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Goodwillie’s Calculus of Functors

• Setup: F ∈ [Topfin
∗ ,Spectra]: pointed simplicial functor

• Taylor tower:

F → · · · → PnF → Pn−1F → · · · → P1F → ∗

• Layers and Taylor coefficients:

DnF (X ) := hofib(PnF (X )→ Pn−1F (X ))

' [∂nF ∧ (Σ∞X )∧n]hΣn

∂nF : spectrum with Σn-action (nth Taylor coefficient of F at ∗).
• Question: What additional structure do the Taylor coefficients
∂∗F = {∂nF}n≥1 possess that would allow the Taylor tower to be
reconstructed?
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Apply descent to the functor ∂∗

• Key Fact: F 7→ ∂∗F has a right adjoint.

[Topfin
∗ ,Spectra] SymSeq

∂∗ //

Φ
oo , [Topfin

∗ ,Top∗] LeftModLie

∂∗ //

Φ
oo

• Consequence: For any F , the symmetric sequence ∂∗F is a
coalgebra over the cotriple

K = ∂∗Φ.

• Theorem (Arone,C.):
• Taylor tower of F converges =⇒ F ' Tot(Φ(∂∗Φ)•∂∗F );
• PnF ' Tot(Φ(∂∗Φ)•∂≤nF ).

• In fact: There is an equivalence of homotopy categories

n-excisive functors -∂∗

' n-truncated K -coalgebras
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What are K -coalgebras?

• Answer: For [Topfin
∗ ,Spectra]:

K -coalgebra = divided power right Lie-module

where Lie is the operad formed by the Taylor coefficients of the
identity functor on based spaces.

• This means: There are natural maps

∂k F → Map(Lien1 ∧ . . . ∧ Lienk , ∂nF )hΣn1×···×Σnk

where n = n1 + · · ·+ nk .
• Simple example: A 2-excisive functor F : Topfin

∗ → Spectra is
determined uniquely by the single structure map

∂1F → (Σ∂2F )hΣ2 .
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