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Question: What additional structure do the Taylor coefficients
0.F = {0nF} n>1 possess that would allow the Taylor tower to be
reconstructed?



Apply descent to the functor 0,



Apply descent to the functor 0.

« Key Fact: F — 0, F has a right adjoint.



Apply descent to the functor 0.

« Key Fact: F — 0, F has a right adjoint.

a.
[Top™, Spectra] : SymSeq
®

*



Key Fact: F — 0, F has a right adjoint.

a* 6*
[Top™, Spectra] . SymSeq , [Top!", Top,] . LeftMode
(0] O]

* *



Key Fact: F — 0, F has a right adjoint.
| 2 | N
[Top™. Spectra] , ~ SymSeq , [Top™, Top,] . LeftModyi
o} O]

* *

Consequence: For any F, the symmetric sequence 0. F is a
coalgebra over the cotriple

K = 0.9.



Key Fact: F — 0, F has a right adjoint.
| 2 | N
[Top™. Spectra] , ~ SymSeq , [Top™, Top,] . LeftModyi
o} O]

*

Consequence: For any F, the symmetric sequence 0. F is a
coalgebra over the cotriple

K = 0.9.

Theorem (Arone,C.):
Taylor tower of F converges =— F ~ Tot(®(9.P)*0. F);



Key Fact: F — 0, F has a right adjoint.
| 2 | N
[Top™. Spectra] , ~ SymSeq , [Top™, Top,] . LeftModyi
o} O]

*

Consequence: For any F, the symmetric sequence 0. F is a
coalgebra over the cotriple

K = 0.9.

Theorem (Arone,C.):

Taylor tower of F converges =— F ~ Tot(®(9.P)*0. F);
PnF ~ Tot(® (0. $)*0<nF).



Key Fact: F — 0, F has a right adjoint.
| 2 | N
[Top™. Spectra] , ~ SymSeq , [Top™, Top,] . LeftModyi
o} O]

*

Consequence: For any F, the symmetric sequence 0. F is a
coalgebra over the cotriple

K = 0.9.

Theorem (Arone,C.):

Taylor tower of F converges =— F ~ Tot(®(9.P)*0. F);
PnF ~ Tot(® (0. $)*0<nF).

In fact: There is an equivalence of homotopy categories

n-excisive functors \%’ n-truncated K-coalgebras ‘
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Simple example: A 2-excisive functor F : Top,
determined uniquely by the single structure map

— Spectra is

(91[‘_—) (Z@QF)},ZE.



