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Motivation

Why do we want functor homology interpretations?

Combinatorial features of the parametrizing category can be used
in order to get extra structure, additional spectral sequences and
more, e.g. as in the case of the Hodge decomposition of
Hochschild homology.
Tor- and Ext-functors have universal properties, and this helps to
obtain uniqueness results.
In order to get functor homology interpretations we have to
understand what something really is...
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Some small categories

Let C be a small category, i.e., C has a set of objects.

In our context, some important examples are:

1. Fin, the small category of finite sets with objects
[n] = {0, 1, . . . , n}, n ≥ 0. Morphisms are arbitrary functions
of finite sets.

2. Γ, the small category of finite pointed sets. Objects are again
the sets [n] = {0, 1, . . . , n}, n ≥ 0 but 0 is interpreted as a
basepoint of [n] and morphisms have to send 0 to 0.

3. ∆, the small category of finite ordered sets with objects
[n] = {0, 1, . . . , n}, n ≥ 0 considered as an ordered set with
the standard ordering 0 < 1 < . . . < n. Morphisms are order
preserving, i.e., for f ∈ ∆([n], [m]) and i < j in [n] we require
f (i) ≤ f (j).
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Left and right modules

Let C be a small category and let R be a commutative ring with
unit.

Definition

1. A left C-module is a functor F : C → R-mod.

2. A right C-module is a functor F : Cop → R-mod.

We write C-mod and mod-C for the corresponding categories of
functors (with natural transformations as morphisms).
Examples:
A simplicial R-module is a right ∆-module.
A covariant functor F : Γ → R-mod is a Γ-module.
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Algebraic properties I

As the category of R-modules is abelian, so are C-mod and mod-C
for every small C.

Representable objects play an important role:
Consider a fixed object C in C, then

R{C(C ,−)} : C → R-mod

and
R{C(−,C )} : Cop → R-mod

are left- and right C-modules.
The Yoneda-Lemma implies that

HomC-mod(R{C(C ,−)},F ) ∼= F (C )

for all F ∈ C-mod and Hommod-C(R{C(−,C )},G ) ∼= G (C ) for all
G in mod-C.
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Algebraic properties II

The representables are projective generators of C-mod and mod-C.

Examples
R{Γ([0],−)} is the constant functor.
R{Γ(−, [0])} is constant, too.
R{Γ([n], [1])} is the free R-module generated by subsets
S ⊂ {1, . . . , n}.
Let t : Γop → R-mod be the functor with t[n] = HomSets∗([n],R).
Then t can be written as the cokernel

R{Γ(−, [2])} → R{Γ(−, [1])} → t → 0

where the map from R{Γ(−, [2])} to R{Γ(−, [1])} is induced by
f − p1 − p2 with f : [2] → [1] being the fold map, sending 1, 2 to 1
and pi (i) = 1 and pi (j) = 0 otherwise.
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Tensor products

We can build a tensor product of a left C-module with a right
C-module, analogous to the tensor product of modules over a
non-commutative ring.

Definition For any left C-module F and any right C-module G we
define

G ⊗C F :=
⊕
C∈C

G (C )⊗R F (C )/ ∼

where we have x ⊗ F (f )(y) ∼ G (f )(x)⊗ y for all f : C → C ′,
x ∈ G (C ′), y ∈ F (C ).
Proposition The natural evaluation map induces isomorphisms

R{C(−,C )} ⊗C F ∼= F (C ), G ⊗C R{C(C ,−)} ∼= G (C ).
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Tor- and Ext-functors

(−)⊗C (−) is right exact in both variables.

Definition For G ∈ mod-C and F ∈ C-mod we define

TorCi (G ,F ) := Hi (P∗ ⊗C F )

where . . . → P1 → P0 is a projective resolution of G in mod-C.
Dually for two right C-modules G and H, ExtiC(G ,H) is defined as

ExtiC(G ,H) = H iHommod−C(P∗,H).

We could equally well resolve F or H. In particular TorCi (G ,F )
vanishes for projective F and i > 0 and ExtiC(G ,H) = 0 for
injective H and i > 0.
More is true:



Tor- and Ext-functors

(−)⊗C (−) is right exact in both variables.
Definition For G ∈ mod-C and F ∈ C-mod we define

TorCi (G ,F ) := Hi (P∗ ⊗C F )

where . . . → P1 → P0 is a projective resolution of G in mod-C.

Dually for two right C-modules G and H, ExtiC(G ,H) is defined as

ExtiC(G ,H) = H iHommod−C(P∗,H).

We could equally well resolve F or H. In particular TorCi (G ,F )
vanishes for projective F and i > 0 and ExtiC(G ,H) = 0 for
injective H and i > 0.
More is true:



Tor- and Ext-functors

(−)⊗C (−) is right exact in both variables.
Definition For G ∈ mod-C and F ∈ C-mod we define

TorCi (G ,F ) := Hi (P∗ ⊗C F )

where . . . → P1 → P0 is a projective resolution of G in mod-C.
Dually for two right C-modules G and H, ExtiC(G ,H) is defined as

ExtiC(G ,H) = H iHommod−C(P∗,H).

We could equally well resolve F or H. In particular TorCi (G ,F )
vanishes for projective F and i > 0 and ExtiC(G ,H) = 0 for
injective H and i > 0.
More is true:



Tor- and Ext-functors

(−)⊗C (−) is right exact in both variables.
Definition For G ∈ mod-C and F ∈ C-mod we define

TorCi (G ,F ) := Hi (P∗ ⊗C F )

where . . . → P1 → P0 is a projective resolution of G in mod-C.
Dually for two right C-modules G and H, ExtiC(G ,H) is defined as

ExtiC(G ,H) = H iHommod−C(P∗,H).

We could equally well resolve F or H. In particular TorCi (G ,F )
vanishes for projective F and i > 0 and ExtiC(G ,H) = 0 for
injective H and i > 0.

More is true:



Tor- and Ext-functors

(−)⊗C (−) is right exact in both variables.
Definition For G ∈ mod-C and F ∈ C-mod we define

TorCi (G ,F ) := Hi (P∗ ⊗C F )

where . . . → P1 → P0 is a projective resolution of G in mod-C.
Dually for two right C-modules G and H, ExtiC(G ,H) is defined as

ExtiC(G ,H) = H iHommod−C(P∗,H).

We could equally well resolve F or H. In particular TorCi (G ,F )
vanishes for projective F and i > 0 and ExtiC(G ,H) = 0 for
injective H and i > 0.
More is true:



Universal property

If H∗ is a functor from C-mod to the category of graded R-modules
such that

I H0(F ) is canonically isomorphic to G ⊗C F for all F ∈ C-mod,

I H∗(−) maps short exact sequences of C-modules to long exact
sequences and

I Hi (F ) = 0 for all projective F and i > 0,

then Hi (F ) ∼= TorCi (G ,F ) for all F .
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Hochschild homology

Assume that A is an associative and unital R-algebra whose
underlying module is projective and let M be an A-bimodule.

Then the ith Hochschild homology group of A with coefficients in
M, HHi (A;M) is defined as

Hi ( . . . b // M ⊗ A⊗2 b // M ⊗ A
b // M ).

Here, b =
∑n

i=0(−1)idi where
di (a0 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ aiai+1 ⊗ . . . an for i < n and
dn(a0 ⊗ . . .⊗ an) = ana0 ⊗ . . .⊗ an−1.
Hochschild homology is André-Quillen homology for associative
algebras up to a shift of degree. For a free algebra (a tensor
algebra) it vanishes in degrees higher than one.
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Via the simplicial category

Loday:
HHn(A;M) = Tor∆

op

n (R,C (A;M))

Here C (A;M) is the simplicial R-module with
Cn(A;M) = M ⊗ A⊗n. As we assume that A is unital, we have
degeneracy maps si : M ⊗ A⊗n → M ⊗ A⊗(n+1) given by inserting
the unit of A.
R is short for the constant functor R.
Alternatively: Let S1 be the simplicial model of the unit circle with
S1

n = [n] and face and degeneracy maps di , si as follows
si : [n] → [n + 1] is the unique monotone injection that does not
contain i + 1.
di : [n] → [n − 1],

di (j) =


j , j < i

i , j = i < n, (0, j = i = n),

j − 1, j > i .
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Via finite ’associative sets’ I

S1:

[0] // [1]oo

oo //

// [2] · · ·
oo

oo

oo

If we want to interpret Hochschild homology via functor homology
on finite sets, A has to be commutative and M has to be a
symmetric A-bimodule. Then we can define L(A;M) which sends
Γ 3 [n] 7→ M ⊗ A⊗n.
Interpreting S1 as a functor ∆op → Γ we get by composition
L(A;M) ◦ S1 : ∆op → R-mod and

HH∗(A;M) = π∗L(A;M)(S1).
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Via finite ’associative sets’ II

If we want to allow non-commutative A, we have to change the
category!

Let Γ(as) be the category of finite pointed associative sets.
Ob(Γ(as)) =Ob(Γ)).
A morphism [n] → [m] is a pointed map f : [n] → [m] together
with a total ordering on the preimages f −1(j) for all j ∈ [m].
Theorem [Pirashvili-R 2002] For any associative unital R-algebra A
and any A-bimodule M

HH∗(A;M) ∼= Tor
Γ(as)
∗ (b̄,L(A;M)).

Here, b̄ is b̄(−) = coker(R{Γ(as)(−, [1])} → R{Γ(as)(−, [0])})
where the map is induced by d0 − d1 where d0 and d1 send 0, 1 to
0 but d0 has 0 < 1 as ordering on the preimage whereas d1 has the
ordering 1 < 0 on [1].
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Cyclic homology

Cyclic homology has a similar functor homology interpretation.

Theorem [Pirashvili-R 2002]

HC∗(A) ∼= Tor
F(as)
∗ (b,L(A;A)).

Here, F(as) is the category of associative (unpointed) sets and b
is the cokernel

b = coker(R{F(as)(−, [1])} → R{F(as)(−, [0])}).
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What is En?

Let Cn denote the operad of little n-cubes.

Cn(r), r ≥ 0.
n = 2, r = 3:

Cn acts on and detects n-fold based loop spaces.
(C∗Cn(r))r , r ≥ 1 is an operad in the category of chain complexes.
Let En be a cofibrant replacement of C∗Cn.
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En-homology

For any (cofibrant) operad, there is a notion of André-Quillen
homology for its algebras.

This measures the derived functors of indecomposables.
For En: Benoit Fresse gave a description of En-homology, HEn

∗ , as

1. the homology of an explicit chain complex,

2. the homology of the n-fold desuspension of a suitably defined
n-fold bar construction.

For simplicity, let A → R be an augmented commutative R-algebra
and Ā its augmentation ideal.



En-homology

For any (cofibrant) operad, there is a notion of André-Quillen
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From En to En+1

We can extend a little n-cubes configuration to a little
(n + 1)-cube configuration.

By forgetting structure, we can view an En+1-algebra as an
En-algebra. Commutative algebras are En-algebras for every n.
Similarly for E∞-algebras.
For commutative algebras there are maps

HE1
∗ (Ā) → HE2

∗ (Ā) → . . . → HE∞
∗ (Ā).

Fresse’s description in terms of iterated bar constructions gives a
direct identification (in the commutative case over a field k) of

HEn
∗ (Ā) with HH

[n]
∗+n(A; k), that is Pirashvili’s Hochschild homology

of order n.
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Higher order Hochschild homology

In general: Let k be a field and A an augmented commutative
k-algebra.

Definition [Pirashvili] Hochschild homology of order n ≥ 1 of A

with coefficients in k, HH
[n]
∗ (A; k) is π∗L(A; k)(Sn).

Here, Sn = (S1)∧n is a simplicial model of the n-sphere.
The case n = 1 coincides with the usual definition of Hochschild
homology of A with coefficients in k.

’Proof’ that HEn
∗ (Ā) ∼= HH

[n]
∗+n(A; k):

HEn
∗ (Ā) ∼= H∗(Σ

−nBn(Ā)) ∼= H∗+nB
n(Ā)

∼= H∗+n(Sn⊗̄A) ∼= HH
[n]
∗+n(A; k).
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∗ (Ā) ∼= H∗(Σ
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The limit: Gamma homology

Fresse showed as well, that in the limiting case

HE∞(Ā) ∼= HΓ∗(A; k).

Here, HΓ∗(A; k) denotes Gamma homology of A with coefficients
in k, as defined by Alan Robinson and Sarah Whitehouse.

For Gamma homology a functor homology description is known:
Theorem [Pirashvili-R, 2000]

HΓ∗(A; k) ∼= TorΓ∗(t,L(A; k))

Here t[n] = HomSets∗([n], k) as above.
Gamma (co)homology plays an important role as the habitat for
obstructions to E∞-ring structures on ring spectra.
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HE∞(Ā) ∼= HΓ∗(A; k).

Here, HΓ∗(A; k) denotes Gamma homology of A with coefficients
in k, as defined by Alan Robinson and Sarah Whitehouse.
For Gamma homology a functor homology description is known:
Theorem [Pirashvili-R, 2000]

HΓ∗(A; k) ∼= TorΓ∗(t,L(A; k))

Here t[n] = HomSets∗([n], k) as above.

Gamma (co)homology plays an important role as the habitat for
obstructions to E∞-ring structures on ring spectra.



The limit: Gamma homology

Fresse showed as well, that in the limiting case
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A functor homology description

Can we generalize this to 1 < n < ∞?

Theorem [Livernet-R,2011] For all 1 ≤ n < ∞:

HEn
∗ (Ā) ∼= Tor

Epin
∗ (bepi

n ,L(A; k)).

Epin is a category that captures the combinatorial properties of
n-fold bar constructions, a category of trees with n levels.
bepi
n is a cokernel coker(k{Epin(−,Yn)} → k{Epin(−, In)}).

Here, In is the n-tree with only one leaf and Yn is the tree that has
two leaves at the top level.
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The category Epin – an example

����
�����

HHHH
HHHHH

�
�

�@@�� HHH
���

@@ ��



The category Epin – the definition

Objects are sequences

[rn]
fn // [rn−1]

fn−1
// . . .

f2 // [r1] (1)

where the fi are surjective and order-preserving.

A morphism to an object [r ′n]
f ′n // [r ′n−1]

f ′n−1
// . . .

f ′2 // [r ′1] consists
of surjective maps σi : [ri ] → [r ′i ] for 1 ≤ i ≤ n such that σ1 is
order-preserving surjective and for all 2 ≤ i ≤ n the map σi is
order-preserving on the fibres f −1

i (j) for all j ∈ [ri−1] and such that
the diagram

[rn]

σn

��

fn // [rn−1]

σn−1

��

fn−1
// . . . f2 // [r1]

σ1

��

[r ′n]
f ′n // [r ′n−1]

f ′n−1
// . . .

f ′2 // [r ′1]

commutes.
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