the group algebra for
Z/pZ over Fp,. Then the construction is similar to the one for the
Q' at 2.

We get additional relations wrt the mod-p Bockstein.
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Homology of Q"1y "1z

Cohen: Complete descriptions of H,(Cnt1Z;Fp) and
H.(Q"1E*+1Z:F,) as free objects built out of the reduced
homology of Z.

The free constructions involve

> A restricted n-Gerstenhaber structure,
» allowable modules and algebras over the Dyer-Lashof algebra,
» a compatible coalgebra structure.

We get a Hopf algebra with a compatible Dyer-Lashof action and a
restricted n-Lie algebra structure.
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On chain level

In the next talk we will consider the homology of E,-algebra, where
E, is a cofibrant model of the normalized singular chains on the
operad C,.

The homology of these algebras inherits the rich structure from
topology.

We will focus on the cases

k = Q and arbitrary n and kK = F; and Es.

Lemma

a) Over the rationals we have for every non-negatively graded
chain complex C,

H.(Ent1(C)) = nG(H.C)

b) Over F»:
H.(Ex(C)) = 1rG(H..C,).
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