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Abstract. The commutative differential graded algebra APL(X) of polyno-
mial forms on a simplicial set X is a crucial tool in rational homotopy theory.

In this note, we construct an integral version AI(X) of APL(X). Our approach

uses diagrams of chain complexes indexed by the category of finite sets and
injections I to model E∞ differential graded algebras by strictly commutative

objects, called commutative I-dgas. We define a functor AI from simplicial
sets to commutative I-dgas and show that it is a commutative lift of the usual

cochain algebra functor. In particular, it gives rise to a new construction of

the E∞ dga of cochains.
The functor AI shares many properties of APL, and can be viewed as a

generalization of APL that works over arbitrary commutative ground rings.

Working over the integers, a theorem by Mandell implies that AI(X) deter-
mines the homotopy type of X when X is a nilpotent space of finite type.

1. Introduction

The cochains C(X; k) on a space X with values in a commutative ring k form a
differential graded algebra whose cohomology is the singular cohomology H∗(X; k)
of X. The multiplication of C(X; k) induces the cup product on H∗(X; k). Over
the rationals, C(X;Q) is quasi-isomorphic to the commutative differential graded
algebra (cdga) APL(X) of polynomial forms on X, which is a very powerful tool
in rational homotopy theory [Sul77, BG76]. The functor APL has a contravariant
adjoint, denoted byK• in [Hes07, Definition 1.23], and called the Sullivan realization
in [FHT01, §17]. With the help of this adjoint pair of functors one can determine
the homotopy type of rational nilpotent spaces of finite type (see [BG76, Chapter 9],
or [Hes07, Theorem 1.25] for the simply connected case).

For a general commutative ring k, there is no cdga which is quasi-isomorphic to
C(X; k), for example because the Steenrod operations witness the non-commutati-
vity of C(X;Fp). However, C(X; k) is always commutative up to coherent homo-
topy. This can be encoded using the language of operads [May72]: the multiplica-
tion of C(X; k) extends to the action of an E∞ operad in chain complexes turning
C(X; k) into an E∞ dga. This additional structure is important because Mandell
showed that the cochain functor C(−;Z) to E∞ dgas classifies nilpotent spaces of
finite type up to weak equivalence [Man06, Main Theorem].

One can describe homotopy coherent commutative multiplications on chain com-
plexes using diagram categories instead of operads. Let I be the category with
objects the finite sets m = {1 . . . ,m},m ≥ 0, with the convention that 0 is the
empty set. Morphisms in I are the injections. Concatenation in I and the ten-
sor product of chain complexes of k-modules give rise to a symmetric monoidal
product � on the category ChIk of I-diagrams in Chk. A commutative I-dga is a
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commutative monoid in (ChIk ,�) or, equivalently, a lax symmetric monoidal functor
I → Chk. Equipped with suitable model structures, the category of commutative
I-dgas, ChIk [C], is Quillen equivalent to the category of E∞ dgas [RS17, §9]. This
is analogous to the situation in spaces, where commutative monoids in I-diagrams
of spaces are equivalent to E∞ spaces [SS12, §3].

Chasing the E∞ dga of cochains C(X; k) on a space X through the chain of
Quillen equivalences relating E∞ dgas and commutative I-dgas shows that C(X; k)
can be represented by a commutative I-dga. The purpose of this paper is to
construct a direct point set level model AI(X) for the quasi-isomorphism type of
commutative I-dgas determined by C(X; k) that should be viewed as an integral
generalization of APL(X). Despite the fact that APL(X) was introduced more
than 40 years ago and has been widely studied, it appears that a direct integral
counterpart was neither known nor expected to exist.

If E is a commutative I-dga, then its Bousfield–Kan homotopy colimit EhI has
a canonical action of the Barratt–Eccles operad, which is an E∞ operad built from
the symmetric groups. The commutative I-dga AI(X) thus gives rise to an E∞
dga AI(X)hI which can be compared to the usual cochains without referring to
model structures.

Theorem 1.1. The contravariant functors X 7→ AI(X)hI and X 7→ C(X; k) from
simplicial sets to E∞ dgas are naturally quasi-isomorphic.

We prove the theorem using Mandell’s uniqueness result for cochain theories
[Man02, Main Theorem]. Since the definition of AI does not rely on the existing
constructions of E∞ structures on cochains, the theorem implies that our approach
provides an alternative construction of the E∞ dga C(X; k). If k is a field of
characteristic 0, then there is a natural quasi-isomorphism AI(X)hI → APL(X)
relating our approach to the classical polynomial forms (see Theorem 5.9).

The passage through commutative I-dgas has the advantage that we do not
need to lift the action of the acyclic Eilenberg–Zilber operad to the action of
an actual E∞ operad as done by Mandell [Man02, §5] based on work of Hinich–
Schechtman [HS87], and it also avoids the elaborate combinatorial arguments used
by Berger–Fresse [BF04]. Another approach to capture the commutativity of
C(X; k) has been pursued by Karoubi [Kar09] who introduces a notion of quasi-
commutative dgas that is based on a certain reduced tensor product, constructs a
quasi-commutative model for the cochains, and uses Mandell’s results to relate it
to ordinary cochains.

Since it is often easier to work with strictly commutative objects rather than
E∞ objects, we also expect that the commutative I-dga AI(X) will be a useful
replacement of the E∞ dga C(X; k) in applications. For instance, iterated bar
constructions for E∞ algebras as developed in [Fre11] are rather involved whereas
iterated bar construction for commutative monoids are straightforward. Commuta-
tive I-dgas are tensored over simplicial sets whereas enrichments for E∞ monoids
are more complicated because the coproduct is not just the underlying monoidal
product. This allows for constructions such as higher order Hochschild homology
[Pir00] for commutative I-dgas.

Writing AI(X;Z) for AI(X) when working over k = Z, Theorem 1.1 leads to
the following reformulation of the main theorem of Mandell [Man06] that highlights
the usefulness of AI :

Theorem 1.2. Two finite type nilpotent spaces X and Y are weakly equivalent if
and only if AI(X;Z) and AI(Y ;Z) are weakly equivalent in ChIZ[C].



A STRICTLY COMMUTATIVE MODEL FOR THE COCHAIN ALGEBRA OF A SPACE 3

1.3. Outline of the construction. Our chain complexes are homologically graded
so that cochains are concentrated in non-positive degrees. We model spaces by
simplicial sets and consider the singular complex of a topological space if necessary.

The functor APL : sSetop → cdgaQ of polynomial forms used in rational homo-

topy theory (see e.g. [BG76, §1]) motivates our definition of AI . We recall that
APL arises by Kan extending the functor APL,• : ∆op → cdgaQ sending [p] in ∆ to
the algebra of polynomial differential forms

APL,p = Λ(t0, . . . , tp; dt0, . . . , dtp)/(t0 + · · ·+ t1 = 1, dt0 + · · ·+ dtp = 0) .

Here Λ is the free graded commutative algebra over Q, the generators ti have degree
0, and the dti have degree −1 (in our homological grading). Setting d(ti) = dti
extends to a differential that turns APL,q into a commutative dga, and addition of
the ti and insertion of 0 define the simplicial structure of APL,•.

Let CD0 be the free commutative Q-dga on the chain complex D0 with (D0)i = 0
if i 6= 0,−1 and d0 : (D0)0 → (D0)−1 being idQ. Moreover, let S0 in ChQ be the
monoidal unit, i.e., the chain complex with a copy of Q concentrated in degree 0.
Sending 1 ∈ (CD0)0 to either 1 or 0 in Q defines two commutative CD0-algebra
structures on S0 that we denote by S0

0 and S0
1 . One can now check that the

simplicial Q-cdga APL,• is isomorphic to the two sided bar construction

B•(S
0
0 ,CD0, S0

1) =
(
[p] 7→ S0

0 ⊗ (CD0)⊗p ⊗ S0
1

)
whose face maps are provided by the algebra structures on S0

1 and S0
0 and the

multiplication of CD0, and whose degeneracy maps are induced by the unit of
CD0.

While polynomial differential forms appear to have no obvious counterpart in
commutative I-dgas, their description in terms of a two sided bar construction
easily generalizes to commutative I-dgas over an arbitrary commutative ground
ring k. For this we consider the left adjoint

CF I1 : Chk → ChIk [C], A 7→
(
m 7→

⊕
s≥0

((⊕
I(1ts,m)A

⊗s
)
/Σs

))
to the evaluation of a commutative I-dga at the object 1 in I and recall that the
unit UI in ChIk is the constant I-diagram on the unit S0 in Chk. As above, we
form CF I1D0, observe that UI gives rise to two commutative CF I1D0 algebras UI0
and UI1 , and define AI• : ∆op → ChIk [C] to be the two sided bar construction

B•(U
I
0 ,CF I1 (D0), UI1 ) =

(
[p] 7→ UI0 � (CF I1 (D0))�p � UI1

)
.

At this point it is central to work with strictly commutative objects since the
multiplication map of an E∞ object is typically not an E∞ map. It is also important
to use 1 rather than 0 in the above left adjoint since this ensures that AIp (m) is
contractible. This is related to J. Smith’s insight that one has to use positive model
structures for commutative symmetric ring spectra.

Via Kan extension and restriction along the canonical functor ∆op → sSetop,
this AI• gives rise to functors AI : sSetop → ChIk [C] and KI : ChIk [C]op → sSet
(see Definition 3.6). More explicitly, the evaluation of AI(X) at I-degree m and
chain complex level q is the k-module of simplicial set morphisms sSet(X,AI• (m)q).
The functors AI and KI are contravariant right adjoint in the sense that there
are natural isomorphisms ChIk [C](E,AI(X)) ∼= sSet(X,KI(E)). They are integral
analogues of the functor of polynomial forms and of the Sullivan realization functor.

1.4. Homotopical analysis of AI. We equip simplicial sets with the standard
model structure and the category of commutative I-dgas ChIk [C] with the positive
I-model structure making it Quillen equivalent to E∞ dgas.
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Theorem 1.5. Both AI and KI send cofibrations to fibrations and acyclic cofi-
brations to acyclic fibrations. They induce functors on the corresponding homotopy
categories RKI : Ho(ChIk [C])op → Ho(sSet) and RAI : Ho(sSet)op → Ho(ChIk [C])
that are related by a natural isomorphism

Ho(ChIk [C])(E,RAI(X)) ∼= Ho(sSet)(X,RKI(E)) .

A similar result for APL : sSetop → cdgaQ has been established by Bousfield–
Gugenheim [BG76, §8]. Mandell [Man02, §4] constructed an analogous adjunction
between simplicial sets and E∞ dgas using the E∞ structure on cochains as input.

Since all simplicial sets are cofibrant, the statement of Theorem 1.5 implies that
each AI(X) is positive fibrant. Writing I+ for the full subcategory of I on objects
m with |m| ≥ 1, this means that each morphism m → n in I+ induces a quasi-
isomorphisms AI(X)(m)→ AI(X)(n). Hence each chain complex AI(X)(m) with
m in I+ captures the quasi-isomorphism type of the cochains C(X; k). Since the
positive I-model structure is the left Bousfield localization of a positive level model
structure, it also follows that weak homotopy equivalences X → Y induce quasi-
isomorphisms AI(Y )(m)→ AI(X)(m) for m in I+.

Analogous to the corresponding statement about APL, the proof of the theorem
is based on the observation that the the simplicial sets AI• (m)q obtained by fixing
an m in I+ and a chain level q are contractible.

Remark 1.6. After a first version of the present manuscript was made available,
the authors learned from Dan Petersen that he recently found another construction
of a commutative I-dga that models the cochain algebra of a space [Pet]. His
approach applies to locally contractible topological spaces, uses sheaf cohomology,
and has applications in the study of configuration spaces.

1.7. Notations and conventions. Throughout the paper, k denotes a commu-
tative ring with unit, and Chk denotes the category of unbounded homologically
graded chain complexes of k-modules.

1.8. Organization. In Section 2 we study homotopy colimits of commutative I-
dgas. Section 3 provides the construction of the functor AI . We review model
structures on I-chain complexes and commutative I-dgas in Section 4. In Section 5
we establish the homotopical properties of AI , prove a comparison to the usual
cochains disregarding multiplicative structures, and prove Theorem 1.5. In the
final Section 6, we prove the E∞ comparison from Theorem 1.1 as Theorem 6.2
and explain how to derive Theorem 1.2.

2. Homotopy colimits of I-chain complexes

Let I be the category with objects the finite sets m = {1, . . . ,m} for m ≥ 0
and with morphisms the injective maps. In this section we study multiplicative
properties of the homotopy colimit functor for I-diagrams of chain complexes.

Definition 2.1. An I-chain complex is a functor I → Chk, and ChIk denotes the
resulting functor category.

For each m in I there is an adjunction F Im : Chk � ChIk : Evm with right adjoint
the evaluation functor Evm(P ) = P (m) and left adjoint

(2.1) F Im : Chk → ChIk , A 7→
(
n 7→

⊕
I(m,n)A

)
.

The functor F I0 is isomorphic to the constant functor since 0 is initial in I.
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2.2. Homotopy colimits. Our next aim is to define Bousfield–Kan style homo-
topy colimits for I-diagrams of chain complexes. For the subsequent multiplicative
analysis, we fix notation and conventions about bicomplexes.

Definition 2.3. Let Chk(Chk) be the category of chain complexes in Chk. Its
objects are Z×Z-graded k-modules (Yp,q)p,q∈Z with k-linear horizontal differentials,
dh : Yp,q → Yp−1,q, and k-linear vertical differentials, dv : Yp,q → Yp,q−1, such that

dh ◦ dh = 0 = dv ◦ dv and dv ◦ dh = dh ◦ dv.
A morphism g : Y → Z in Chk(Chk) is a family (gp,q : Yp,q → Zp,q)p,q∈Z×Z of
k-linear maps that commute with the horizontal and vertical differentials, i.e.,

dh ◦ gp,q = gp−1,q ◦ dh and dv ◦ gp,q = gp,q−1 ◦ dv
for all p, q ∈ Z.

Since we require horizontal and vertical differentials to commute, an additional
sign is needed to form the total complex:

Definition 2.4. Let Y be an object in Chk(Chk). Its associated total complex
Tot(Y ) is the chain complex with Tot(Y )n =

⊕
p+q=n Yp,q in chain degree n ∈ Z

and with differential dTot(y) = dh(y) + (−1)pdv(y) for every homogeneous y ∈ Yp,q.

Let sChk be the category of simplicial objects in Chk.

Definition 2.5. For A ∈ sChk we denote by C∗(A) the chain complex in chain
complexes with (C∗(A))p,q = Ap,q. We define the horizontal differential on C∗(A),
dh : Ap,q → Ap−1,q, as

dh =

p∑
i=0

(−1)idi

where the di are the simplicial face maps of A. The vertical differential on C∗(A)
is given by the differential dA on A.

As the di’s commute with dA, this gives indeed a chain complex in chain com-
plexes whose horizontal part is concentrated in non-negative degrees.

Construction 2.6. Let P : I → Chk be an I-chain complex. The simplicial
replacement of P is the simplicial chain complex srep(P ) : ∆op → Chk given in
simplicial degree [p] by

srep(P )[p] =
⊕

(n0

α1←−... αp←−−np)∈N(I)p

P (np) .

The last face map sends the copy of P (np) indexed by (α1, . . . , αp) via P (αp) to
the copy of P (np−1) indexed by (α1, . . . , αp−1). The other face and degeneracy
maps are induced by the identity on P (np) and corresponding simplicial structure
maps of the nerve N (I) of I.

The homotopy colimit functor (−)hI : ChIk → Chk is defined by

PhI = Tot C∗(srep(P )) .

A bicomplex spectral sequence argument shows that PhI → QhI is a quasi-
isomorphism if each P (m) → Q(m) is a quasi-isomorphism. There is a canoni-
cal map PhI → colimI P , and one can show by cell induction that it is a quasi-
isomorphism if P is cofibrant in the projective level model structure on ChIk . To-
gether this shows that PhI is a model for the homotopy colimit of P . A more
elaborate argument that shows that PhI is a corrected homotopy colimit can be
found in [RG14]. A version of the above homotopy colimit for functors with values
in modules can be found in [DL98, Definition 3.13].
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2.7. Commutative I-dgas. The ordered concatenation of ordered sets m t n =
m + n equips I with a symmetric strict monoidal structure that has 0 as a strict
unit and the block permutations as symmetry isomorphisms. If P,Q : I → Chk are
I-chain complexes, then the left Kan extension of

I × I P×Q−−−→ Chk × Chk
⊗−→ Chk

along t : I × I → I provides an I-chain complex P �Q. This defines a symmetric
monoidal product � on ChIk , the Day convolution product, with unit the constant
I-space UI = F I0 (S0).

Definition 2.8. A commutative I-dga is a commutative monoid in (ChIk ,�, U
I),

i.e., a lax symmetric monoidal functor (I,t,0) → (Chk,⊗, S0). The resulting

category of commutative I-dgas is denoted by ChIk [C].

We write C : ChIk � ChIk [C] : U for the adjunction with right adjoint the forgetful
functor and left adjoint the free functor C given by

(2.2) C(P ) =
⊕

s≥0 P
�s/Σs.

The definition of � as a left Kan extension implies the existence of a natural
isomorphism F In1

(A1) � F In2
(A2) ∼= F In1tn2

(A1 ⊗ A2). This shows that in the

case P = F I1 (A), we have an isomorphism F I1 (A)�s ∼= F I1ts(A
⊗s) of Σs-equivariant

objects where Σs acts on the target by permuting both the ⊗-powers of A and
the index set of the sum. The commutative I-dga C(F I1 (A)) will be of particular
importance for us, and we note that the above implies

(2.3) C(F I1 (A))(m) ∼=
⊕

s≥0

((⊕
I(1ts,m)A

⊗s
)
/Σs

)
.

2.9. Homotopy colimits of commutative I-dgas. We will now construct an
operad action on the homotopy colimit of a commutative I-dga. Our construction
involves a symmetric monoidal structure on simplicial chain complexes:

Definition 2.10. Let A and B be two simplicial chain complexes. Their tensor
product A⊗̂B is the simplicial chain complex with⊕

`+m=n

Ap,` ⊗Bp,m

in simplicial degree p and chain degree n. The simplicial structure maps act coor-

dinatewise and the differential d⊗̂ is

d⊗̂(a⊗ b) = d(a)⊗ b+ (−1)`a⊗ d(b)

for a ⊗ b ∈ Ap,` ⊗ Bp,m. The symmetry isomorphism c : A⊗̂B → B⊗̂A sends a
homogeneous element a⊗ b as above to (−1)`·mb⊗ a.

We denote by Σ̃s the translation category of the symmetric group Σs. Its objects

are elements σ ∈ Σs and τ ∈ Σs is the unique morphism from σ to τ ◦ σ in Σ̃s.
Since there is exactly one morphism between each pair of objects, we get a functor

(2.4) Σ̃s × Σ̃j1 × · · · × Σ̃js → Σ̃j1+···+js

by specifying that (σ; τ1, . . . , τs) is sent to τσ−1(1)t . . .t τσ−1(s). The action (2.4) is

associative, unital, and symmetric. It turns the collection of categories (Σ̃n)n≥0 into

an operad Σ̃ in the category cat of small categories. For the next definition, we use
that the nerve functor N : cat→ sSet and the k-linearization k{−} : sSet→ sModk
are strong symmetric monoidal and that the associated chain complex functor
C∗ : sModk → Chk is lax symmetric monoidal (compare Proposition 2.16 below).
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Definition 2.11. The Barratt–Eccles operad is the E∞ operad E in Chk with

En = C∗(k{N (Σ̃n)}) and operad structure induced by the functor (2.4).

The commutativity operad C in Chk is the operad with Cn = k concentrated in
chain complex level 0. The operad E admits a canonical operad map E → C which is
a quasi-isomorphism in each level. Moreover, En is a free k[Σn]-module for each n.
Thus E is an E∞ operad in Chk in the terminology of [Man02, Definition 4.1].

Applying the nerve to Σ̃ defines an operad in sSet that is more commonly referred
to as the Barratt–Eccles operad. It is well known that the latter operad acts on
the nerve of a permutative category [May74, Theorem 4.9]. The next lemma recalls

the underlying action of Σ̃ for the permutative category I.

Lemma 2.12. The operad Σ̃ in cat acts on I. On objects σ in Σ̃n and mi in I,
the action is given by (σ; m1, . . . ,mn) 7→mσ−1(1) t . . . tmσ−1(n).

Proof. This is a special case of [May74, Lemmas 4.3 and 4.4]. Functoriality in

morphisms of Σ̃n uses the symmetry isomorphism of I while the functoriality in I
is the evident one. �

The next result is our main motivation for considering the Barratt–Eccles operad.
It is analogous to the result about I-diagrams in spaces established in [Sch09,
Proposition 6.5].

Theorem 2.13. For every commutative I-dga E, the chain complex EhI has a
natural action of the Barratt–Eccles operad E.

Proof. We can view the simplicial k-module k{N (Σ̃n)} as a simplicial chain complex

concentrated in chain degree 0. The operad structure of Σ̃ turns these simplicial
k-modules into an operad in sModk and in sChk. We construct an action

k{N (Σ̃s)}⊗̂ srep(E)⊗̂s → srep(E).

It is enough to specify the action of a q-simplex (σ1, . . . , σq) inN (Σ̃s) on a collection
of elements (αi1, . . . , α

i
q;x

i) in srep(E)[q]pi where αij : ni
j → ni

j−1 is a map in I and xi

is an element in E(ni
q)pi . On the indices (αi1, . . . , α

i
q) for the sums in the simplicial

replacement, we use the action of (σ1, . . . , σq) provided by the previous lemma. As

element in E(n
σ−1
q (1)

q t. . .tn
σ−s
q (1)

q )p1+···+ps we take the product xσ
−1
q (1) · · ·xσ

−1
q (s).

Since E is commutative, this does indeed define an operad action in sChk. By
Propositions 2.16 and 2.17 below, the composite TotC∗ is lax symmetric monoidal.
Hence it follows that E acts on EhI . �

2.14. Monoidality of C∗ and Tot. It remains to verify the monoidal properties
of C∗ and Tot that were used in the proof of Theorem 2.13.

Definition 2.15. Let Y and Z be two objects in Chk(Chk). Their tensor product
is Y ⊗ Z is the object in Chk(Chk) with

(Y ⊗ Z)p,q =
⊕

a1+a2=p

⊕
b1+b2=q

Ya1,b1 ⊗ Za2,b2

and differentials d⊗h (y ⊗ z) = dh(y) ⊗ z + (−1)a1y ⊗ dh(z) and d⊗v (y ⊗ z) =

dv(y)⊗ z + (−1)b1y ⊗ dv(z). The symmetry isomorphism τ : Y ⊗ Z → Z ⊗ Y
sends a homogeneous element y ⊗ z ∈ Ya1,b1 ⊗ Za2,b2 to (−1)a1a2+b1b2z ⊗ y.

Proposition 2.16. The functor C∗ : sChk → Chk(Chk) is lax symmetric monoidal.
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Proof. As in [ML63, Theorem VIII.8.8] we denote (p, q)-shuffles as two disjoint
subsets µ1 < . . . < µp and ν1 < . . . < νq of {0, . . . , p+ q − 1}. For simplicial chain
complexes A and B we define maps

shA,B : C∗(A)⊗ C∗(B)→ C∗(A⊗̂B)

that turn C∗ into a lax symmetric monoidal functor: If a ⊗ b is a homogeneous
element in Ar1,r2 ⊗Bs1,s2 we set

shA,B(a⊗ b) =
∑
(µ,ν)

sgn(µ, ν)sνs1 ◦ . . . ◦ sν1(a)⊗ sµr1 ◦ . . . ◦ sµ1
(b).

Here, the sum runs over all (r1, s1)-shuffles (µ, ν) and sgn(µ, ν) denotes the signum
of the associated permutation.

As the simplicial structure maps of A and B commute with dA and dB , it follows
that sh commutes with the vertical differential. The proof that the horizontal
differential is compatible with sh is the same as for sh in the context of simplicial
modules.

It remains to show that sh turns C∗ into a lax symmetric monoidal functor, i.e.,
we have to show that

(2.5) C∗(c) ◦ sh(a⊗ b) = sh ◦τ(a⊗ b)
for any homogeneous element a⊗b ∈ Ar1,r2⊗Bs1,s2 . As τ(a⊗b) = (−1)r1s1+r2s2b⊗a,
the right-hand side of equation (2.5) is∑

(ξ,ζ)

(−1)r1s1+r2s2sgn(ξ, ζ)sζs1 ◦ . . . ◦ sζ1(b)⊗ sξr1 ◦ . . . ◦ sξ1(a)

with (ξ, ζ) being (s1, r1)-shuffles, whereas the left-hand side of the equation gives

(−1)r2s2
∑
(µ,ν)

sgn(µ, ν)sµr1 ◦ . . . ◦ sµ1(b)⊗ sνs1 ◦ . . . ◦ sν1(a)

because τ introduces the sign (−1)r2s2 . Precomposing with the permutation that
exchanges the blocks 0 < . . . < r1 − 1 and r1 < . . . < r1 + s1 − 1 gives a bijection
between the summation indices and introduces the sign (−1)r1s1 . Hence the two
sides agree. �

Proposition 2.17. The functor Tot is strong symmetric monoidal.

Proof. Spelling out what Tot(Y )⊗ Tot(Z) is in degree n we obtain

(Tot(Y )⊗ Tot(Z))n ∼=
⊕

r1+r2+s1+s2=n

Yr1,r2 ⊗ Zs1,s2 ,

and we send a homogeneous element y ⊗ z ∈ Yr1,r2 ⊗ Zs1,s2 to the element

(−1)r2s1y ⊗ z ∈ Tot(Y ⊗ Z)n ∼=
⊕

r1+s1+r2+s2=n

Yr1,r2 ⊗ Zs1,s2 .

This gives isomorphisms

ϕY,Z : Tot(Y )⊗ Tot(Z)→ Tot(Y ⊗ Z)

that are associative. It is clear that Tot respects the unit up to isomorphism.
The maps ϕY,Z are compatible with the differential: Let y⊗z be a homogeneous

element in Yr1,r2 ⊗ Zs1,s2 . The composition dTot ◦ ϕ applied to y ⊗ z gives

dTot ◦ ϕ(y ⊗ z) = (−1)r2s1d⊗h (y ⊗ z) + (−1)r2s1(−1)r1+s1d⊗v (y ⊗ z)
= (−1)r2s1dh(y)⊗ z + (−1)r2s1+r1y ⊗ dh(z)

+ (−1)r2s1+r1+s1dv(y)⊗ z + (−1)r2s1+r1+s1+r2y ⊗ dv(z).
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First applying the differential to y ⊗ z and then ϕ yields

ϕ(dTot(y)⊗ z + (−1)r1+r2y ⊗ dTot(z))

=ϕ(dh(y)⊗ z + (−1)r1dv(y)⊗ z + (−1)r1+r2y ⊗ dh(z) + (−1)r1+r2+s1y ⊗ dv(z))

=(−1)r2s1dh(y)⊗ z + (−1)r1+(r2−1)s1dv(y)⊗ z + (−1)r1+r2+r2(s1−1)y ⊗ dh(z)

+ (−1)r1+r2+s1+r2s1y ⊗ dv(z)
thus both terms agree.

We denote the symmetry isomorphism in the category of chain complexes by χ.
Then

ϕ ◦ χ(e⊗ f) = ϕ((−1)(r1+r2)(s1+s2)f ⊗ e) = (−1)r1s1+r2s2+s1r2+2s2r1f ⊗ e
and this is equal to

Tot(τ) ◦ ϕ(e⊗ f) = Tot(τ)((−1)r2s1e⊗ f) = (−1)r2s1+r1s1+r2s2f ⊗ e. �

Remark 2.18. One can also consider a symmetric monoidal structure on Chk(Chk)
with the same underlying tensor product but with symmetry isomorphism

y ⊗ z 7→ (−1)(r1+r2)(s1+s2)z ⊗ y
for homogeneous elements y⊗ z ∈ Yr1,r2 ⊗Zs1,s2 . Then one can take ϕ in Proposi-
tion 2.17 to be the identity. However, this symmetry isomorphism is not compatible
with the shuffle transformation from the proof of Proposition 2.16.

Remark 2.19. For a simplicial chain complex A one can also consider a normalized
object N(A) ∈ Chk(Chk) where one divides out by the subobject generated by
degenerate elements. As the simplicial structure maps commute with the differential
of A, this is well-defined, and the proof of Proposition 2.16 can be adapted as in
[ML63, Corollary VIII.8.9] to show that the functor N : sChk → Chk(Chk) is also
lax symmetric monoidal. Consequently, one can also use N instead of C∗ in the
definition of the Barratt–Eccles operad E and the homotopy colimit PhI so that
Theorem 2.13 remains valid.

3. Cochain functors with values in I-chain complexes

In this section we construct the functor AI discussed in the introduction and a
version of the ordinary cochains with values in I-chain complexes.

3.1. Adjunctions induced by simplicial objects. We briefly recall an ubiqui-
tous construction principle for adjunctions that we will later apply to simplicial
objects in the categories of commutative I-dgas and I-chain complexes in order
to define the commutative I-dga of polynomial forms on a simplicial set and an
integral version of the Sullivan realization functor (see Definition 3.6).

Construction 3.2. Let D• : ∆op → D be a simplicial object in a complete category

D. Passing to opposite categories, D• gives rise to a functor D̃• : ∆→ Dop. Since
D is complete, Dop is cocomplete. Hence restriction and left Kan extension along
∆→ sSet, [p] 7→ ∆p define an adjunction

D̃ : sSet � Dop : KD .

Writing D : sSetop → D for the opposite of D̃, this implies that for a simplicial set
X and an object E of D, we have a natural isomorphism

(3.1) D(E,D(X)) = Dop(D̃(X), E) ∼= sSet(X,KD(E))

exhibiting D and KD as contravariant right adjoint functors. Unraveling defini-
tions, the contravariant functors KD and D are given by KD(E)• = D(E,D•) and
D(X) = lim∆p→X Dp where the limit is taken over the category of elements of X.
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In the special case D = Set, writing X as a colimit of representable functors indexed
over its category of elements provides a natural bijection D(X) ∼= sSet(X,D).

The functor D extends the original functor D• in that there is a natural iso-
morphism D• ∼= D(∆•). The construction is also functorial in D•, i.e., a natural
transformation D• → D′• of functors ∆op → D induces a natural transformation
D → D′ of functors (sSet)op → D.

We note an immediate consequence of having the adjunction (D̃,KD).

Lemma 3.3. The functor D takes colimits in sSet to limits in D, and KD takes
colimits in D to limits in sSet. �

When D• : ∆op → ChIk [C] is a simplicial object in commutative I-dgas, we may
apply Construction 3.2 both to D• and to its composite D′• = UD• with the

forgetful functor U : ChIk [C]→ ChIk . Since the extensions of D• and D′• to functors
on sSet are defined by limit constructions and U commutes with limits, we have a
natural isomorphism U(D(X)) ∼= D′(X) for a simplicial set X. The adjoints KD

and KD′ are related by a natural isomorphism KD′
∼= KD ◦ C : (ChIk )op → sSet.

An analogous remark applies to simplicial objects of algebras in ChIk over a more
general operad than the commutativity operad.

For D• : ∆op → ChIk [C], the fact that ChIk [C] → Set, E 7→ E(m)q commutes
with limits implies that the underlying set of D(X)(m)q is sSet(X,D•(m)q). The
pointwise k-module structure, differentials and multiplications on these sets give
rise to the commutative I-dga structure on D(X).

3.4. The commutative I-dga version of polynomial forms. Composing the
left adjoints in the adjunctions (F I1 ,Ev1) and (C, U) introduced in (2.1) and (2.2)

provides a left adjoint CF I1 : Chk → ChIk [C] made explicit in (2.3). We are par-
ticularly interested in the commutative I-dga CF I1 (D0). For an element i ∈ k,
the k-module map k → k = Ev1(UI)0 determined by 1 7→ i gives rise to a map
εi : CF I1 (D0) → UI . We write UI0 and UI1 for the two commutative CF I1 (D0)-
algebras resulting from the elements 0, 1 ∈ k.

Definition 3.5. We let AI• : ∆op → ChIk [C] be the simplicial commutative I-dga
given by the two-sided bar construction

(3.2) [p] 7→ AIp = Bp(U
I
0 ,CF I1 (D0), UI1 ) = UI0 � CF I1 (D0)�p � UI1 .

As with the space level version (see e.g. [May72]), the outer face maps are pro-
vided by the algebra structures of UI0 and UI1 , the inner face maps come from the
multiplication of CF I1 (D0), and the degeneracy maps are induced by its unit.

To make this simplicial object more explicit, we write D0
r for the chain complex

with copies of k on generators r in degree 0 and on dr in degree −1 and 0 elsewhere.
Its non-zero differential is d(a·r) = a·dr. Since CF I1 is left adjoint and UI is the unit
for �, commuting CF I1 with coproducts provides an isomorphism of commutative
I-dgas

AIp
∼= CF I1 (D0

r1(p) ⊕ · · · ⊕D
0
rp(p))

where the generators r1(p), . . . , rp(p) correspond to the p copies of CF I1 (D0). By

adjunction, maps f : CF I1 (D0
r1(p) ⊕ · · · ⊕ D0

rp(p)) → E in ChIk [C] correspond to

families of elements f(r1(p)), . . . , f(rp(p)) ∈ E(1)0.
We now set r0(p) = 0 and define rp+1(p) to be the image of 1 under the map

k = UI(1)→ CF I1 (D0
r1(p) ⊕ · · · ⊕D

0
rp(p))(1)
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induced by the unit. With this notation, the simplicial structure maps of the two
sided bar construction (3.2) are determined by requiring

di(rj(p)) =

{
rj(p− 1) if j ≤ i
rj−1(p− 1) if j > i,

si(rj(p)) =

{
rj(p+ 1) if j ≤ i
rj+1(p+ 1) if j > i .

Applying Construction 3.2, we obtain the following pair of adjoint functors.

Definition 3.6. (i) The commutative I-dga of polynomial forms on a simplicial
set X, AI(X), is defined as

AI(X) = sSet(X,AI• ).

This defines a functor AI : sSetop → ChIk [C].
(ii) Its adjoint functor KI : ChIk [C]op → sSet sends a commutative I-dga E to

KI(E) = ChIk [C](E,AI• ).

The simplicial set KI(E) is the Sullivan realization of E.

For a simplicial k-module Z : ∆op → Modk, extra degeneracies are a family of
k-linear maps sp+1 : Zp → Zp+1 satisfying dp+1sp+1 = idZp if p ≥ 0, disp+1 =
spdi : Zp → Zp if p ≥ 1 and 0 ≤ i ≤ p, and 0 = d0s1 : Z0 → Z0. The presence
of extra degeneracies implies that Z is contractible to 0 (in the sense that Z → 0
is a weak equivalence in sModk) since the maps (−1)p+1sp+1 define a contracting
homotopy for the chain complex C∗(Z).

The following lemma is the technical backbone for our homotopical analysis of
the prolongation AI of AI• in Section 5. It is analogous to [BG76, Proposition 1.1].

Lemma 3.7. For all q ∈ Z and all positive objects m in I, the simplicial k-module
AI•,q(m) is contractible to 0.

Remark 3.8. The statement of the lemma does not hold for m = 0 since A•,0(m)
is the constant simplicial object on k, which is not contractible.

Proof of Lemma 3.7. We decompose the sum over s in (2.2) as C(P ) = UI ⊕N(P )
where N(P ) =

⊕
s≥1 P

�s/Σs is the free non-unital I-dga on the I-chain complex P .

For P = F I1 (D0
r1(p)⊕ · · · ⊕D

0
rp(p)), this gives a decomposition of AIp that we use to

define the extra degeneracy sp+1. Restricted to the summand N(P ), the maps sp+1

for varying m will form a map of non-unital I-dgas. By the universal property of
the free non-unital I-dgas, this map is determined by setting sp+1(rj(p)) = rj(p+1)
for all 1 ≤ j ≤ p. On the summand UI in the decomposition of C(P ), the map
sp+1 will neither be a chain map nor be functorial in I. To define sp+1 on the copy
of k in I-degree m, we let rp+1(p) be its generator, choose a map ι : 1 → m, and
define sp+1(rp+1(p)) = rιp+1(p+1) where the index of the latter generator indicates

that it lives in the summand with indices s = 1 and ι ∈ I(1t1,m) of

N(P ) =
⊕

s≥1

((⊕
I(1ts,m)(D

0
r1(p) ⊕ · · · ⊕D

0
rp(p))

⊗s
)
/Σs

)
.

It remains to check that the sp+1 provide extra degeneracies. In simplicial degree
0, the relation d0s1 = 0 holds because d0 sends the generator rι1(1) to 0. Now
assume p ≥ 0. We again use the sum decomposition C(P ) = UI ⊕ N(P ) and the
universal property of the free non-unital I-dga to see that it is enough to check
the compatibilites on the generators. The relation dp+1sp+1 = id holds on the
generators r1(p), . . . , rp(p) since

dp+1sp+1rj(p) = dp+1rj(p+ 1) = rj(p).

For the generator rp+1(p), we have

dp+1sp(rp+1(p)) = dp+1(rιp+1(p+ 1)) = rp+1(p).
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Here we use that the restriction of dp+1 to the s = 1 summand is the sum over all
α : 1→m of the maps that send the generator rαp+1(p) of the respective copy of k
to 1 = rp+1(p). Now let p ≥ 1 and 0 ≤ i ≤ p. For r1(p), . . . , rp(p), the relations
disp+1 = spdi hold since sp+1 only raises the index p in generators by 1 while di
does not depend on p. For rp+1(p), we have

disp+1(rp+1(p)) = di(r
ι
p+1(p+ 1)) = rιp(p) = sp(rp(p− 1)) = spdi(rp+1(p)). �

3.9. Ordinary cochains. Let C(X; k) be the cochains with values in k on the
simplicial set X, viewed as a homologically graded chain complex concentrated in
non-positive degrees. (At this point, we disregard its cup product structure.) So
for q ≥ 0, we have C−q(X; k) = Set(Xq, k) with the pointwise k-module structure
and differential induced by the face maps of X. The cochains on the standard
n-simplices assemble to a functor C• : ∆op → Chk, [p] 7→ C(∆p; k). The following
lemma is well known (see e.g. [FHT01, Lemma 10.11 and Lemma 10.12(ii)]).

Lemma 3.10. (i) The extension of C• to a functor sSet → Chk resulting from
Construction 3.2 is naturally isomorphic to C(−; k).

(ii) For all q ∈ Z, the simplicial k-module C•,q = C(∆•; k)q is contractible to 0.

Proof. For (i), we note that the description of the extension as lim∆p→X C(∆p; k)
implies that there is a natural map from C(X; k). Writing X as a colimit of
representable functors over its category of elements, the evaluation of this map at
q is a bijection since taking maps into k turns colimits into limits.

For (ii), we only need to consider the case q ≤ 0, set n = −q and define

sp+1 : Cq(∆
p; k)→ Cq(∆

p+1; k)

on f : (∆p)n → k as follows: We set sp+1(f) : (∆p+1)n → k to be 0 on all n-simplices
not in the image of dp+1 : ∆p → ∆p+1 and require that sp+1(f) restricts to f on the
last face. Identifying ∆p+1

n with ∆([n], [p+ 1]), this means that sp+1(f)(dp+1α′) =
f(α′) and sp+1(f)(α) = 0 if p + 1 ∈ α([n]). Then for β : [n] → [p] , the equation
dp+1(sp+1(f))(β) = β holds by definition, and d0s1 = 0 in simplicial degree 0 is
also immediate. Now assume p ≥ 1. If β has p in its image, then disp+1(f)(β) =
0 = spdi(f)(β). Otherwise, we must have β = dpβ′ and thus

disp+1(f)(dpβ′) = sp+1(f)(didpβ′) = sp+1(f)(dp+1diβ′)

= f(diβ′) = (dif)(β′) = spdi(f)(dpβ′). �

For later use, we lift C• to I-chain complexes by defining

CI• : ∆op → ChIk , [p] 7→ F I0 (C(∆p; k)) .

Corollary 3.11. (i) The extension CI of CI• to a functor sSet→ ChIk resulting
from Construction 3.2 is naturally isomorphic to X 7→ F I0 C(X; k).

(ii) For all q ∈ Z and m in I, the simplicial k-module CI•,q(m) = F I0 (C(∆•; k)q)
is contractible to 0. �

4. Homotopy theory of I-chain complexes and commutative I-dgas

In this section we review basic results about model category structures on I-chain
complexes and commutative I-dgas. Much of this is motivated by (and analogous
to) the corresponding results for space valued functors developed in [SS12, §3].

We continue to consider the category of unbounded chain complexes Chk. For
q ∈ Z, we as usual write Sq for the chain complex with k concentrated in degree q,
and Dq for the chain complex with (Dq)i = k if i ∈ {q, q − 1}, with (Dq)i = 0 for
all other i, and with dq = idk. We equip Chk with the projective model structure
whose weak equivalences are the quasi-isomorphisms and whose fibrations are the
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level-wise surjections [Hov99, Theorem 2.3.11]. It has the inclusions Sq−1 ↪→ Dq as
generating cofibrations and the maps 0→ Dq as generating acyclic cofibrations.

4.1. Level model structures. We call an object m of I positive if |m| ≥ 1 and
write I+ for the full subcategory of positive objects in I.

A map f : P → Q in ChIk is an absolute (resp. positive) level equivalence if f(m)
is a quasi-isomorphism for all m in I (resp. all m in I+). It is an absolute (resp.
positive) level fibration if f(m) is a fibration for all m in I (resp. all m in I+).
An absolute (resp. positive) level cofibration is a map with the left lifting property
with respect to all maps which are both absolute (resp. positive) level fibrations
and equivalences.

Proposition 4.2. These maps define an absolute and a positive level model struc-
tures on ChIk . Both model structures are proper and combinatorial.

Proof. This follows from standard model category arguments, compare [SS12, Pro-
position 6.7]. Alternatively, one may invoke [PS18, Theorem 3.2.5]. �

The cofibrations in these level model structures are the retracts of relative cell
complexes built out of cells of the form F Im(Sq−1 ↪→ Dq) with m in I (resp. I+)
and q ∈ Z. Here F Im is the free functor defined in (2.1).

4.3. I-model structures. We now again use the homotopy colimit PhI from Con-
struction 2.6. A map P → Q in ChIk is an I-equivalence if it induces a quasi-
isomorphism PhI → QhI . Moreover, an I-chain complex P is absolute (resp.
positive) I-fibrant if α∗ : P (m) → P (n) is a quasi-isomorphism for all α : m → n
in I (resp. I+).

Proposition 4.4. The absolute (resp. positive) level model structure on ChIk ad-
mits a left Bousfield localization with fibrant objects the absolute (resp. positive)
I-fibrant objects. The weak equivalences in these two model structures coincide,
and they are given by the I-equivalences.

Proof. Under the identification of I-diagrams with generalized symmetric spec-
tra (see [RS17, Proposition 9.1] or [PS18, Proposition 3.3.9]), the existence of the
model structures and the fact that they have the same weak equivalences follows
from [PS18, Theorem 3.3.4]. An alternative construction of the absolute I-model
structure results from [Dug01, Theorem 5.2]. Since the weak equivalences in the
latter case are the maps that induce weak equivalences on the corrected homotopy
colimits, the claim about I-equivalences follows. �

We call these two model structures the absolute and positive I-model structures
on ChIk and their fibrations absolute and positive I-fibrations.

Remark 4.5. Analogous to [SS12, Proposition 6.16], one can also give a direct
construction of the I-model structures without relying on an abstract existence
theorem for left Bousfield localizations. This has been done by Joachimi [Joa11],
and has the advantage of providing an explicit characterization of the I-fibrations
by a homotopy pullback condition like in [SS12, Proposition 3.2].

Corollary 4.6. Let f : P → Q be a map between positive I-fibrant objects.

(i) If f is an I-equivalence, then it is also a positive level equivalence.
(ii) If f is a positive level fibration, then it is also a positive I-fibration.

Proof. This follows from [Hir03, Theorem 3.2.13 and Proposition 3.3.16]. �

We also note that the quasi-isomorphism type of PhI can easily be read off for
positive I-fibrant P :
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Lemma 4.7. If P is positive I-fibrant in ChIk and m is positive, then the inclusion
of m in I induces a natural quasi-isomorphism P (m)→ PhI .

Proof. This follows for example from [Dug01, Proposition 5.4] since the inclusion
I+ → I is homotopy cofinal and I+ has contractible classifying space. �

As another consequence of [Dug01, Theorem 5.2], we note that the adjunction

colimI : ChIk � Chk : constI is a Quillen equivalence when ChIk is equipped with
the absolute or positive I-model structure. In particular, the composite of

(4.1) (constIA)hI → colimI constIA→ A

is always a quasi-isomorphism, and each P in ChIk is related by a zig-zag of I-
equivalences

(4.2) constI colimI(P cof)← P cof → P

to a constant I-diagram colimI(P )cof where P cof → P is a cofibrant replacement.
We record the following lemma for later use.

Lemma 4.8. If (Pj)j∈J is a family of I-chain complexes, then the canonical map(∏
j∈J Pj

)
hI
→
∏
j∈J(Pj)hI

is a quasi-isomorphism provided that all the Pj’s are positive I-fibrant.

Proof. Arbitrary products of weak equivalences between fibrant objects in a model
category are weak equivalences. Therefore, using that (4.2) is a zig-zag of I-
equivalences between positive I-fibrant objects under our assumptions allows us
to assume that each Pj is of the form constI Aj . Forming the adjoint of the

isomorphism
∏
j∈J constIAj

∼=−→ constI

(∏
j∈JAj

)
under the Quillen equivalence

(colimI , constI) shows that the composite in(∏
j∈J constI Aj

)
hI
→
∏
j∈J(constI Aj)hI

∼−→
∏
j∈J Aj

is a quasi-isomorphism. Since the second map is a product of quasi-isomorphisms,
the claim follows by two-out-of-three. �

4.9. Commutative I-dgas. Although essentially only our formulation of Theo-
rem 1.5 depends on the existence of a lifted model structure on ChIk [C], the following
result is the main motivation for working with commutative I-dgas.

Theorem 4.10. The category ChIk [C] admits a positive I-model structure where
a map is an weak equivalence (or fibration) if the underlying map in the positive I-

model structure on ChIk is. With this model structure, ChIk [C] is Quillen equivalent
to the the category of E∞ dgas and to the category of commutative Hk-algebra
spectra.

Proof. The existence of the model structure follows from [PS18, Theorem 3.4.1], and
the relation to commutative Hk-algebra spectra is the content of [RS17, Theorem
9.5]. �

The equivalence of homotopy categories resulting from this theorem is actually
induced by the homotopy over I with the E-action from Theorem 2.13:

Proposition 4.11. The functor (−)hI : ChIk [C] → Chk[E ] induces an equivalence

of categories Ho(ChIk [C])→ Ho(Chk[E ]).
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Proof. An I-chain complex X admits a bar resolution X → X defined by X(n) =
hocolimI↓n(X ◦ π) where π : I ↓ n → I is the canonical projection from the over-
category forgetting the augmentation to n. The inclusion of the terminal object
in I ↓ n induces a map X → X which is a level equivalence by a homotopy co-
finality argument. The bar resolution has the property colimI X ∼= XhI . When
M is an E-algebra in ChIk , then M inherits an E-algebra structure with diago-
nal E-action (compare the Theorem 2.13 and an analogous space level statements
in [Sch09, Lemma 6.7]). When M is a commutative I-dga, then the E-algebra
structure on colimI(M) resulting from this observation and the strong monoidality
of colimI coincides with the one on MhI provided by Theorem 2.13. We also note
that if X is a cofibrant I-chain complex, then the map colimI X → colimI X is a
quasi-isomorphism. This can be checked directly on free I-chain complexes, and
the general case follows because both sides preserve colimits and send generating
cofibrations to levelwise injections.

To prove the proposition, we note that the chain of Quillen equivalences from
Theorem 4.10 sends a commutative I-dga M to colimIM

cof , the colimit over I
of a cofibrant replacement of M in ChIk [E ]. This colimit is related to MhI by a
natural zig-zag of E-algebra maps

MhI ← (M cof)hI
∼=−→ colimIM cof → colimIM

cof

where the first map is a quasi-isomorphism since the cofibrant replacement is an I-
equivalence and the last map is a quasi-isomorphism by the above discussion since
M cof is a cofibrant I-chain complex by [PS18, Theorem 4.4]. �

For later use we note that the commutative I-dga CF I1 (A) from (2.3) has the
following homotopical feature:

Lemma 4.12. Let A be a cofibrant acyclic chain complex. Then each (CF I1 (A))(m)
is cofibrant in Chk, and the unit UI → CF I1 (A) is an absolute level equivalence.

Proof. We show that the summands in (2.3) indexed by s ≥ 1 are acyclic and
cofibrant. When |m| < s, the indexing set I(1ts,m) is empty. If |m| ≥ s, the
Σs-action on the set of injections I(1ts,m) is free. If R is a set of representatives
of the orbits, we get an isomorphism

⊕
RA
⊗s ∼= (

⊕
I(1ts,m)A

⊗s)/Σs, and the

claim follows because each A⊗s is cofibrant and acyclic. �

5. Comparison of cochain functors

We now define a simplicial I-chain complex BI• by setting BIp = AIp � CIp in

simplicial level p and using the �-products of the simplicial structure maps of AI

and CI as simplicial structure maps for BI• . There is a natural isomorphism

(5.1) BIp (m) = (AIp � F I0 (Cp))(m) ∼= AIp (m)⊗ Cp
that results from the definition of � as a left Kan extension.

The unit maps UI → CI and UI → AI induce a chain

(5.2) AI• → BI• ← CI•

of maps of simplicial objects in ChIk . By Construction 3.2, this chain gives rise to

a chain of natural transformations AI → BI ← CI of functors (sSet)op → ChIk .

Theorem 5.1. For every simplicial set X, the maps AI(X) → BI(X) ← CI(X)
are positive level equivalences between positive I-fibrant objects.

We prove the theorem at the end of the section.

Corollary 5.2. If X → Y is a weak homotopy equivalence of simplicial sets, then
AI(Y )→ AI(X) is a positive level equivalence between positive I-fibrant objects.
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Proof. The map CI(Y ) → CI(X) is an I-equivalence since C(Y ) → C(X) is
a quasi-isomorphism of chain complexes by the homotopy invariance of singular
homology. By the theorem, the claim about AI(Y )→ AI(X) follows. �

Lemma 5.3. The maps in (5.2) are absolute level equivalences between absolute
I-fibrant objects when evaluated in simplicial degree p.

Proof. Let m be an object in I. By Lemma 4.12 the map S0 = UI(m)→ AIp (m)
is a quasi-isomorphism between cofibrant and fibrant objects and thus even a chain
homotopy equivalence. The map S0 → C(∆p) = Cp is a quasi-isomorphism by
the known computation of H∗(∆p; k). Applying F I0 , it provides an absolute level
equivalence UI → CIp . By (5.1), we can decompose UI(m)→ BIp (m) as

S0 → Cp
∼=−→ S0 ⊗ Cp → AIp ⊗ Cp .

We already showed that the first map is is a quasi-isomorphism. The last one is
a quasi-isomorphism since − ⊗ Cp preserves chain homotopy equivalences. The
I-chain complexes AIp , BIp , and CIp are absolute I-fibrant for each p ≥ 0 since they

absolute level equivalent to UI and UI = constI S
0 is absolute I-fibrant. �

Lemma 5.4. For all q ∈ Z and all positive objects m in I, the simplicial k-module
(BI•,q)(m) is contractible to 0.

Proof. From (5.1) we get an isomorphism BI•,q
∼=
⊕

r+s=q A
I
•,r ⊗ C•,s of simplicial

k-modules. The sum over the tensor products of the extra degeneracies for AI•,r(m)
and C•,s(m) from Lemma 3.7 and Lemma 3.10(ii) provide extra degeneracies for
(BI•,q)(m). �

Lemma 5.5. Let D• : ∆op → ChIk be a simplicial object in I-chain complexes such
that for all q ∈ Z and all positive objects m in I, the simplicial k-module (D•,q)(m)
is contractible to 0. Then for all p ≥ 0, the boundary inclusion ∂∆p → ∆p induces
a positive level fibration D(∆p)→ D(∂∆p).

Proof. A map in ChIk is a positive level fibration if and only if it has the right lifting
property against the maps (U → V ) = F Im(0 → Dq) with m positive and q ∈ Z.
By the adjunction (3.1), the lifting property for U → V and D(∆p) → D(∂∆p) is
equivalent to the lifting property for ∂∆p → ∆p and KD(V )→ KD(U). Inspecting
the definition of KD, it follows that asking the latter lifting property for all p ≥ 0
is equivalent to asking the map of simplicial sets ChIk (V,D•) → ChIk (U,D•) to be
an acyclic Kan fibration. Since (F Im,Evm) is an adjunction and since morphisms
in Chk out of Dq correspond to level q elements, the assumption that U → V is
F Im(0→ Dq) implies that ChIk (V,D•)→ ChIk (U,D•) is isomorphic to (D•,q)(m)→
0. The source of this map is contractible by assumption and a Kan complex because
it is the underlying simplicial set of a simplicial k-module. Hence (D•,q)(m) → 0
is an acyclic Kan fibration. �

Remark 5.6. When (D•,0)(0) is not contractible and U → V is F I0 (0→ D0), the

map ChIk (V,D•) → ChIk (U,D•) considered in the previous proof is not an acyclic
Kan fibration. Thus D(∆p)→ D(∂∆p) is not an absolute level fibration. In view of
Remark 3.8, this shows that AI(∆p)→ AI(∂∆p) is not an absolute level fibration.

Proposition 5.7. Let D•→ D′• be a natural transformation of functors ∆op→ChIk .
Suppose that for all p ≥ 0, the map Dp → D′p is a positive level equivalence between
positive I-fibrant objects and that for all q ∈ Z and all positive objects m in I,
the simplicial k-modules (D•,q)(m) and (D′•,q)(m) are contractible. Then for every
simplicial set X, the map D(X) → D′(X) is a positive level equivalence between
positive I-fibrant objects.
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Proof. As usual, this is proved by cell induction. Let us first assume that for
all p ≥ 0, the map D(∂∆p) → D′(∂∆p) is a positive level equivalence between
positive I-fibrant objects. Any simplicial set X can be written as a cell complex
X = colimλ<κXλ built from attaching cells of the form ∂∆p → ∆p. The functor
D takes the inclusion ∂∆p → ∆p to a positive level fibration by Lemma 5.5. Since
we assume that D(∂∆p) and Dp

∼= D(∆p) are positive I-fibrant, it follows from
Corollary 4.6 that D(∆p) → D(∂∆p) is a positive I-fibration. The same holds
for D′. Since both D and D′ take colimits to limits by Lemma 3.3, the coglueing
lemma in the positive level model structure and the fact that base change preserves
I-fibrations shows that D(X)→ D′(X) arises as a limit of pointwise positive level
equivalences between inverse systems of positive I-fibrations. Hence it is a positive
level equivalence between positive I-fibrant objects.

Since ∂∆p only has non-degenerate simplices in dimensions strictly less than p,
an analogous induction over the dimension of ∂∆p shows the remaining claim about
D(∂∆p)→ D′(∂∆p). �

Proof of Theorem 5.1. Combining Lemma 3.7, Corollary 3.11(ii), Lemma 5.4, and
Lemma 5.3, the two maps AI → BI and CI → BI satisfy the hypotheses of
Proposition 5.7. �

We can now also prove Theorem 1.5 from the introduction:

Proof of Theorem 1.5. The adjunction (AI ,KI) arises from AI• by applying Con-
struction 3.2. Lemma 3.7 and Lemma 5.5 show that AI sends cofibrations to
positive level fibrations and thus to positive I-fibrations. Corollary 5.2 implies that
AI sends weak homotopy equivalences to positive level equivalences and thus to
I-equivalences. The rest is an immediate consequence of the self-duality of model
structures with respect to the passage to opposite categories and the adjunction
isomorphisms (3.1). �

5.8. The relation to polynomial forms. By adjunction, the canonical map
D0 → (constI CD0)(1) induces a map CF I1 (D0) → constI CD0 of commutative
I-dgas. Using the description of APL,• as a two sided bar construction outlined in

the introduction, it induces a map AI• → constI APL,• in ChIk [C] and thus a natural
map AI(X)→ constI APL(X) on the extensions to simplicial sets.

Theorem 5.9. Let k be a field of characteristic 0. Then AI(X)→ constI APL(X)
is a positive level equivalence. It induces a quasi-isomorphism AI(X)hI → APL(X)
that is an E-algebra map if we view the cdga APL(X) as an E-algebra by restricting
along the canonical operad map from E to the commutativity operad.

Proof. In characteristic zero the homology groups of (D0)⊗n/Σn are isomorphic
to the coinvariants H∗(D

0)⊗n/Σn and the latter term is trivial for n ≥ 1 because
D0 is acyclic. Therefore CF I1 (D0) → constI CD0 is a positive level equivalence.
The claim about general X follows from Proposition 5.7 and the contractibility
property of APL,• established in [BG76, Proposition 1.1]. Applying (−)hI to this
positive level equivalence and composing with the natural quasi-isomorphism (4.1)
gives the quasi-isomorphism AI(X)hI → APL(X). To see that it is an E-algebra
map, we note that it follows from the definitions that (4.1) is an E-algebra map
when evaluated on a cdga. �

6. Comparison of E∞ structures

Let E be the Barratt–Eccles operad introduced in Definition 2.11. We now
define A : sSetop → Chk[E ] to be the composite A = (AI)hI of the functor AI

from the previous section and the functor (−)hI : ChIk [C] → Chk[E ] resulting from
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Theorem 2.13. The following proposition shows that A is a cochain theory in the
sense of [Man02].

Proposition 6.1. The functor A : sSetop → Chk[E ] has the following properties.

(i) It sends weak equivalence of simplicial sets to quasi-isomorphisms.
(ii) For a sub-simplicial set Y ⊆ X, the induced map from hofib(A(X/Y )→ A(∗))

to hofib(A(X)→ A(Y )) is a quasi-isomorphism.
(iii) For a family (Xj)j∈J of simplicial sets indexed by a set J , the canonical map

A(
∐
j∈J Xj)→

∏
j∈J A(Xj) is a quasi-isomorphism.

(iv) It satisfies H0(A(∗)) ∼= k and Hn(A(∗)) ∼= 0 if n 6= 0.

Proof. Part (i) follows from Corollary 5.2, part (iv) is an immediate consequence of
Theorem 5.1, and part (iii) follows from Lemma 4.8 because AI takes coproducts

in sSet to products of fibrant objects in ChIk .
For (ii), we view X/Y as the pushout of ∗ ← Y → X. The functor AI sends

this pushout to a pullback diagram

(6.1) AI(X/Y ) //

��

AI(X)

��

AI(∗) // AI(Y )

We need to show that we get a homotopy cartesian square after applying (−)hI
to (6.1). Since all objects in (6.1) are positive fibrant, it follows from Lemma 4.7
that the resulting square of homotopy colimits over I is quasi-isomorphic to the
square obtained from (6.1) by evaluating at 1. The latter square is homotopy
cartesian since it is a pullback in which the vertical maps are fibrations. �

Let Ecof be a cofibrant E∞ operad in the sense of [Man02, Definition 4.2]. Then
there exists an operad map Ecof → E to the Barratt–Eccles operad [Man02, Lemma
4.5], and by restricting along Ecof → E we may view A as a functor to Ecof -algebras.
On the other hand, the cosimplicial normalization functor for the category Chk[Ecof ]
provided by [Man02, Theorem 5.8] allows one to lift the ordinary cochain functor
C : sSetop → Chk to a functor with values in Chk[Ecof ] (compare [Man02, §1]). We
are now in a situation where [Man02, Main Theorem] applies:

Theorem 6.2. The functor A : sSetop → Chk[Ecof ] is naturally quasi-isomorphic
to the singular cochain functor C : sSetop → Chk[Ecof ]. �

Remark 6.3. It is well-known how to express the cup-i products on the singular
cohomology of spaces using the Barratt-Eccles operad, see for instance [BF04, The-
orem 2.1.1]. This way the E-algebra structure on A(X) = AI(X)hI gives rise to
cup-i products, and the previous theorem shows that they are equivalent to the
usual cup-i products on the cochain algebra.

Theorem 6.2 also allows us to express Mandell’s theorem [Man06] using AI :

Proof of Theorem 1.2. Let X and Y be two finite type nilpotent spaces. By Propo-
sition 4.11, the commutative I-dgas AI(X;Z) and AI(Y ;Z) are I-equivalent in

ChIZ[C] if and only if AI(X;Z)hI and AI(Y ;Z)hI are quasi-isomorphic in ChZ[E ],
which is in turn equivalent to being quasi-isomorphic in ChZ[Ecof ]. By Theorem 6.2,
this holds if an only if C∗(X;Z) and C∗(Y ;Z) are quasi-isomorphic in ChZ[Ecof ].
By [Man06, Main Theorem], this is the case if and only if X and Y are weakly
equivalent. �
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