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In the following I will focus on a tiny bit of that book –
Appendix II.3 and II.4.

There, Gabriel and Zisman introduce the homology of a small
category with coefficients in a functor and they identify this with
the derived functors of the colimit.
They also define the homology groups of a simplicial set with
rather general coefficients – not just local systems.

This started a flurry of work by Quillen, Thomason and others.
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Let C be a small category and let A be a cocomplete abelian
category with exact coproducts.

Assume L : C → A is a functor. In order to define H∗(C; L) we
consider the nerve of the category C.
Let Nn(C) be the set

{ C0
f1 // C1

f2 // . . .
fn // Cn | Ci an object of C, fi ∈ C(Ci−1,Ci )}

of the n-tuples of composable morphisms in C. We denote such an
element by [fn| . . . |f1].
The nerve of the category C is the simplicial set NC : ∆op → Sets,
which sends [n] to the set Nn(C).
The degeneracies insert identity morphisms

si [fn| . . . |f1] = [fn| . . . |fi+1|1Ci
|fi | . . . |f1], 0 ≤ i ≤ n,

and the face maps drop objects:

di [fn| . . . |f1] =


[fn| . . . |f2], i = 0,

[fn| . . . |fi+1 ◦ fi | . . . |f1], 0 < i < n,

[fn−1| . . . |f1], i = n.
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Gabriel and Zisman consider the simplicial object whose degree
n-part is ⊕

[fn|...|f1]∈Nn(C)

L(C0)

and define face maps as follows:

We denote the element a ∈ L(C0) in the summand corresponding
to [fn| . . . |f1] by [fn| . . . |f1]⊗ a. Then

di ([fn| . . . |f1]⊗ a) :=


[fn| . . . |f2]⊗ L(f1)(a), i = 0,

[fn| . . . |fi+1 ◦ fi | . . . |f1]⊗ a, 0 < i < n,

[fn−1| . . . |f1]⊗ a, i = n.

Degeneracies insert identity maps and leave a untouched.
We then take the associated chain complex C∗(C; L) with

Cn(C; L) :=
⊕

[fn|...|f1]∈Nn(C)

L(C0) and differential δ =
n∑

i=0

(−1)idi .
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The n-th homology group of C with coefficients in L, Hn(C; L), is
Hn(C∗(C; L), δ).

Examples
1) Let G be a finite group and let M be a G -module. We consider
the category CG with just one object ∗ and CG (∗, ∗) = G . Then M
is a functor from CG to the category of abelian groups and
H∗(G ;M) ∼= H∗(CG ;M).

2) Let A be an associative k-algebra for a commutative ring k and
let M be an A-bimodule. Then the Hochschild homology of A over
k with coefficients in M, HHk

∗(A;M), is the homology of the
category ∆op with coefficients in Lk(A;M):
HHk

∗(A;M) ∼= H∗(∆
op,Lk(A;M)). Here ∆ is the category of finite

ordered sets and order preserving maps and Lk(A;M) maps the
ordered set [n] = {0 < 1 < . . . < n} to M ⊗ A⊗n.

3) Similarly, cyclic homology can be described that way:

HC k
∗ (A)

∼= H∗(∆C op,Lk(A;A)).
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Theorem [Gabriel-Zisman, Proposition II.3.3] For any small
category C and any functor L : C → A where A is a cocomplete
abelian category with exact coproducts, the homology groups of C
with coefficients in L are the left derived functors of colimCL:

▶ H0(C; L) ∼= colimCL,

▶ Hq(C; L) ∼= colimC,qL.
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I will talk about two consequences of this result:

1. a notion of homotopy colimits for diagrams in chain
complexes, and

2. a rather general notion of the homology groups of a small
category.

Let L : C → Ch≥0(k) be a functor from a small category C to the
category of non-negatively graded chain complexes. Consider the
simplicial chain complex srep(L) whose simplicial degree n-part is

srepn(L) =
⊕

[fn|...|f1]∈Nn(C)

L(C0).

We define the homotopy colimit of L over C, hocolimCL, to be the
total complex of the associated bicomplex.
This is a very explicit Bousfield-Kan type model of the homotopy
colimit.
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where s(g) denotes the source of a morphism g .
That this deserves the name homotopy colimit has been established
by Ruth Joachimi (2011) in the special case of C = I, the category
of finite sets and injections, and by Beatriz Rodŕıguez-González
(2014) in general. In joint work with Steffen Sagave from 2020 we
show that this also holds for unbounded chain complexes.
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Note that we get something for free:

Filtration by columns gives a spectral sequence

E 1
p,q = Hp(C; Lq) = colimC,pLq ⇒ Hp+qhocolimCL,

where Lq : C → k-mod is the functor given by Lq(C ) = L(C )q.

This homotopy colimit has nice algebraic properties: If C is itself
symmetric monoidal, say (C,⊔, 0), then the category of C-diagrams
in chain complexes Ch(k)C is also symmetric monoidal with respect
to the Day convolution product, ⊠:
For F ,G ∈ Ch(k)C :

C × C

⊔
��

F×G
// Ch(k)× Ch(k)

⊗
// Ch(k)

C
F⊠G
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Theorem [R-Sagave, ’20] Assume C = I, the category of finite
sets and injections.

Then the homotopy colimit of a commutative
monoid in Ch(k)I is a dg E∞-algebra.
The proof establishes an explicit action of the Barratt-Eccles
operad on the homotopy colimit. There is actually a Quillen
equivalence lurking in the background.

This result can be generalized to more general indexing categories:
Daniel Heineken (Master thesis ’23): If C is a permutative
category, then the homotopy colimit of a commutative monoid in
Ch(k)C is a dg E∞-algebra.

These homotopy colimits give strictly commutative models for the
cochains on topological spaces.
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Theorem [R-Sagave ’20]

1. For every topological space X and every commutative ring k ,
there is a commutative monoid AI(X ; k) in Ch(k)I such that
C ∗(X ; k) and hocolimIA

I(X ; k) are naturally
quasi-isomorphic as dg E∞-algebras.

2. If k is a field of characteristic zero, then there is a canonical
map AI(X ; k) → constAPL(X ; k) such that there is an
induced quasi-isomorphism of dg E∞-algebras
hocolimIA

I(X ; k) ∼ APL(X ; k) where APL(X ; k) denotes
Sullivan’s commutative dga model of the cochains of a space.

3. If X ,Y are nilpotent topological spaces of finite type, then X
is weakly equivalent to Y if and only if AI(X ;Z) is weakly
equivalent to AI(Y ;Z) as commutative monoids in Ch(Z).
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3. If X ,Y are nilpotent topological spaces of finite type, then X
is weakly equivalent to Y if and only if AI(X ;Z) is weakly
equivalent to AI(Y ;Z) as commutative monoids in Ch(Z).



Gabriel and Zisman also define the homology of a simplicial set
X : ∆op → Sets with rather general coefficients in Appendix II.4:

The category of simplices of X , ∆/X , has as objects the simplices
x ∈ Xn for all n ≥ 0.
A morphism Xn ∋ x → y ∈ Xm is a θ ∈ ∆([n], [m]) with
X (θ)(y) = x .
The Yoneda lemma says that Xn

∼= Sets∆
op
(∆(−, [n]),X ), so

x ∈ Xn corresponds to x : ∆(−, [n]) → X and y : ∆(−, [m]) → X .
A morphism from x to y therefore corresponds to

∆(−, [n])
θ //

x
$$

∆(−, [m])

y
zz

X
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For a simplicial set X and an arbitrary functor L : (∆/X )op → A
define the Gabriel-Zisman chain complex CGZ

∗ (X ; L) as

CGZ
n (X ; L) =

⊕
x∈Xn

L(x)

and let the differential be d =
∑n

i=0(−1)iL(δi ).
Then the n-th homology of X with coefficients in L, HGZ

n (X ; L), is
Hn(C

GZ
∗ (X ; L), d).

In particular, one can take X to be N(C), the nerve of a small
category.
Imma Gálvez-Carillo, Frank Neumann and Andrew Tonks (2021)
study HGZ

∗ (NC; L) as a homology theory for C.
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Theorem [Gálvez-Carillo-Neumann-Tonks ’21]:
The Gabriel-Zisman homology HGZ

∗ (NC; L) specializes to
Thomason homology of a small category.

In previous work the authors show that Thomason homology in
turn specializes to Baues-Wirsching homology, Hochschild-Mitchell
homology and others.

Why should we care?

▶ Naturality of HGZ
∗ (NC; L) is easy to establish.

▶ Structural properties (e.g. base change along an adjunction)
are easy to prove in the GZ-setting.

▶ Gabriel and Zisman develop spectral sequences for left
Kan-extensions; GC-N-T push this further to construct
spectral sequences for maps of simplicial sets f : X → Y ,
using the naturality of HGZ

∗ (−; L), e.g.

E 2
p,q = HGZ

p (Y ; (Lq((∆/f )op)∗)(L)) ⇒ HGZ
p+q(X ; L).

Here, Lq((∆/f )op)∗ is the p-th left satellite of the left Kan
extension along (∆/f )op : (∆/X )op → (∆/Y )op.
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