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the derived functors of the colimit.

They also define the homology groups of a simplicial set with
rather general coefficients — not just local systems.

This started a flurry of work by Quillen, Thomason and others.
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Assume L: C — A is a functor. In order to define H.(C; L) we
consider the nerve of the category C.

Let N,(C) be the set

[ G G~ . "¢, | G an object of C, f: € C(Ci_y, C)}

of the n-tuples of composable morphisms in C. We denote such an
element by [f,]...|f].

f

The nerve of the category C is the simplicial set NC: A° — Sets,
which sends [n] to the set N,(C).
The degeneracies insert identity morphisms
silfal .. |A] = [fa] - - - |fisal1lc|fi] .- [A), 0 <i<n,
and the face maps drop objects:
[fa] - - - | 2], i=0,
dilfal ... Al =< [f] .. |fiz10of]... |A], 0<i<n,
[fo—1l ... |A], i=n.



Gabriel and Zisman consider the simplicial object whose degree

n-part is
P U

[fa]-..|A]€NA(C)



Gabriel and Zisman consider the simplicial object whose degree

n-part is
P U

[fa]-..|A]€NA(C)

and define face maps as follows:



Gabriel and Zisman consider the simplicial object whose degree

n-part is
P U

[fa]-..|A]€NA(C)

and define face maps as follows:

We denote the element a € L((p) in the summand corresponding
to [fu]...|A] by [f] ... |A] ® a.



Gabriel and Zisman consider the simplicial object whose degree

n-part is
P U

[fa]-..|A]€NA(C)

and define face maps as follows:

We denote the element a € L((p) in the summand corresponding
to [fa|...|f] by [fa| ... |i] ® a. Then

[fal ... |R] ® L(f1)(a), i=0,
di([fo] ... Al ®a) ;== [f ... |fixr0fi| ... |A] ®a, 0<i<n,
[Fri]...|A]®a, i=n.



Gabriel and Zisman consider the simplicial object whose degree

n-part is
P U

[fa]-..|A]€NA(C)

and define face maps as follows:

We denote the element a € L((p) in the summand corresponding
to [fa|...|f] by [fa| ... |i] ® a. Then

[fal ... |R] ® L(f1)(a), i=0,
di([fo] ... Al ®a) ;== [f ... |fixr0fi| ... |A] ®a, 0<i<n,
[Fri]...|A]®a, i=n.

Degeneracies insert identity maps and leave a untouched.



Gabriel and Zisman consider the simplicial object whose degree

n-part is
P U

[fa]-..|A]€NA(C)

and define face maps as follows:

We denote the element a € L((p) in the summand corresponding
to [fa|...|f] by [fa| ... |i] ® a. Then

[fal ... |R] ® L(f1)(a), i=0,
di([fo] ... Al ®a) ;== [f ... |fixr0fi| ... |A] ®a, 0<i<n,
[Fri]...|A]®a, i=n.

Degeneracies insert identity maps and leave a untouched.
We then take the associated chain complex C,(C; L) with

n
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total complex of the associated bicomplex.

This is a very explicit Bousfield-Kan type model of the homotopy
colimit.
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where s(g) denotes the source of a morphism g.

That this deserves the name homotopy colimit has been established
by Ruth Joachimi (2011) in the special case of C = Z, the category
of finite sets and injections, and by Beatriz Rodriguez-Gonzalez
(2014) in general. In joint work with Steffen Sagave from 2020 we
show that this also holds for unbounded chain complexes.
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Note that we get something for free:
Filtration by columns gives a spectral sequence

E;,q = HP(C; Lq) = colim¢ pLg = HpyghocolimelL,

where Lg: C — k-mod is the functor given by Lq(C) = L(C),.

This homotopy colimit has nice algebraic properties: If C is itself
symmetric monoidal, say (C,L!,0), then the category of C-diagrams
in chain complexes Ch(k)C is also symmetric monoidal with respect
to the Day convolution product, X:

For F, G € Ch(k)¢:

C x € 2% Ch(k) x Ch(k) —— Ch(k)

J’ T FRG
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This result can be generalized to more general indexing categories:
Daniel Heineken (Master thesis '23): If C is a permutative
category, then the homotopy colimit of a commutative monoid in
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These homotopy colimits give strictly commutative models for the
cochains on topological spaces.
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Theorem [R-Sagave '20]

1. For every topological space X and every commutative ring k,
there is a commutative monoid AZ(X; k) in Ch(k)? such that
C*(X; k) and hocolimzAZ(X; k) are naturally
quasi-isomorphic as dg E..-algebras.

2. If k is a field of characteristic zero, then there is a canonical
map AZ(X; k) — constAp,(X; k) such that there is an
induced quasi-isomorphism of dg E..-algebras
hocolimzAZ(X; k) ~ Ap(X; k) where Ap;(X; k) denotes
Sullivan’'s commutative dga model of the cochains of a space.

3. If X, Y are nilpotent topological spaces of finite type, then X
is weakly equivalent to Y if and only if AZ(X;Z) is weakly
equivalent to AT(Y;Z) as commutative monoids in Ch(Z).
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The category of simplices of X, A/X, has as objects the simplices
x € X, forall n > 0.

A morphism X, 3> x — y € Xi is a 0 € A([n], [m]) with

X(0)(y) = x.

The Yoneda lemma says that X, = Sets®” (A(—, [n]), X), so

x € X corresponds to x: A(—, [n]) = X and y: A(—, [m]) — X.
A morphism from x to y therefore corresponds to

. [n]) —— " A(= [m])

\/



For a simplicial set X and an arbitrary functor L: (A/X)P — A
define the Gabriel-Zisman chain complex C&4(X; L) as

CC%(X; L) = @L

XEXn



For a simplicial set X and an arbitrary functor L: (A/X)P — A
define the Gabriel-Zisman chain complex C&4(X; L) as

CC%(X; L) = @L

XEXn

and let the differential be d = Y7 (—1)"L(d;).



For a simplicial set X and an arbitrary functor L: (A/X)P — A
define the Gabriel-Zisman chain complex C&4(X; L) as

CoA (X L) = P L(x
x€Xp
and let the differential be d = Y7 (—1)"L(d;).

Then the n-th homology of X with coefficients in L, H?(X; L), is
H,(CE(X; L),d).



For a simplicial set X and an arbitrary functor L: (A/X)P — A
define the Gabriel-Zisman chain complex C&4(X; L) as

CC%(X; L) = @L

XEXn

and let the differential be d = Y7 (—1)"L(d;).
Then the n-th homology of X with coefficients in L, H?(X; L), is
Ha(CSZ(X; L), d).

In particular, one can take X to be N(C), the nerve of a small
category.



For a simplicial set X and an arbitrary functor L: (A/X)P — A
define the Gabriel-Zisman chain complex C&4(X; L) as

CC%(X; L) = @L

XEXn

and let the differential be d = Y7 (—1)"L(d;).
Then the n-th homology of X with coefficients in L, HnGZ(X; L), is
H,(CE(X; L),d).

In particular, one can take X to be N(C), the nerve of a small
category.

Imma Gélvez-Carillo, Frank Neumann and Andrew Tonks (2021)
study He4(NC; L) as a homology theory for C.
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Theorem [Gélvez-Carillo-Neumann-Tonks '21]:

The Gabriel-Zisman homology HE?(NC; L) specializes to
Thomason homology of a small category.

In previous work the authors show that Thomason homology in
turn specializes to Baues-Wirsching homology, Hochschild-Mitchell
homology and others.

Why should we care?

> Naturality of HE?(NC; L) is easy to establish.

» Structural properties (e.g. base change along an adjunction)
are easy to prove in the GZ-setting.

» Gabriel and Zisman develop spectral sequences for left
Kan-extensions; GC-N-T push this further to construct
spectral sequences for maps of simplicial sets f: X — Y,
using the naturality of HS?(—; L), e.g.

Erq = Hp? (Yi(La((A/F)P).)(L)) = HZfe(X: L).

Here, Ly((A/f)%P), is the p-th left satellite of the left Kan
extension along (A/f)°P: (A/X)%P — (A/Y)°P.



