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Abstract. We consider brave new cochain extensions F (BG+, R) −→ F (EG+, R), where R
is either a Lubin-Tate spectrum En or the related 2-periodic Morava K-theory Kn, and G is a
finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension
is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for
En and Kn these extensions are always faithful in the Kn local category. However, for a cyclic
p-group Cpr , the cochain extension F (BCpr+, En) −→ F (ECpr+, En) is not a Galois extension
because it ramifies. As a consequence, it follows that the En-theory Eilenberg-Moore spectral
sequence for G and BG does not always converge to its expected target.

1. Introduction

In the algebraic Galois theory of commutative rings [6], faithful flatness is a property im-
plied by separability. However, in the topological analogue, the brave new Galois theory of
Rognes [19], this is not true. The simplest counterexample, due to Ben Wieland [20], is pro-
vided by the C2-Galois extension

(1.1) F (BC2+, HF2) −→ F (EC2+, HF2) ∼ HF2
which is not faithful. This example relies on the algebraic fact that

π∗(F (BC2+, HF2)) = H−∗(BC2;F2)

is a polynomial algebra and so has finite global dimension.
In this note we consider this question for a Lubin-Tate spectrum En and the related Morava

K-theory Kn, and show that for any finite group G, the extension

(1.2) EBGn = F (BG+, En) −→ F (EG+, En) ∼ En
is faithful as an En-module. We also show that the non-commutative extension

(1.3) F (BG+,Kn) −→ F (EG+,Kn) ∼ Kn

is faithful and F (BG+,Kn) is a faithful En-module. A crucial difference from F (BG+, HFp) is
that K∗n(BG+) is always an Artinian algebra over (Kn)∗, and so if K∗n(BG+) 6= K∗n then it has
infinite global dimension by Proposition 2.2.

Our approach to this involves introducing an analogue of the algebraic socle series for a
module over an Artinian ring, and we show that this behaves well enough to prove our result.

We show in Section 5 that for a cyclic p-group Cpr , the cochain extension F (BCpr+, En) −→
F (ECpr+, En) is ramified and hence it is not a Galois extension. As a consequence it follows
that the En-theory Eilenberg-Moore spectral sequence for such groups does not converge to its
expected target, whereas work of Tilman Bauer indicates that this is not the case for Morava
K-theory.
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Notation, etc. In discussing purely algebraic notions we will often use boldface symbols
A,M , . . . to denote rings, modules, etc, while for topological objects such as S-algebras and
their modules we will use italic symbols A,M, . . ., thereby hopefully reducing the possibility
of confusion between the two settings. For an associative S-algebra A, we denote by DA the
derived category of A-module spectra defined in [7, chapter III, construction 2.11].

We follow Lam [12, theorem 19.1] in using the phrase local ring to indicate a ring with a
unique maximal left ideal (necessarily 2-sided and equal to its Jacobson radical); the quotient
of such a ring by its Jacobson radical is a division ring. For non-commutative rings other
terminology is often encountered such as scalar local ring.

Brave new Galois extensions. The following definition of a Galois extension is due to John
Rognes [19]. Let A be a commutative S-algebra and let B be a commutative cofibrant A-
algebra. Let G be a finite (discrete) group and suppose that there is an action of G on B
by commutative A-algebra morphisms. Then B/A is a G-Galois extension if it satisfies the
following two conditions:

• The natural map

A −→ BhG = F (EG+, B)G

is a weak equivalence of A-algebras.
• There is a natural equivalence of B-algebras

Θ: B ∧A B
∼−→ F (G+, B)

induced from the action of G on the right hand factor of B.

Furthermore, B/A is a faithful G-Galois extension if it also satisfies

• B is faithful as an A-module, i.e., for any A-module M , B∧AM ∼ ∗ implies that M ∼ ∗.
Examples like (1.1) show that not every Galois extension is faithful.

2. Recollections on modules over Artinian algebras

In this section we review some standard algebraic background material; good sources for this
are [1, 12].

Let D be a division ring. A ring A equipped with homomorphisms of rings η : D −→ A and
ε : A −→D is an augmented D-algebra if the following diagram commutes.

D
= //

η   A
AA

AA
AA

A D

A

ε

>>}}}}}}}}

The augmentation ε splits the unit η. We will also say that A is an Artinian local D-algebra
if it is Artinian and local.

If A is an Artinian local augmented D-algebra, then the Jacobson radical of A is

J = rad(A) = ker ε.

By [12, theorem 4.12], J is nilpotent, say Je = 0 and Je−1 6= 0.

Lemma 2.1. Let A be as above and let M be a left A-module. If D⊗A M = 0, then M = 0.

Proof. Comparing the two horizontal exact sequences

J ⊗A M //

��

A⊗A M //

∼=
��

D ⊗A M //

∼=
��

0

0 // JM //M //M/JM // 0

we see that if D ⊗A M = 0 then

M = JM = . . . = JeM = 0. �
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Let M be a left A-module. The socle of M is the submodule

soc1M = socM = {x ∈M : Jx = 0},

which can also be characterized as the sum of all the simple A-submodules of M . The socle
series of M is the increasing sequence of submodules

0 = soc0M ⊆ soc1M ⊆ . . . ⊆ sockM ⊆ sock+1M ⊆ . . . ⊆M ,

where for each k the following is a pullback square

sock+1M //

��

soc(M/ sockM)

��
M //M/ sockM

so we have

sockM = {x ∈M : Jkx = 0},
and

soceM = M .

In fact, for small k

sockM ⊂ sock+1M ,

until we reach a value k = k0 6 e for which sock0 M = M .
It is also clear that given a homomorphism ϕ : M −→N of A-modules there are compatible

homomorphisms

sockM −→ sockN .

For details on the socle series see [12], especially Ex. 4.18, and [1, chapter I, section 1].
We end this section with a result that supplies an algebraic backdrop for some of our later

work. We give a proof suggested by K. Brown.

Proposition 2.2. Let A be a local left-Artinian ring which is not a division ring. Then

proj dim(A/ rad(A)) = gl dimA =∞,

where A/ rad(A) is the unique simple left A-module.

Proof. Since A is local, it has only one simple module and therefore

proj dim(A/ rad(A)) = gl dimA.

Also, since A is Artinian it has a left ideal I isomorphic to A/ rad(A). The corresponding exact
sequence

(2.1) 0→ I −→ A −→ A/I → 0

cannot split since A is local and therefore it has no non-trivial idempotents.
If

proj dim(A/ rad(A)) = gl dimA <∞,
then (2.1) would give

proj dim(A/ rad(A)) + 1 = proj dim(A/I) 6 gl dimA = proj dim(A/ rad(A)),

which is impossible. �

Remark 2.3. We end this section by noting that the above discussion works as well if we assume
that A is graded, provided this is suitably interpreted. In our work below we are interested in
Z-gradings which are also 2-periodic, i.e., for all n ∈ Z, (−)n+2 = (−)n. This can be interpreted
as a Z/2-grading.
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3. Socle series in topology

Let D be an S-algebra for which π0D is a non-trivial division ring, π1D = 0, and the graded
ring π∗D = D has period two. Suppose that A is an S-algebra both under and over D, giving
the following diagram of morphisms of S-algebras.

(3.1) D
= //

η   @
@@

@@
@@

D

A

ε

>>~~~~~~~

We assume that A = π∗A is an Artinian local augmented D-algebra, so that the augmentation
ideal ker ε is the Jacobson radical of A, rad(A), and also rad(A)e = 0 and rad(A)e−1 6= 0.

Remark 3.1. Let M be a left A-module. Then M = π∗M is a left A-module and its socle
socM is a D-module through both the unit η and the augmentation ε, and these module
structures agree since rad(A) = ker ε.

Theorem 3.2. There are functors sock : DA −→ DA for 0 6 k 6 e such that
(a) for each k, π∗(sockM) = sockM ;
(b) there are natural transformations sockM −→ sock+1M giving a commutative diagram

0 // π∗ soc1M //

∼=
��

π∗ soc2M //

∼=
��

. . . // π∗ soceM //

∼=
��

0

0 // soc1M // soc2M // . . . // soceM // 0

which is natural with respect to morphisms of A-modules.

Proof. As D is a graded division ring, socM is a D-vector space. Since M is a D-module via
the unit we can find a morphism of D-modules

(3.2)
∨
j

Σs(j)D −→M

to realize an algebraic isomorphism⊕
j

D∗−s(j)
∼=−−→ socM ⊆M .

Now Remark 3.1 implies that the morphism of (3.2) is actually one of A-modules. We set

socM =
∨
j Σs(j)D.

Now we can repeat this on the cofibre M/ socM of the map socM −→ M , obtaining
soc(M/ socM) −→ M/ socM . We then define soc2M using the right hand pullback square
in the diagram

socM //

=

��

soc2M

��

// soc(M/ socM)

��
socM // M // M/ socM

from which we see by a standard diagram chase that π∗(soc2M) ∼= soc2M . Continuing in this
way we inductively build the socle tower

∗ → soc1M −→ soc2M −→ . . . −→ soce−1M −→ soceM = M,

using pullback squares

sock+1M

��

// soc(M/ sockM)

��
M // M/ sockM
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for each k. These satisfy

π∗(sockM) = sockM . �

An important consequence of this construction is that there is a minimal k0 for which
sock0 M = M , so since sock0−1M 6= M , using the fibre sequence

(3.3) sock0−1M −→M −→M/ sock0−1M,

we obtain π∗(M/ sock0−1M) 6= 0.

Lemma 3.3. The A-module D satisfies π∗(D ∧A D) 6= 0.

Proof. There is a diagram of left D-modules induced from (3.1)

D ∧D D
= //

&&MMMMMMMMMM D ∧D D

D ∧A D

88qqqqqqqqqq

in which D ∧D D ∼= D. On applying π∗(−) we see that π∗(D ∧A D) 6= 0. �

Theorem 3.4. Let M be an A-module for which π∗M 6= 0. Then π∗(D ∧AM) 6= 0, i.e., D is
a faithful A-module.

Proof. Using the socle series we can find a fibration sequence as in (3.3),

(3.4) M ′ −→M −→M ′′,

where M ′′ = π∗M
′′ 6= 0, JM ′′ = 0 and there is a short exact sequence

(3.5) 0→ π∗(M
′) −→ π∗(M) −→ π∗(M

′′)→ 0.

As remarked in the proof of Theorem 3.2, M ′′ is weakly equivalent to a wedge of copies of
suspensions of the A-module D. So π∗(M

′′) is a direct sum of copies of suspensions of π∗(D),
hence by Lemma 3.3, π∗(M

′′) 6= 0. The fibre sequence (3.4) induces a commutative diagram

0 // π∗(D ∧DM ′) //

��

π∗(D ∧DM) // //

��

π∗(D ∧DM ′′)

��
=

zz

π∗(D ∧AM ′) // π∗(D ∧AM) // // π∗(D ∧AM ′′)

��
π∗(D ∧DM ′′)

in which a non-zero element x ∈ π∗(D ∧D M ′′) lifts to π∗(D ∧D M) and so is in the image of
composition passing through π∗(D ∧AM). Therefore π∗(D ∧AM) 6= 0. �

4. Lubin-Tate cohomology of classifying spaces

We will denote by E any Lubin-Tate spectrum such as En or Enr
n , and then K will denote the

corresponding version of Morava K-theory see [3] for details. The spectrum E is a commutative
S-algebra, while K is an E-algebra in the sense of [7]. The homotopy groups π∗E and π∗K are
2-periodic and π0E is Noetherian; π0K is a field, although K is only homotopy commutative
if p is an odd prime, while when p = 2 it is not even that. Nevertheless, we will view K as a
kind of ‘topological division ring’.

The following lemma will allows us in certain circumstances to relate modules over EBG =
F (BG+, E) to modules over KBG = F (BG+,K).
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Lemma 4.1. For any EBG-module M , there is isomorphism of K-modules

K ∧EBG M ∼= (K ∧E E) ∧K∧EEBG (K ∧E M).

In particular, there is an isomorphism of K-modules

K ∧EBG E ∼= K ∧KBG K.

Proof. This follows from an obvious generalization of [7, proposition III.3.10]. Since there are
isomorphisms of E-algebras K ∼= K ∧E E and KBG ∼= K ∧E EBG, for any EBG-module M ,

K ∧EBG M ∼= K ∧E (E ∧EBG M)

∼= (K ∧K K) ∧E (E ∧EBG M)

∼= (K ∧E E) ∧K∧EEBG (K ∧E M). �

Remark 4.2. By a standard argument making use of the Becker-Gottlieb transfer [5], after
p-localization, Σ∞BG+ is a retract of Σ∞BG′+ where G′ is any p-Sylow subgroup of G. In
particular, when p - |G| we have

F (BG+, E) ∼ E, F (BG+,K) ∼ K.

Theorem 4.3. Let G be a finite group.
(a) The K-cohomology K∗(BG+) is a finite dimensional K∗-vector space and the E-cohomology
E∗(BG+) is a finitely generated E∗-module.
(b) If K∗(BG+) is concentrated in even degrees, then E∗(BG+) is a free E∗-module of finite
rank and

K∗(BG+) = K∗ ⊗E∗ E∗(BG+) = E∗(BG+)/mE∗(BG+).

(c) K∗(BG+) is an augmented Artinian local K∗-algebra whose maximal ideal is nilpotent.
Hence E∗(BG+) is an augmented pro-Artinian local E∗-algebra,

E∗(BG+) = lim
r
E∗(BG+)/mrE∗(BG+).

Proof. (a) See [8, 9] for example.
(b) See [10, proposition 2.5].
(c) Following Remark 4.2, we can reduce to the case where G is a p-group using the transfer
associated with a p-Sylow subgroup G′ 6 G. The case of a cyclic p-group Cpr is well known and

K∗(BCpr+) = K∗[y]/(yp
r
).

The case of a general p-group G of order pm follows by induction on m since there is always
a normal subgroup N / G of index p and this permits an argument with the Serre spectral
sequence associated with the fibration

BN −→ BG −→ BCp

as used in [16] to calculate K∗(BG+) from knowledge of K∗(BN+) as input. �

It is known that K∗(BG+) need not be concentrated in even degrees [11].
We are interested in the E-algebras EBG = F (BG+, E) and KBG = F (BG+,K), each of

which is K-local. Of course the diagonal BG −→ BG × BG induces the product on each of
these, but only EBG is strictly commutative, while KBG is homotopy commutative when p 6= 2
and merely associative when p = 2. At the level of homotopy groups, E∗(BG+) = π∗(E

BG)
and K∗(BG+) = π∗(K

BG) are both graded commutative.
Now we can apply our earlier results to give

Theorem 4.4. For any finite group G, E and K are faithful EBG-modules in the K-local
category.
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Proof. It suffices to show that K is faithful. By Lemma 4.1, for any EBG-module there is an
isomorphism

K ∧EBG M ∼= (K ∧E E) ∧K∧EEBG (K ∧E M).

The natural morphism of E-algebras

K ∧E F (BG+, E) −→ F (BG+,K ∧E E)

is a weak equivalence since K is a finite cell E-module, so by [7, theorem III.4.2] it is enough
to know that

(K ∧E E) ∧KBG (K ∧E M) ∼= K ∧KBG (K ∧E M) � ∗.
If M is K-local and non-trivial, then K∧KBG (K∧EM) � ∗, because we know from Theorem 3.4
that K is faithful as a KBG-module. �

5. Galois theory and EBG

In this section we will consider extensions of the form

EBG = F (BG+, E) −→ F (EG+, E) ∼ E
with G a finite group and consider whether or not they are Galois. Since we know they are
faithful, the issue is whether such an extension satisfies the unramified condition that the map

Θ: F (BG+, E) ∧EBG F (BG+, E) −→ F (G+, E)

is weak equivalence, and therefore there is a weak equivalence

(5.1) E ∧EBG E
∼−−→

∏
G

E.

In particular, this condition implies that π∗(E ∧EBG E) is concentrated in even degrees.
We begin by considering the case of cyclic p-groups Cpr .

Theorem 5.1. For each r > 1, the extension

EBCpr = F (BCpr+, E) −→ F (ECpr+, E)

is ramified and hence it is not Cpr -Galois.

Proof. We recall (see for example [9, lemma 5.1]) that

(EBCpr )∗ = E∗[[y]]/([pr]y),

where y ∈ (EBCpr )0 = E0(BCpr+) and the p-series [p]y has the form

[p]y ≡ ypn mod m,

so for each r > 1 the pr-series is inductively defined by

[pr]y = [p]([pr−1]y) = pry + · · ·+ yp
rn

+ · · ·
≡ yprn mod m.

By the Weierstrass preparation theorem, there is a polynomial

〈pr〉y = pr + · · ·+ yp
rn−1 ≡ yprn−1 mod m

for which

[pr]y = y〈pr〉y(1 + yfr(y)),

where fr(y) ∈ E∗[[y]]. Then we have

(EBCpr )∗ = E∗[[y]]/(y〈pr〉y).

The (EBCpr )∗-module E∗ admits the periodic minimal free resolution
(5.2)

0← E∗ ←− (EBCpr )∗
y←− (EBCpr )∗

〈pr〉y←−−− (EBCpr )∗
y←− (EBCpr )∗

〈pr〉y←−−− (EBCpr )∗ ←− . . . ,
7



so Tor
(E

BCpr )∗
∗,∗ (E∗, E∗) is the homology of the complex

0← E∗ ⊗(E
BCpr )∗

(EBCpr )∗
I⊗y←−−− E∗ ⊗(E

BCpr )∗
(EBCpr )∗

I⊗〈pr〉y←−−−−− E∗ ⊗(E
BCpr )∗

(EBCpr )∗

I⊗y←−−− E∗ ⊗(E
BCpr )∗

(EBCpr )∗
I⊗〈pr〉y←−−−−− E∗ ⊗(E

BCpr )∗
(EBCpr )∗ ←−−− . . . ,

which is equivalent to

(5.3) 0← E∗
0←− E∗

pr←− E∗
0←− E∗

pr←− E∗ ←−− . . . .
Since E∗ is torsion-free, for s > 0 this gives

(5.4) Tor
(E

BCpr )∗
s,∗ (E∗, E∗) =


E∗ if s = 0,

E∗/p
rE∗ if s is odd,

0 otherwise.

Thus in the Künneth spectral sequence

(5.5) E2
s,t = Tor

(E
BCpr )∗

s,t (E∗, E∗) =⇒ πs+t(E ∧EBCpr E)

there can be no non-trivial differentials since for degree reasons the only possibilities involve
E∗-module homomorphisms of the form

d2k−1 : E2
2k−1,t = Et/p

rEt −→ E2
0,t+2k−2 = Et+2k−2,

with torsion-free target. This shows that the odd degree terms in π∗(E ∧EBCpr E) are not zero,
contradicting the unramified condition 5.1 for a Galois extension. �

Remark 5.2. If we work rationally, then the Künneth spectral sequence

E2
s,t(Cpr ;Q) = Tor

((E
BCpr )Q)∗

s,t (E∗Q, E∗Q) =⇒ πs+t(EQ ∧(EBCpr )Q EQ)

has E2
s,∗(C

r
p ;Q) = 0 except when s = 0, giving

π∗(EQ ∧(EBCpr )Q EQ) = E∗Q⊗(E
BCpr )∗Q

E∗Q.

This shows that higher filtration terms in the Künneth spectral sequence 5.5 contribute p-
torsion.

Now we extend Theorem 5.1 to arbitrary p-groups.

Theorem 5.3. Let G be a non-trivial p-group. Then the extension

F (BG+, E) −→ F (EG+, E)

is not G-Galois. More precisely, this extension is ramified:

F (EG+, E) ∧F (BG+,E) F (EG+, E) �
∏
G

F (EG+, E).

Proof. Choose a non-trivial epimorphism G −→ Cp; then for some k > 1 there is a factorization

(5.6) Cpk // //
(( ((

G // // Cp

inducing morphisms between the associated Künneth spectral sequences

(5.7) Er∗∗(Cp) −→ Er∗∗(G) −→ Er∗∗(Cpk).

As we saw in the proof of Theorem 5.1, the two outer spectral sequences have trivial differentials.
We will analyze the composite morphism E2

∗∗(Cp) −→ E2
∗∗(Cpk).

On choosing generators appropriately, the canonical epimorphism Cpk −→ Cp induces the
E∗-algebra monomorphism

(EBCp)∗ = E∗[[y]]/([p]y) −→ (E
BC

pk )∗ = E∗[[y]]/([pk]y); y 7→ [pk−1]y,
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hence the induced map between the two resolutions of the form (5.2) is

0 E∗

=

��

oo (EBCp)∗oo

ρ0
��

(EBCp)∗
yoo

ρ1
��

(EBCp)∗
〈p〉yoo

ρ2
��

· · ·yoo

0 E∗oo (E
BC

pk )∗
oo (E

BC
pk )∗

yoo (E
BC

pk )∗
〈pk〉yoo · · ·yoo

where the vertical maps are given by

ρ2s : g(y) 7→ g([pk−1]y), ρ2s−1 : h(y) 7→ h([pk−1]y)〈pk−1〉y.

Applying E∗⊗(E
BCpr )∗

(−) to the first and second rows with r = 1 and k respectively, we obtain

a map of chain complexes

0 E∗oo

ρ′0=

��

E∗
0oo

ρ′1=p
k−1·

��

E∗
poo

ρ′2=

��

· · ·0oo

0 E∗oo E∗
0oo E∗

pkoo · · ·0oo

where

ρ′2s = id, ρ′2s−1 = pk−1 · .
Applying this to the odd degree terms given in (5.4) we see that the induced map

E∗/pE∗
pk−1·−−−−→ E∗/p

kE∗

is always a monomorphism. Therefore in (5.7), the first of the induced morphisms

E2
∗∗(Cp) −→ Er∗∗(G) −→ Er∗∗(Cpk)

is a monomorphism. There can be no higher differentials killing elements in its image because
they map to non-trivial elements of E2

∗∗(Cpk) which survive the right hand spectral sequence.
This shows that E∞∗∗(G) contains elements of odd degree, and as in the cyclic group case this is
incompatible with the unramified condition. �

We can extend this result to the class of p-nilpotent groups. A finite group G is p-nilpotent
if one and hence each p-Sylow subgroup P 6 G has a normal p-complement, i.e., there is a
normal subgroup N / G with p - |N | and G = PN = P n N . A convenient summary of the
properties of such groups can be found in [14, section 7], see also [18].

Corollary 5.4. If G is a p-nilpotent group for which p divides |G|, then the extension

F (BG+, E) −→ F (EG+, E)

is ramified and so is not G-Galois.

Proof. By a result of Tate [21], G being p-nilpotent is equivalent to the restriction homomor-
phism giving an isomorphism

resGP : H∗(BG;Fp)
∼=−−→ H∗(BP ;Fp),

and in fact it is sufficient that this holds in degree 1. Comparison of the Serre spectral sequences
for K∗(BG+) and K∗(BP+) shows that

K∗(BG+)
∼=−−→ K∗(BP+).

It now follows that

E∗(BG+)
∼=−−→ E∗(BP+).

and the result can be deduced from Theorem 5.3. �
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Remark 5.5. The condition of G being a p-nilpotent group should not be confused with the
condition that the conjugation action of G on Fp[G] is nilpotent. The latter is used in [19,
proposition 5.6.3] to ensure convergence of the Eilenberg-Moore spectral sequence and so to
prove that for such groups

F (BG+, HFp) −→ F (EG+, HFp)

is a G-Galois extension. The example of G = Σ3, the third symmetric group, for the prime
p = 2 illustrates this. For each of the Sylow 2-subgroups

{id, (1, 2)}, {id, (1, 3)}, {id, (2, 3)}
has as normal complement

N = {id, (1, 2, 3), (1, 3, 2)},
therefore Σ3 is 2-nilpotent. However, the Σ3-module F2[Σ3] contains the 2-dimensional non-
trivial simple submodule

V = {x(1, 2) + y(1, 3) + z(2, 3) : x+ y + z = 0},
so by Jordan-Hölder theory every composition series for F2[Σ3] must have this as a composition
factor. Hence the action of Σ3 on F2[Σ3] cannot be nilpotent.

6. Some observations on the Eilenberg-Moore spectral sequence

In [19, section 5.6], it is shown that for a finite p-group G, the Eilenberg-Moore spectral
sequence with

(6.1) E2
s,t = Tor

H∗(BG+;Fp)
s,t (Fp,Fp)

converges to π∗(F (G+, HFp)) = π∗(
∏
G Fp). By comparing it with the Künneth spectral se-

quence for π∗(HFp ∧F (BG+,HFp) HFp), it is also shown that

F (BG+, HFp) −→ F (EG+, HFp)

is a G-Galois extension.
Let us consider in detail the case G = Cp for p an odd prime. The case when p = 2 is similar.

First we write

H∗(BCp) = H∗(BCp+;Fp) = Fp[y]⊗ Λ(z),

where y ∈ H2(BCp) and z ∈ H1(BCp). Then (6.1) becomes

E2
∗∗ = Γ(σz)⊗ Λ(σy),

where σy ∈ E2
1,−2 and σz ∈ E2

1,−1 are the suspensions of y and z, see [17]. Writing γr = γr(σz).
The first non-trivial differential is

dp−1γp = σy,

and we have

Ep∗∗ = Fp[ζ]/(ζp)⊗ Γ(γp2)⊗ Λ(γpσy),

where ζ represents the class of σz. The remaining differentials are determined by the formulae

dp
s−ps−1−1γps = γps−1σy

in

Ep
s−ps−1−1
∗∗ = Fp[ζ]/(ζp)⊗ Γ(γps)⊗ Λ(γps−1σy).

Finally we have

E∞∗∗ = Fp[ζ]/(ζp),

which is an avatar of
∏
Cp
Fp. These differentials are forced by the known answer and mul-

tiplicativity, and are also related to the discussion of [17, section 6]. For Lubin-Tate theory
(EBCpr )∗ is free over E∗ and the comparison of the Eilenberg-Moore with the Künneth spectral
sequence together with our Theorems 5.1 and 5.3 has the following consequence.
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Proposition 6.1. For the cyclic p-group Cpr the E-theory Eilenberg-Moore spectral sequence
for BCpr with

L-TE2
s,t = Tor(E

BCpr )∗(E∗, E∗)

does not converge to π∗(
∏
Cpr

E).

Just as in theHFp case, we can compare the MoravaK-theory based Eilenberg-Moore spectral
sequence with the Künneth spectral sequence. Work of Bauer [4] on the convergence of the
Cotor-version of this Eilenberg-Moore spectral sequence shows that the corresponding spectral
sequence converges for G = Cp and odd primes p, and therefore

K ∧KBCp K ∼
∏
Cp

K.

The extension of S-algebras KBCp −→ KECp can be interpreted as a Galois extension of non-
commutative S-algebras.
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