Exercises in Algebraic Topology

Prof. Dr. Birgit Richter Summer term 2010

Due: Tuesday, 6th of July 2010

41 Let M be a connected orientable compact manifold of dimension m. Consider continuous maps $f: M \to \mathbb{S}^m$. Show that for every $k \in \mathbb{Z}$ there is a continuous map f as above whose degree is k. (Show the existence of a map of degree one first, and then use what you know about spheres.)

(3 points)

42 Let M and N be compact orientable connected manifolds of the same dimension and let $f: M \to N$ be a continuous map of degree one. Prove or disprove that $H_p(f): H_p(M) \to H_p(N)$ is an epimorphism for all p. (3 points)

43 Let M be a compact connected orientable 3-manifold. Express $H_1(M)$ as $\mathbb{Z}^n \oplus T$ where T is a finite abelian group. Calculate $H_2(M)$.

(2 points)

44 Let

 $\mathbb{R}^m_- := \{ (x_1, \dots, x_m), x_i \in \mathbb{R}, x_1 \leq 0 \}$

an *m*-dimensional half-space. The topological boundary of it is

 $\partial \mathbb{R}^m_- = \{ (x_1, \dots, x_m), x_i \in \mathbb{R}, x_1 = 0 \}.$

An *m*-dimensional topological manifold with boundary M is a hausdorff space with a countable basis of its topology such that there are homeomorphisms $h_i: U_i \to V_i$ with open subsets U_i in M and V_i in \mathbb{R}^m_- and the U_i cover M. An $x \in M$ is called a boundary point, if there is a homeomorphism $h: U \to V$ with U open in M, V open in \mathbb{R}^m_- , $x \in U$ and $h(x) \in \partial \mathbb{R}^m_-$. The set of boundary points is called boundary of M, ∂M .

Prove that the following spaces are manifolds with boundary: $\mathbb{D}^2 \times \mathbb{S}^1$, [0, 1] and $(\mathbb{S}^1 \times \mathbb{S}^1) \setminus \mathbb{D}^2$, where \mathbb{D}^2 is suitably embedded in the torus.

What is the boundary?

(4 points)

No 11